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Abstract: For composite outcomes whose components can be prioritized on clinical importance, 

the win ratio, the net benefit and the win odds apply that order in comparing patients pairwise to 

produce wins and subsequently win proportions. Because these three statistics are derived using 

the same win proportions and they test the same hypothesis of equal win probabilities in the two 

treatment groups, we refer to them as win statistics. These methods, particularly the win ratio and 

the net benefit, have received increasing attention in methodological research and in design and 

analysis of clinical trials. For time-to-event outcomes, however, censoring may introduce bias. 

Previous work has shown that inverse-probability-of-censoring weighting (IPCW) can correct the 

win ratio for bias from independent censoring. The present article uses the IPCW approach to 

adjust win statistics for dependent censoring that can be predicted by baseline covariates and/or 

time-dependent covariates (producing the CovIPCW-adjusted win statistics). Theoretically and via 

examples and simulations, we show that the CovIPCW-adjusted win statistics are unbiased 

estimators of treatment effect in the presence of dependent censoring.  
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1 Introduction 
 
Prioritizing component outcomes in composite endpoints according to their clinical importance 

has received much attention, especially when the composite endpoint consists of only time-to-

event outcomes. Comparisons between treated patients and control patients use the importance 

order to produce wins for each group (and also ties)1, following the framework of generalized 

pairwise comparisons (GPC)2. The wins can be conveniently summarized in the win proportions. 

Because the win ratio (ratio of win proportions)1, the net benefit (difference in win proportions)2 

and the win odds (odds of win proportions)3 are derived using the same win proportions and they 

test the same hypothesis of equal win probabilities in the two treatment groups, we refer to them 

as win statistics. The pioneering work of Finkelstein and Schoenfeld4 is equivalent to the test of 

the difference in the number of wins between the two groups. Verbeeck et al.5,6 comprehensively 

compare the win ratio, the net benefit, and other related methods.  

The win ratio and the net benefit have received attention in both methodological research 

and applications. They have been used as the pre-specified primary analysis method in high-profile 

Phase III clinical studies such as the EMPULSE trial (registration number NCT04157751 in 

ClinicalTrials.gov) and the ATTR-ACT trial7,8. In EMPULSE (a multicenter, randomized, double-

blind study in patients hospitalized for acute heart failure) the primary endpoint is a hierarchical 

composite of time to death, number of heart-failure events (HFEs), time to the first HFE, and 

change in KCCQ-CSS (the clinical summary score of the Kansas City cardiomyopathy 

questionnaire) after 90 days of treatment. ATTR-ACT was a multicenter, international, double-

blind, placebo-controlled trial in patients with transthyretin amyloid cardiomyopathy. In the 

primary analysis, the trialists hierarchically assessed all-cause mortality, followed by frequency of 

cardiovascular-related hospitalizations7,8. The win ratio, as the primary analysis of the composite 



 
 

primary endpoint, supported the approval by the US Food and Drug Administration (FDA) of 

VYNDAQEL® (tafamidis meglumine) and VYNDAMAX™ (tafamidis) for treatment of 

cardiomyopathy to reduce cardiovascular mortality and cardiovascular-related hospitalization.  

One shortcoming of the win ratio is that its calculation ignores ties. In time-to-event data, 

the ties are mostly due to censored time. To address this problem, Dong et al. formally introduced 

the win odds3, which divides a tie into two half wins and assigns a half win to each treatment group. 

This statistic has been discussed by Brunner9 and Gasparyan et al.10, as well as by Peng11 in the 

setting of non-inferiority clinical trials.  

Over the past decade, win statistics have been the subject of rich methodological research12-

25. For time-to-event outcomes, censoring may introduce bias. Methods have been developed to 

correct for bias in the presence of independent censoring. Péron et al.23 suggested an extension of 

Efron’s correction26, which reduces the bias for the net benefit. Dong et al.16 applied inverse-

probability-of-censoring weighting (IPCW); they show that the IPCW-adjusted win ratio is an 

unbiased estimator of treatment effect.  

Most work on win statistics focuses on the unmatched approach1, which compares each 

patient in the Treatment group with every patient in the Control group, in the setting of independent 

censoring. Some patient pairs, however, may be influenced by covariates that cause informative 

censoring. In general, informative censoring may occur when time to event and time to censoring 

are dependent, either directly or through covariates. When covariates are associated with event 

time and can predict censoring, this type of censoring is often referred to as dependent censoring. 

In this article, we adjust win statistics for bias in the presence of dependent censoring, using 

an IPCW approach based on the Cox model with baseline covariates and/or time-dependent 

covariates (i.e., the CovIPCW-adjusted win statistics). IPCW compensates for censored patients 



 
 

by giving more weight to patients with similar characteristics who are not censored27,28. We 

demonstrate the CovIPCW-adjusted win statistics with examples and simulations.  

2 Notation and regularity conditions  

2.1 Notation 

We consider a randomized clinical trial with Nt patients in the Treatment group and Nc patients in 

the Control group. Let T denote event time, C denote censoring time, Y = min(T, C) be the observed 

time, and δ = I(T<C) be the event indicator, where 𝐼𝐼(∙) is the indicator function. The p-dimensional 

covariate vector 𝑍𝑍(𝑥𝑥) at time x can include baseline covariates at x = 0 and time-dependent 

covariates at x > 0. We define 𝑍𝑍(𝑥𝑥) = {𝑍𝑍(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑥𝑥}  as the covariate history, associated with 

the events and predicting censoring. We use i = 1, 2, …, Nt for patients in the Treatment group and 

j = 1, 2, …, Nc for patients in the Control group. Therefore, the data at times 𝑌𝑌𝑖𝑖  and 𝑌𝑌𝑗𝑗  are 

�𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑍𝑍(𝑌𝑌𝑖𝑖)�  and �𝑌𝑌𝑗𝑗 , 𝛿𝛿𝑗𝑗 ,𝑍𝑍(𝑌𝑌𝑗𝑗)� , respectively. We use 𝐹𝐹(∙ ) and 𝐺𝐺(∙ ) to denote the survival 

functions for the event time T and the censoring time C, respectively.  

