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Abstract: The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus,
the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir
developing in animals. Animal experiments have shown that a variety of animals can become
infected with the virus. While coronaviruses have been known to infect animals for decades, the true
intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals.
The screening of wild, farmed, and domesticated animals is necessary to help us understand the
virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is
intriguing evidence that farmed mink infections (acquired from humans) have led to infection
of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark.
A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect
different animal species is therefore vital to evaluate the threat of animal to human transmission and
reverse zoonosis.
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1. Introduction

The final month of 2019 presented the world with a new respiratory illness, the first
reports of which emerged from the city of Wuhan, China. We now know that the disease
was COVID-19, caused by a novel coronavirus (2019-nCoV) [1], afterward renamed severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2]. It has subsequently spread
globally and caused more than a million deaths.

There have been five human coronavirus epidemics in the last twenty years: HCoV-
NL63 and HCoV-HKU1, which cause mild respiratory symptoms and circulated through
the population, and the more serious SARS (2003), Middle East respiratory syndrome
(MERS) (2012), and, now, SARS-CoV-2 in 2019. SARS-CoV originated in bats and was
transmitted to humans via civet cats [3] while MERS originated in camels [4]. While it is
currently unknown the precise route by which SARS-CoV-2 is transmitted from animals to
humans, it is argued to have a bat origin [1,5]. Early speculation suggested two routes by
which the SARS-CoV-2 originated: either natural selection in a human following zoonotic
acquisition or natural selection in an intermediate animal host prior to zoonotic transmis-
sion to a human [6]. Many of the first cases of SARS-CoV-2 visited a live animal market
in Wuhan, which houses many live animals, suggesting that an animal at the market
may have transmitted the virus to these first individuals [1]; however, it is now believed
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this was not the location of the first zoonotic transmission and rather acted as a super
spreader event.

Coronaviruses, such as the one that caused COVID-19, are enveloped, single-stranded,
positive-sense RNA viruses. They possess the largest genome of the RNA viruses with four
open reading frames (ORFs) that code for the main structural proteins: the Spike (S), Mem-
brane (M), Envelope (E), and Nucleocapsid (N) [7]. Like its 2003 predecessor, SARS-CoV-2
is now known to adhere to the host angiotensin-converting enzyme-2 (ACE2) receptor via
its receptor-binding domain (RBD) of the viral S protein [8]. ACE-2 receptors can be found
on a variety of cell types in the human body—in particular, the oral and nasopharyngeal
mucosae, lung, gastrointestinal tract, liver, kidney, and brain [9]. Modeling studies have
predicted that SARS-CoV-2 can bind to several animal species’ ACE2 receptors, including
those of pigs, cats, ferrets, and nonhuman primates, with varying accuracy [10]. However,
these modeling studies do not replace the experimental evidence of SARS-CoV-2 infections
in these animals, which we focus upon here in an attempt to understand which animals are
susceptible to SARS-CoV-2 infection (Figure 1).
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2. SARS-CoV-2 Infections in Animals
2.1. In the Wild

The SARS-CoV-2 virus sequence is 96% identical to the bat coronavirus RaTG13,
detected in Rhinopholus affinis in Yunnan Province in China [1]. Similarly, another bat coron-
avirus, RmYN02, has shown 97.2% similarity in the longest gene-encoding region, 1ab [11].
This has led experts to believe that, at some point, SARS-CoV-2 likely emerged as a result of
a recombination event between a bat coronavirus and an unknown coronavirus, possibly in
an unknown intermediate host [12]. Early in the pandemic, there was speculation that pan-
golins (Manis javanica) could have been such an intermediate host [13]. SARS-CoV-2-like
coronaviruses were present in Malayan pangolins seized in antismuggling operations in
China [14] and single-cell sequencing identified pangolin cell types likely to be permissive
to the virus [15]. In contrast, a Malaysian study failed to identify any coronaviruses in
pangolins rescued from the wild or confiscated from smugglers before they entered the
illegal trade network. This suggests that coronaviruses found in Malayan pangolins in
China may have been acquired through contact with humans and other animals in the
illegal trade network. However, the lack of infection in the latter case does not prove that
they are not involved in some way [16]. To date, there have been no identified cases of
SARS-CoV-2 in wild animals of any kind.

2.2. Livestock Farming

Although there is no evidence of infection with SARS-CoV-2 in animals in the wild,
there is concern about the potential for a reverse zoonotic event occurring from humans to
animals living in close proximity to humans and the establishment of a permanent viral
reservoir in animals. Livestock farming is an area of particular concern, given the close
human–animal contact, particularly in some regions of the world, and the potential for
the high stocking density of some farmed animal species and the threat to food supply
chains. Livestock such as cattle, sheep, and other ruminants can