For a composite endpoint of Q time-to-event outcomes with priority order from most 

important to least important, indexed by q = 1, 2, …, Q, the 𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖, 𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗 are Q-dimensional, and 

the data are �𝑌𝑌𝑞𝑞𝑖𝑖, 𝛿𝛿𝑞𝑞𝑖𝑖,𝑍𝑍(𝑌𝑌𝑞𝑞𝑖𝑖)� and �𝑌𝑌𝑞𝑞𝑗𝑗, 𝛿𝛿𝑞𝑞𝑗𝑗,𝑍𝑍(𝑌𝑌𝑞𝑞𝑗𝑗)�, where 𝑌𝑌𝑞𝑞𝑖𝑖 = min(𝑇𝑇𝑞𝑞𝑖𝑖, 𝐶𝐶𝑞𝑞𝑖𝑖) is the observed time, 

and 𝛿𝛿𝑞𝑞𝑖𝑖 = I(𝑇𝑇𝑞𝑞𝑖𝑖<𝐶𝐶𝑞𝑞𝑖𝑖). 

2.2 Regularity conditions 

To develop the CovIPCW-adjusted win statistics, we first consider seven regularity conditions, 

typically described for time-to-event analyses and the IPCW procedure27,28,29,30,31. 

(R1) The values of the covariates 𝑍𝑍(𝑥𝑥)  are known at any time point x in the patient’s 

observation time, and the covariate history 𝑍𝑍(𝑥𝑥) = {𝑍𝑍(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑥𝑥}  is associated with 



 
 

the events and predicts censoring. This condition means that event time T and censoring 

time C are dependent through the covariate history 𝑍𝑍(𝑥𝑥). 

(R2) All covariates that might be associated with events and predict censoring are 

measured. That is, there are ‘no unmeasured confounders for censoring’. 

(R3) Conditionally on the covariates 𝑍𝑍(𝑥𝑥), the censoring at a given time x only depends on the 

data observed up to x and not on future data to be observed as an event or unobserved as 

censored.  

(R4)  The survival probability of the censoring time is uniformly bounded away from 0, 

namely, 𝐺𝐺 �𝑥𝑥�𝑍𝑍(𝑥𝑥)� > 0 uniformly in the covariates 𝑍𝑍(𝑥𝑥).  

(R5) Any patients alive at the end of the study are considered censored, i.e., Prob(C ≥ τ) = 

Prob(C = τ) >0, where τ is the analysis time. 

(R6) The probability that a patient survives after τ is positive, i.e., Prob(T > τ) > 0. 

(R7) There is a positive probability of observing an event, i.e., Prob(T ≤ C | 𝑍𝑍(𝑥𝑥)) > 0. 

3 Win statistics 

Let πt be the probability that a patient in the Treatment group wins over a patient in the Control 

group, πc be the probability that a patient in the Control group wins over a patient in the Treatment 

group, and 𝜋𝜋𝑡𝑡𝑖𝑖𝑡𝑡 = 1 − 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑐𝑐 be the probability that the two patients are tied.  The win ratio (WR), 

the win odds (WO), and the net benefit (NB) can be expressed as follows: 

  𝑊𝑊𝑊𝑊 =  𝜋𝜋𝑡𝑡
𝜋𝜋𝑐𝑐

 ,                                                                                                         (1a) 

𝑊𝑊𝑊𝑊 = 𝜋𝜋𝑡𝑡+0.5𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡
𝜋𝜋𝑐𝑐+0.5𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡

=  𝜋𝜋𝑡𝑡+0.5(1−𝜋𝜋𝑡𝑡−𝜋𝜋𝑐𝑐)
𝜋𝜋𝑐𝑐+0.5(1−𝜋𝜋𝑡𝑡−𝜋𝜋𝑐𝑐)

.                                                                (1b) 

𝑁𝑁𝑁𝑁 =  𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑐𝑐,                                                                                                  (1c)  



 
 

These three win statistics,  the win ratio, the win odds, and the net benefit, are derived using 

the same win proportions, and they test the same hypothesis that the win probabilities in the 

treatment groups are equal, namely 𝐻𝐻0: 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑐𝑐.  

4 CovIPCW-adjusted win statistics 

For a composite of Q prioritized outcomes, the counting approach is straightforward and intuitive. 

The principal idea is to compare each patient in a treatment group with every patient in the other 

group. Within each pair, the comparison starts with the most important outcome, and uses lower-

priority outcomes only if higher-priority outcomes have not occurred or result in a tie. Conditional 

on the covariates 𝑍𝑍(𝑥𝑥), we define the kernel functions K and L as follows: 𝐾𝐾𝑖𝑖𝑗𝑗 = 1 if patient i wins 

over patient j, otherwise 𝐾𝐾𝑖𝑖𝑗𝑗 = 0; and 𝐿𝐿𝑖𝑖𝑗𝑗 = 1 if patient j wins over patient i, otherwise 𝐿𝐿𝑖𝑖𝑗𝑗 = 0. 

We use "Yqj ≈Yqi" to denote that patient i and patient j are tied on outcomes 1 through q.  

 𝐾𝐾𝑖𝑖𝑗𝑗�𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗 , 𝛿𝛿𝑗𝑗� = 𝐼𝐼�𝑌𝑌1𝑖𝑖 > 𝑌𝑌1𝑗𝑗�𝛿𝛿1𝑗𝑗 + 𝐼𝐼�𝑌𝑌1𝑖𝑖 ≈ 𝑌𝑌1𝑗𝑗�𝐼𝐼�𝑌𝑌2𝑖𝑖 > 𝑌𝑌2𝑗𝑗�𝛿𝛿2𝑗𝑗 

  +𝐼𝐼�𝑌𝑌2𝑖𝑖 ≈ 𝑌𝑌2𝑗𝑗�𝐼𝐼�𝑌𝑌3𝑖𝑖 > 𝑌𝑌3𝑗𝑗�𝛿𝛿3𝑗𝑗 + ⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑖𝑖 ≈ 𝑌𝑌𝑄𝑄−1,𝑗𝑗�𝐼𝐼�𝑌𝑌𝑄𝑄𝑖𝑖 > 𝑌𝑌𝑄𝑄𝑗𝑗�𝛿𝛿𝑄𝑄𝑗𝑗                   (2a) 

𝐿𝐿𝑖𝑖𝑗𝑗�𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗� = 𝐼𝐼�𝑌𝑌1𝑗𝑗 > 𝑌𝑌1𝑖𝑖�𝛿𝛿1𝑖𝑖 + 𝐼𝐼�𝑌𝑌1𝑗𝑗 ≈ 𝑌𝑌1𝑖𝑖�𝐼𝐼�𝑌𝑌2𝑗𝑗 > 𝑌𝑌2𝑖𝑖�𝛿𝛿2𝑖𝑖 

  +𝐼𝐼�𝑌𝑌2𝑗𝑗 ≈ 𝑌𝑌2𝑖𝑖�𝐼𝐼�𝑌𝑌3𝑗𝑗 > 𝑌𝑌3𝑖𝑖�𝛿𝛿3𝑖𝑖 + ⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑗𝑗 ≈ 𝑌𝑌𝑄𝑄−1,𝑖𝑖�𝐼𝐼�𝑌𝑌𝑄𝑄𝑗𝑗 > 𝑌𝑌𝑄𝑄𝑖𝑖�𝛿𝛿𝑄𝑄𝑖𝑖                  (2b) 

Dong et al.16 introduced the IPCW-adjusted win ratio, for which the IPCW-adjusted kernel 

functions 𝐾𝐾𝐴𝐴 and 𝐿𝐿𝐴𝐴 are 

 𝐾𝐾𝑖𝑖𝑗𝑗𝐴𝐴�𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗� = 𝐼𝐼�𝑌𝑌1𝑡𝑡>𝑌𝑌1𝑗𝑗�𝛿𝛿1𝑗𝑗
𝐺𝐺(𝑡𝑡)(𝑌𝑌1𝑗𝑗)𝐺𝐺(𝑐𝑐)(𝑌𝑌1𝑗𝑗)

+ 𝐼𝐼�𝑌𝑌1𝑖𝑖 ≈ 𝑌𝑌1𝑗𝑗�
𝐼𝐼�𝑌𝑌2𝑡𝑡>𝑌𝑌2𝑗𝑗�𝛿𝛿2𝑗𝑗

𝐺𝐺(𝑡𝑡)(𝑌𝑌2𝑗𝑗)𝐺𝐺(𝑐𝑐)(𝑌𝑌2𝑗𝑗)
 

  +𝐼𝐼�𝑌𝑌2𝑖𝑖 ≈ 𝑌𝑌2𝑗𝑗�
𝐼𝐼�𝑌𝑌3𝑡𝑡>𝑌𝑌3𝑗𝑗�𝛿𝛿3𝑗𝑗

𝐺𝐺(𝑡𝑡)(𝑌𝑌3𝑗𝑗)𝐺𝐺(𝑐𝑐)(𝑌𝑌3𝑗𝑗)
+ ⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑖𝑖 ≈ 𝑌𝑌𝑄𝑄−1,𝑗𝑗�

𝐼𝐼�𝑌𝑌𝑄𝑄𝑡𝑡>𝑌𝑌𝑄𝑄𝑗𝑗�𝛿𝛿𝑄𝑄𝑗𝑗
𝐺𝐺(𝑡𝑡)(𝑌𝑌𝑄𝑄𝑗𝑗)𝐺𝐺(𝑐𝑐)(𝑌𝑌𝑄𝑄𝑗𝑗)

 ,                     (3a) 

𝐿𝐿𝑖𝑖𝑗𝑗𝐴𝐴 �𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗� =
𝐼𝐼�𝑌𝑌1𝑗𝑗 > 𝑌𝑌1𝑖𝑖�𝛿𝛿1𝑖𝑖
𝐺𝐺(𝑡𝑡)(𝑌𝑌1𝑖𝑖)𝐺𝐺(𝑐𝑐)(𝑌𝑌1𝑖𝑖)

+ 𝐼𝐼�𝑌𝑌1𝑗𝑗 ≈ 𝑌𝑌1𝑖𝑖�
𝐼𝐼�𝑌𝑌2𝑗𝑗 > 𝑌𝑌2𝑖𝑖�𝛿𝛿2𝑖𝑖
𝐺𝐺(𝑡𝑡)(𝑌𝑌2𝑖𝑖)𝐺𝐺(𝑐𝑐)(𝑌𝑌2𝑖𝑖)

 

  +𝐼𝐼�𝑌𝑌2𝑗𝑗 ≈ 𝑌𝑌2𝑖𝑖�
𝐼𝐼�𝑌𝑌3𝑗𝑗>𝑌𝑌3𝑡𝑡�𝛿𝛿3𝑡𝑡

𝐺𝐺(𝑡𝑡)(𝑌𝑌3𝑡𝑡)𝐺𝐺(𝑐𝑐)(𝑌𝑌3𝑡𝑡)
+⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑗𝑗 ≈ 𝑌𝑌𝑄𝑄−1,𝑖𝑖�

𝐼𝐼�𝑌𝑌𝑄𝑄𝑗𝑗>𝑌𝑌𝑄𝑄𝑡𝑡�𝛿𝛿𝑄𝑄𝑡𝑡
𝐺𝐺(𝑡𝑡)(𝑌𝑌𝑄𝑄𝑡𝑡)𝐺𝐺(𝑐𝑐)(𝑌𝑌𝑄𝑄𝑡𝑡)

  ,             (3b) 



 
 

where 1
𝐺𝐺(𝑡𝑡)(∙)𝐺𝐺(𝑐𝑐)(∙)

 is an IPCW adjustment. It can be estimated by plugging in the Kaplan-Meier 

survival estimates 𝐺𝐺�(𝑡𝑡)(∙) and 𝐺𝐺�(𝑐𝑐)(∙) of censoring. Dong et al.16 showed that the IPCW-adjusted 

win proportions 𝑃𝑃𝑡𝑡𝐴𝐴 = 𝑛𝑛𝑡𝑡𝐴𝐴

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
= 1

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
∑ ∑ 𝐾𝐾𝑖𝑖𝑗𝑗𝐴𝐴

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1  and 𝑃𝑃𝑐𝑐𝐴𝐴 = 𝑛𝑛𝑐𝑐𝐴𝐴

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
= 1

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
∑ ∑ 𝐿𝐿𝑖𝑖𝑗𝑗𝐴𝐴

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1  are 

unbiased estimators of the win probabilities 𝜋𝜋𝑡𝑡 and 𝜋𝜋𝑐𝑐 for the Treatment and Control groups, in 

the presence of independent censoring. 

In this article, we incorporate baseline covariates and time-dependent covariates in the 

IPCW adjustment via the time-dependent Cox model. We refer to this adjustment as CovIPCW. 

Then we apply the CovIPCW adjustment to derive the three win statistics. Conditional on the 

covariates 𝑍𝑍(𝑥𝑥), the CovIPCW-adjusted kernel functions 𝐾𝐾𝑍𝑍 and 𝐿𝐿𝑍𝑍 can be expressed as 

𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍��𝑌𝑌𝑖𝑖 , 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗 , 𝛿𝛿𝑗𝑗� |𝑍𝑍(𝑌𝑌𝑖𝑖),𝑍𝑍(𝑌𝑌𝑗𝑗)� =
𝐼𝐼�𝑌𝑌1𝑖𝑖 > 𝑌𝑌1𝑗𝑗�𝛿𝛿1𝑗𝑗

𝐺𝐺(𝑡𝑡)(𝑌𝑌1𝑗𝑗|𝑍𝑍(𝑌𝑌1𝑗𝑗)𝐺𝐺(𝑐𝑐)(𝑌𝑌1𝑗𝑗|𝑍𝑍(𝑌𝑌1𝑗𝑗))
 

+𝐼𝐼�𝑌𝑌1𝑖𝑖 ≈ 𝑌𝑌1𝑗𝑗�
𝐼𝐼�𝑌𝑌2𝑖𝑖 > 𝑌𝑌2𝑗𝑗�𝛿𝛿2𝑗𝑗

𝐺𝐺(𝑡𝑡)(𝑌𝑌2𝑗𝑗|𝑍𝑍(𝑌𝑌2𝑗𝑗))𝐺𝐺(𝑐𝑐)(𝑌𝑌2𝑗𝑗|𝑍𝑍(𝑌𝑌2𝑗𝑗))
 

+⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑖𝑖 ≈ 𝑌𝑌𝑄𝑄−1,𝑗𝑗�
𝐼𝐼�𝑌𝑌𝑄𝑄𝑡𝑡>𝑌𝑌𝑄𝑄𝑗𝑗�𝛿𝛿𝑄𝑄𝑗𝑗

𝐺𝐺(𝑡𝑡)(𝑌𝑌𝑄𝑄𝑗𝑗|𝑍𝑍(𝑌𝑌𝑄𝑄𝑗𝑗))𝐺𝐺(𝑐𝑐)(𝑌𝑌𝑄𝑄𝑗𝑗|𝑍𝑍(𝑌𝑌𝑄𝑄𝑗𝑗))
  ,                                 (4a) 

𝐿𝐿𝑖𝑖𝑗𝑗𝑍𝑍 ��𝑌𝑌𝑖𝑖 , 𝛿𝛿𝑖𝑖 ,𝑌𝑌𝑗𝑗 , 𝛿𝛿𝑗𝑗� |𝑍𝑍(𝑌𝑌𝑖𝑖),𝑍𝑍(𝑌𝑌𝑗𝑗)� =
𝐼𝐼�𝑌𝑌1𝑗𝑗 > 𝑌𝑌1𝑖𝑖�𝛿𝛿1𝑖𝑖

𝐺𝐺(𝑡𝑡)(𝑌𝑌1𝑖𝑖|𝑍𝑍(𝑌𝑌1𝑖𝑖))𝐺𝐺(𝑐𝑐)(𝑌𝑌1𝑖𝑖|𝑍𝑍(𝑌𝑌1𝑖𝑖))
 

+𝐼𝐼�𝑌𝑌1𝑗𝑗 ≈ 𝑌𝑌1𝑖𝑖�
𝐼𝐼�𝑌𝑌2𝑗𝑗>𝑌𝑌2𝑡𝑡�𝛿𝛿2𝑡𝑡

𝐺𝐺(𝑡𝑡)(𝑌𝑌2𝑡𝑡|𝑍𝑍(𝑌𝑌2𝑡𝑡))𝐺𝐺(𝑐𝑐)(𝑌𝑌2𝑡𝑡|𝑍𝑍(𝑌𝑌2𝑡𝑡))
        

+⋯+ 𝐼𝐼�𝑌𝑌𝑄𝑄−1,𝑗𝑗 ≈ 𝑌𝑌𝑄𝑄−1,𝑖𝑖�
𝐼𝐼�𝑌𝑌𝑄𝑄𝑗𝑗>𝑌𝑌𝑄𝑄𝑡𝑡�𝛿𝛿𝑄𝑄𝑡𝑡

𝐺𝐺(𝑡𝑡)(𝑌𝑌𝑄𝑄𝑡𝑡|𝑍𝑍(𝑌𝑌𝑄𝑄𝑡𝑡))𝐺𝐺(𝑐𝑐)(𝑌𝑌𝑄𝑄𝑡𝑡|𝑍𝑍(𝑌𝑌𝑄𝑄𝑡𝑡))
 .                       (4b) 

When 𝑍𝑍(𝑥𝑥)  is multidimensional, there is no nonparametric approach to estimate survival 

functions31, analogous to the simple and popular Kaplan-Meier estimator. As detailed in Willems 

et al.29 for the IPCW procedure, we estimate 𝐺𝐺(𝑡𝑡)(∙ |𝑍𝑍(𝑥𝑥))  and 𝐺𝐺(𝑐𝑐)(∙ | 𝑍𝑍(𝑥𝑥))  using the time-

dependent Cox model.  



 
 

The CovIPCW-adjusted numbers of wins and win proportions can be derived as 

  𝑛𝑛𝑡𝑡𝑍𝑍 = ∑ ∑ 𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍
𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 ��𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖,𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗� |𝑍𝑍(𝑌𝑌𝑖𝑖),𝑍𝑍�𝑌𝑌𝑗𝑗��,                                             (5a) 

  𝑛𝑛𝑐𝑐𝑍𝑍 = ∑ ∑ 𝐿𝐿𝑖𝑖𝑗𝑗𝑍𝑍��𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖, 𝑌𝑌𝑗𝑗, 𝛿𝛿𝑗𝑗� |𝑍𝑍(𝑌𝑌𝑖𝑖),𝑍𝑍�𝑌𝑌𝑗𝑗��
𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 ,                                              (5b) 

  𝑃𝑃𝑡𝑡𝑍𝑍 = 𝑛𝑛𝑡𝑡𝑍𝑍

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
,                                                                                                       (6a) 

𝑃𝑃𝑐𝑐𝑍𝑍 = 𝑛𝑛𝑐𝑐𝑍𝑍

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
.                                                                                                       (6b) 

Therefore, the CovIPCW-adjusted estimators are 

𝑊𝑊𝑊𝑊� 𝑍𝑍 = 𝑃𝑃𝑡𝑡𝑍𝑍

𝑃𝑃𝑐𝑐𝑍𝑍
 ,                                                                                                     (7a) 

𝑁𝑁𝑁𝑁� 𝑍𝑍 = 𝑃𝑃𝑡𝑡𝑍𝑍 − 𝑃𝑃𝑐𝑐𝑍𝑍 ,                                                                                            (7b) 

𝑊𝑊𝑊𝑊� 𝑍𝑍 = 𝑃𝑃𝑡𝑡𝑍𝑍+0.5 (1−𝑃𝑃𝑡𝑡𝑍𝑍−𝑃𝑃𝑐𝑐𝑍𝑍)
𝑃𝑃𝑐𝑐𝑍𝑍+0.5 (1−𝑃𝑃𝑡𝑡𝑍𝑍−𝑃𝑃𝑐𝑐𝑍𝑍)

 ,                                                                             (7c) 

It is straightforward to show that the CovIPCW-adjusted win statistics are unbiased estimators of 

the win ratio, the win odds and the net benefit, in the presence of dependent censoring, namely,  

  𝐸𝐸(𝑊𝑊𝑊𝑊� 𝑍𝑍) = 𝐸𝐸(𝑃𝑃𝑡𝑡𝑍𝑍)
𝐸𝐸(𝑃𝑃𝑐𝑐𝑍𝑍)

= 𝜋𝜋𝑡𝑡
𝜋𝜋𝑐𝑐

= 𝑊𝑊𝑊𝑊,                                                                        (8a) 

similarly, 

𝐸𝐸(𝑊𝑊𝑊𝑊� 𝑍𝑍) = 𝑊𝑊𝑊𝑊,                                                                                             (8b) 

𝐸𝐸(𝑁𝑁𝑁𝑁� 𝑍𝑍) = 𝑁𝑁𝑁𝑁.                                                                                               (8c) 

5 Asymptotic variance of CovIPCW-adjusted win statistics 

The win proportions 𝑃𝑃𝑡𝑡𝑍𝑍  and 𝑃𝑃𝑐𝑐𝑍𝑍  are two-sample U-statistics of degree (1,1) with kernel 

functions 𝐾𝐾𝑍𝑍  and 𝐿𝐿𝑍𝑍  based on the data �𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑍𝑍(𝑌𝑌𝑖𝑖)� and �𝑌𝑌𝑗𝑗 , 𝛿𝛿𝑗𝑗 ,𝑍𝑍�𝑌𝑌𝑗𝑗��. Consequently, 𝑛𝑛𝑡𝑡𝑍𝑍  and 

𝑛𝑛𝑐𝑐𝑍𝑍 are asymptotically normal (AN).  

�𝑛𝑛𝑡𝑡
𝑍𝑍

𝑛𝑛𝑐𝑐𝑍𝑍
�~𝐴𝐴𝑁𝑁 ��𝜃𝜃𝑡𝑡𝜃𝜃𝑐𝑐

� , �𝜎𝜎𝑡𝑡
2 𝜎𝜎𝑡𝑡𝑐𝑐

𝜎𝜎𝑡𝑡𝑐𝑐 𝜎𝜎𝑐𝑐2
��,                                                                                    (9) 



 
 

where 𝜃𝜃𝑡𝑡 = 𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐𝜃𝜃𝐾𝐾𝑍𝑍 , 𝜃𝜃𝐾𝐾𝑍𝑍 = 𝐸𝐸�𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍�, 𝜃𝜃𝑐𝑐 = 𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐𝜃𝜃𝐿𝐿𝑍𝑍 , and 𝜃𝜃𝐿𝐿𝑍𝑍 = 𝐸𝐸�𝐿𝐿𝑖𝑖𝑗𝑗𝑍𝑍 �. Under the null hypothesis 

H0, 𝜃𝜃𝐾𝐾𝑍𝑍 , 𝜃𝜃𝐿𝐿𝑍𝑍 , 𝜃𝜃𝑡𝑡, and 𝜃𝜃𝑐𝑐 can be estimated by 

𝜃𝜃�𝐾𝐾𝑍𝑍 = 𝜃𝜃�𝐿𝐿𝑍𝑍 = 𝑛𝑛𝑡𝑡𝑍𝑍+𝑛𝑛𝑐𝑐𝑍𝑍

2𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐
,                                                                                                   (10a) 

𝜃𝜃�𝑡𝑡 = 𝜃𝜃�𝑐𝑐 = 𝑛𝑛𝑡𝑡𝑍𝑍+𝑛𝑛𝑐𝑐𝑍𝑍

2
,                                                                                                        (10b) 

and 𝜎𝜎𝑡𝑡2, 𝜎𝜎𝑐𝑐2 and 𝜎𝜎𝑡𝑡𝑐𝑐can be estimated by 

𝜎𝜎�𝑡𝑡2 = 𝑁𝑁𝑐𝑐
(𝑁𝑁𝑐𝑐−1)

∑ ∑ ∑ �𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍� �𝐾𝐾𝑖𝑖𝑗𝑗′
𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍�

𝑁𝑁𝑐𝑐
𝑗𝑗′=1
𝑗𝑗′≠𝑗𝑗

𝑁𝑁𝑐𝑐
𝑗𝑗=1 + 𝑁𝑁𝑡𝑡

(𝑁𝑁𝑡𝑡−1)
∑ ∑ ∑ �𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍� �𝐾𝐾𝑖𝑖′𝑗𝑗

𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍�
𝑁𝑁𝑡𝑡
𝑖𝑖′=1
𝑖𝑖′≠𝑖𝑖

𝑁𝑁𝑡𝑡
𝑖𝑖=1

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 ,  (11a) 

𝜎𝜎�𝑐𝑐2 = 𝑁𝑁𝑡𝑡
(𝑁𝑁𝑡𝑡−1)

∑ ∑ ∑ �𝐿𝐿𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍� �𝐿𝐿𝑖𝑖′𝑗𝑗
𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍�

𝑁𝑁𝑡𝑡
𝑖𝑖′=1
𝑖𝑖′≠𝑖𝑖

𝑁𝑁𝑡𝑡
𝑖𝑖=1

𝑁𝑁𝑐𝑐
𝑗𝑗=1 + 𝑁𝑁𝑐𝑐

(𝑁𝑁𝑐𝑐−1)
∑ ∑ ∑ �𝐿𝐿𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍� �𝐿𝐿𝑖𝑖𝑗𝑗′

𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍�
𝑁𝑁𝑐𝑐
𝑗𝑗′=1
𝑗𝑗′≠𝑗𝑗

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 ,        (11b) 

𝜎𝜎�𝑡𝑡𝑐𝑐 = 𝑁𝑁𝑐𝑐
(𝑁𝑁𝑐𝑐−1)

∑ ∑ ∑ �𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍� �𝐿𝐿𝑖𝑖𝑗𝑗′
𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍�

𝑁𝑁𝑐𝑐
𝑗𝑗′=1
𝑗𝑗′≠𝑗𝑗

+ 𝑁𝑁𝑡𝑡
(𝑁𝑁𝑡𝑡−1)

∑ ∑ ∑ �𝐾𝐾𝑖𝑖𝑗𝑗𝑍𝑍 − 𝜃𝜃�𝐾𝐾𝑍𝑍� �𝐿𝐿𝑖𝑖′𝑗𝑗
𝑍𝑍 − 𝜃𝜃�𝐿𝐿𝑍𝑍�

𝑁𝑁𝑡𝑡
𝑖𝑖′=1
𝑖𝑖′≠𝑖𝑖

𝑁𝑁𝑡𝑡
𝑖𝑖=1

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑐𝑐
𝑗𝑗=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 .   (11c) 

By the delta method, 𝑙𝑙𝑙𝑙𝑙𝑙�𝑊𝑊𝑊𝑊� 𝑍𝑍� = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑍𝑍 𝑃𝑃𝑐𝑐𝑍𝑍⁄ ) , 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑊𝑊𝑊𝑊� 𝑍𝑍)  and 𝑁𝑁𝑁𝑁� 𝑍𝑍 = 𝑃𝑃𝑡𝑡𝑍𝑍 − 𝑃𝑃𝑐𝑐𝑍𝑍  are 

asymptotically normally distributed: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝑊𝑊𝑊𝑊� 𝑍𝑍�~𝐴𝐴𝑁𝑁(𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊),𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊)
2 ),                                                                   (12a) 

  𝑙𝑙𝑙𝑙𝑙𝑙�𝑊𝑊𝑊𝑊� 𝑍𝑍�~𝐴𝐴𝑁𝑁(𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊),𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊)
2 ),                                                                   (12b) 

  𝑁𝑁𝑁𝑁� 𝑍𝑍~𝐴𝐴𝑁𝑁(𝜃𝜃𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁2 ).                                                                                                 (12c) 

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊)
2 , 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊)

2  and 𝜎𝜎𝑁𝑁𝑁𝑁2  can estimated by  

  𝜎𝜎�𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊� 𝑍𝑍)
2 = 𝜎𝜎�𝑡𝑡2

�𝜃𝜃�𝑡𝑡�
2 + 𝜎𝜎�𝑐𝑐2

�𝜃𝜃�𝑐𝑐�
2 −

2𝜎𝜎�𝑡𝑡𝑐𝑐
𝜃𝜃�𝑡𝑡𝜃𝜃�𝑐𝑐

,                                                                              (13a) 

𝜎𝜎�𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊� 𝑍𝑍)
2 = (𝜎𝜎�𝑡𝑡2 − 2𝜎𝜎�𝑡𝑡𝑐𝑐 + 𝜎𝜎�𝑐𝑐2) �1

𝛾𝛾�
+ 1

𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐−𝛾𝛾�
�
2

,                                                    (13b) 

𝜎𝜎�𝑁𝑁𝐸𝐸� 𝑍𝑍
2 = 𝜎𝜎�𝑡𝑡2+𝜎𝜎�𝑐𝑐2−2𝜎𝜎�𝑡𝑡𝑐𝑐

(𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐)2 ,                                                                                                  (13c) 

where 𝛾𝛾� = 𝜃𝜃�𝑡𝑡 + 0.5(𝑁𝑁𝑡𝑡𝑁𝑁𝑐𝑐 − 𝜃𝜃�𝑡𝑡 − 𝜃𝜃�𝑐𝑐). 

6 Examples 



 
 

6.1 Cardiovascular trial of Candesartan in Heart Failure Assessment of Reduction in 

Mortality and Morbidity (CHARM)  

The CHARM trial was a randomized, double-blind, controlled trial comparing candesartan with 

placebo in patients with chronic heart failure32. The primary outcome was cardiovascular death or 

hospitalizations due to chronic heart failure. In this outcome, cardiovascular death is clinically 

more important than hospitalizations due to chronic heart failure, and win statistics take this 

importance order into account. In contrast, the traditional survival analysis methods such as the 

Kaplan-Meier method, the log-rank test and the Cox proportional hazards model, use the time to 

the first occurrence of cardiovascular death or hospitalization due to chronic heart failure, and the 

more frequent outcome of hospitalization could dominate the result.  

In this analysis, we explored all important predictors of mortality and morbidity identified 

in a previous investigation in the CHARM program33. These variables were age (per 10 years over 

age 60 years), left ventricular ejection fraction (per 5 percentage-point decrease below 45%), 

diabetes mellitus (none [reference], insulin treated, and oral therapy or diet only), male sex, New 

York Heart Association class (II [reference], III, and IV), current smoking, bundle-branch block, 

cardiomegaly, previous hospitalization for HF (none [reference], ≤6 months, >6 months), diastolic 

blood pressure (per 10-mm Hg decrease), duration of HF >2 years, previous myocardial infarction, 

edema, heart rate (per 10-bpm increase), pulmonary crackles, pulmonary edema, mitral 

regurgitation, atrial fibrillation, and rest dyspnea.  

Table 1 presents the results from the win statistics analyses. Win statistics from the IPCW-

adjusted and CovIPCW-adjusted analyses produced very similar point and interval estimates. This 

is because overall the various baseline covariates did not predict censoring in this large randomized 

study with a total of 7599 patients. Hence, the CovIPCW estimated from the Cox model with these 



 
 

covariates does not differ much from the corresponding IPCW based on the Kaplan-Meier method. 

As expected, the unadjusted win proportions are lower than the IPCW-adjusted and CovIPCW-

adjusted win proportions. However, the unadjusted win statistics differ only slightly from the 

IPCW-adjusted and CovIPCW-adjusted analyses since the hazard of cardiovascular death as well 

as that of hospitalizations due to chronic heart failure were in general proportional between the 

two treatment groups. This finding is consistent with Oakes22, Finkelstein and Schoenfeld17, and 

Dong et al15 on win statistics under the proportional hazards model.  

 
6.2 Bone marrow transplant  

The bone marrow transplant dataset is a classic example in survival analysis from Klein and 

Moeschberger34. The study compares disease-free survival after bone marrow transplant in 

leukemia risk groups. In this example, we compared the high-risk acute myelocytic leukemia 

(AML) patients (n=45) with the acute lymphoblastic leukemia (ALL) patients (n=38). To mimic 

the clinical trial setting, we analyzed the data up to 1 year. We excluded 1 ALL patient who was 

censored early, so that the analysis dataset has no censored observations at 1 year, and we 

considered the estimates in absence of censoring as the “true” values. The Cox model gave very 

small survival estimates of censoring times at some covariate levels, because the small sample led 

to a small risk set. Therefore, we triplicated the dataset, so that we have 111 patients in the ALL 

group and 135 patients in the high-risk AML group.  

In the multivariate Cox regression model, patient age and time to platelet recovery (time-

dependent) are significantly associated (at the .05 level) with the survival outcome (Table 2). 

Therefore, we artificially generated dependent censoring based on these covariates to evaluate the 

three win statistics. We applied two scenarios of censoring. For each scenario, we generated 1000 

simulation datasets. Because we triplicated the dataset, removed a patient and then imposed 



 
 

artificial censoring, one should not interpret this example as actual clinical trial results; it serves 

only as an illustration of our proposed methods.  

• Scenario 1: Rather than using patient age ranging from 7 to 52 years, we generated 

dependent censoring based on the square root of patient age since the square root narrows 

the range in values. As detailed in Willems et al.29, we artificially generated simulation 

datasets as follows.  

a) Determine the hazards for censoring, ℎ𝑐𝑐(𝑥𝑥|𝑍𝑍), for each patient in the dataset depending 

on the square root of patient age (Z), by the Cox model ℎ𝑐𝑐(𝑥𝑥|𝑍𝑍) = ℎ0𝑐𝑐(𝑥𝑥)exp (𝛽𝛽𝑍𝑍), 

where ℎ0𝑐𝑐(𝑥𝑥) is the baseline hazard and 𝛽𝛽 is the regression coefficient for Z. 

b) Sample the censoring times, C, from an exponential distribution, with rates ℎ𝑐𝑐(𝑥𝑥|𝑍𝑍). 

c) For each patient, determine the observed time Y = min(T, C) and the event indicator δ 

= I(T<C). 

We set 𝛽𝛽= –1.18 and –1.42 corresponding to 20% and 40% of the patients being censored 

in the first year, respectively. This censoring led to younger patients having higher 

probability of being censored.  

• Scenario 2: The second scenario induces time-dependent censoring using the variable, time 

to platelet recovery.  In this scenario, 20% and 40% of the patients who achieved platelet 

recovery were artificially censored by the first year. We did not censor any patients who 

did not achieve platelet recovery, as the number of these patients was small. We set the 

censoring time to be uniformly distributed between the time of platelet recovery and the 

relapse or death event or the cutoff time at 1 year.  

The results are shown in Table 3 and Table 4. In both censoring scenarios, the unadjusted 

simulation results (win probabilities, win ratio, win odds, and net benefit) differed substantially 



 
 

from the true values (in the absence of censoring), indicating the impact of censoring on win 

statistics and the potential bias introduced by dependent censoring. As expected, the impact was 

exacerbated by higher censoring (40% vs 20%).  

The IPCW-adjusted method alleviates the issue caused by heavy censoring. The win 

probabilities are closer to the truth, leading to win statistics closer to the true values in the absence 

of censoring. However, the differences between the IPCW-adjusted win statistics and the 

corresponding true values were still relatively large, presumably because of the bias caused by 

dependent censoring. In both scenarios, the extent of censoring (20% and 40%) does not seem to 

have much impact on the win probabilities from the IPCW-adjusted method. 

Both the baseline CovIPCW-adjusted (Table 3) and time-dependent CovIPCW-adjusted 

(Table 4) methods produced results that are much closer to the true values in the absence of 

censoring. The win probabilities and win statistics are very similar to the corresponding true values 

for both 20% censoring and 40% censoring. These results suggest that the CovIPCW-adjusted 

methods not only address the heavy censoring issue, which was criticized in the literature for the 

class of generalized comparison methods; they also effectively reduce the bias caused by 

dependent censoring.   

Last, since the three win statistics are derived with the same win proportions and test the 

same null hypothesis of equal win probabilities in the two treatment groups, the three tests should 

theoretically give the same p-values. As our simulations showed, the p-values from the three tests 

were identical or very close to one another (Table 3 and Table 4). 

7 Discussion 

Win statistics analyze composite outcomes with different types (e.g., time-to-event, continuous, 

categorical mesaurements), and accounts for the relative priority of components (e.g., 



 
 

cardiovascular death, hospitalization, stroke).  The win ratio and the net benefit have been recently 

used as the pre-specified primary analysis method in some registered trials. The EMPULSE trial 

(registration number NCT04157751 in ClinicalTrials.gov) and the ATTR-ACT trial7,8 are high-

profile examples of Phase III clinical studies.   

One shortcoming is that win statistics do not allow adjustments for covariates, although the 

stratified win ratio, as suggested by Dong et al.14, can take strata into account. In other words, 

when the two groups have different patient characteristics at baseline or on time-depedent 

covariates, the use of win statistics may be questionable. Earlier we applied the IPCW approach to 

the win ratio16. Now we have extended it to the win odds and the net benefit, and we have applied 

covariate adjustments based on the Cox model (i.e., the CovIPCW-adjusted approach) to the three 

win statistics in the presence of dependent censoring. The IPCW approach deals with tied 

observations, caused by censored time, by using the predicted probability from Kaplan-Meier 

estimates, whereas the CovIPCW-adjusted approach compensates for censored patients using the 

predicted probability from the time-dependent Cox model, giving more weight to patients with 

similar characteristics who are not censored27,28.   

Our examples and simulations show that the CovIPCW-adjusted win statistics effectively 

correct for bias from dependent censoring. Even under heavy censoring (e.g., 40%), the CovIPCW-

adjusted win probabilities and the CovIPCW-adjusted win statistics are very close to the 

corresponding true values. However, when the sample size is too small, small risk sets at some 

covariate levels may rule out the CovIPCW adjustment based on the Cox model. This problem is 

not unique to the CovIPCW-adjusted win statistics; it is a general issue of modelling with 

covariates in small samples. As indicated in regularity condition R2, the CovIPCW adjustment 

assumes that all covariates that might be associated with events and predict censoring are 



 
 

measured. This may be a strong assumption for some studies, but the assumption itself is 

untestable.  

From the perspective of hypothesis testing, the three win statistics have similar 

performance, as the nearly identical p-values in our simulation results demonstrate. The win ratio 

and the net benefit have drawn attention in both methodological research and applications, possibly 

because they have meaningful clinical interpretations and simple statistical calculations. These two 

methods quantify the relative treatment benefit (win ratio) and absolute treatment benefit (net 

benefit). For the purpose of estimation in the estimands framework, this coherent dual presentation 

is an advantage of win statistics over the hazard ratio, even under proportional hazards. The win 

odds was formally introduced recently by Dong et al3. Because it takes ties into account, the win 

odds may have an advantage when the number of ties is substantial, in particular in the setting of 

non-inferiority trials11. 

Data availability statement 

The bone marrow transplant data that support the findings of this study are available in the 

textbook: Klein J and Moeschberger M. Survival analysis techniques for censored and truncated 

data. New York: Springer. 2003. 
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Table 1 Win statistics from analyses of the CHARM trial 

 
Method Win proportion (%) 𝑾𝑾𝑾𝑾�  (95 % CI) 𝑾𝑾𝑾𝑾�  (95 % CI) 𝑵𝑵𝑵𝑵�  (%) (95 % CI) 

Candesartan Placebo 
Unadjusted 28.1 23.6 1.19 (1.10, 1.29) 1.09 (1.05, 1.14) 4.5 (2.4, 6.6) 
IPCW-adjusted 32.6 27.6 1.18 (1.09, 1.28) 1.10 (1.05, 1.16) 5.0 (2.5, 7.5) 
Baseline CovIPCW-Adjusted 32.0 27.1 1.18 (1.09, 1.28) 1.10 (1.05, 1.16) 4.9 (2.4, 7.4) 

 
 
 
 

Table 2 Multivariate Cox regression on relapse-free survival 
 

Parameter Parameter 
Estimate 

Standard 
Error 

Hazard 
Ratio 

P-value 

Treatment: ALL vs high risk AML -0.29 0.20 0.75 0.150 

Patient age 0.20 0.07 1.22 0.004 

Square root of patient age  -1.98 0.73 0.14 0.007 

Time to platelet recovery -0.66 0.26 0.52 0.013 

 

 

 

Table 3 Win statistics from analyses of the bone marrow transplant data with a baseline 
covariate 
Cens-
oring 
(%) 

 
Method 

Median win 
proportion (%) 

𝑾𝑾𝑾𝑾�  𝑾𝑾𝑾𝑾�  𝑵𝑵𝑵𝑵�  (%) 

 
ALL 

High-risk 
AML 

 
Median (95 % CI) 

P-value 
Median 

 
Median (95 % CI) 

P-value 
Median 

 
Median (95 % CI) 

P-value 
Median 

0  50.6 28.9 1.75 (1.22, 2.51) 0.002 1.55 (1.17, 2.07) 0.002 21.7 (7.5, 36.0) 0.003 

20 Unadjusted 39.6 24.2 1.66 (1.14, 2.43) 0.010 1.37 (1.08, 1.75) 0.011 15.7 (3.9, 27.3) 0.011 
IPCW-adjusted 49.4 30.8 1.61 (1.11, 2.37) 0.012 1.46 (1.09, 1.97) 0.012 18.7 (4.2, 32.6) 0.013 
Baseline CovIPCW-
Adjusted 

50.7 28.9 1.76 (1.22, 2.59) 0.004 1.56 (1.17, 2.10) 0.004 22.1 (8.0, 35.5) 0.004 

40 Unadjusted 29.2 18.2 1.59 (1.06, 2.55) 0.031 1.24 (1.02, 1.54) 0.033 10.8 (1.3, 21.2) 0.033 
IPCW-adjusted 48.8 32.9 1.48 (1.01, 2.32) 0.051 1.38 (1.01, 1.97) 0.051 15.9 (0.3, 32.6) 0.053 
Baseline CovIPCW-
Adjusted 

50.6 29.0 1.74 (1.15, 2.80) 0.013 1.55 (1.12, 2.24) 0.013 21.5 (5.6, 38.2) 0.014 

95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile). 
 

 

 

 



 
 

 

Table 4 Win statistics from analyses of the bone marrow transplant data with a time-
dependent covariate 

Cens-
oring 
(%) 

 
 

Method 

Median win 
proportion (%) 

𝑾𝑾𝑾𝑾�  𝑾𝑾𝑾𝑾�  𝑵𝑵𝑵𝑵�  (%) 

 
ALL 

High-risk 
AML 

 
Median (95 % CI) 

P-value 
Median 

 
Median (95 % CI) 

P-value 
Median 

 
Median (95 % CI) 

P-value 
Median 

0  50.6 28.9 1.75 (1.22, 2.51) 0.002 1.55 (1.17, 2.07) 0.002 21.7 (7.5, 36.0) 0.003 

20 Unadjusted 40.4 22.6 1.78 (1.21, 2.68) 0.004 1.43 (1.13, 1.83) 0.005 17.7 (6.0, 29.3) 0.005 
IPCW-adjusted 48.5 27.8 1.74 (1.19, 2.61) 0.005 1.53 (1.14, 2.05) 0.005 20.7 (6.5, 34.4) 0.005 
Time-dependent 
CovIPCW-Adjusted 

50.1 28.9 1.73 (1.17, 2.60) 0.006 1.54 (1.11, 2.11) 0.006 21.1(5.3, 35.6) 0.006 

40 Unadjusted 33.1 18.3 1.82 (1.18, 2.81) 0.006 1.35 (1.08, 1.66) 0.007 15.0 (4.1, 24.9) 0.007 
IPCW-adjusted 46.7 26.8 1.75 (1.15, 2.67) 0.008 1.50 (1.11, 2.02) 0.009 19.9 (5.2, 33.9) 0.009 
Time-dependent 
CovIPCW-Adjusted 

49.9 28.6 1.74 (1.10, 2.72) 0.011 1.51 (1.07, 2.14) 0.012 20.4 (3.7, 36.4) 0.012 

95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile). 
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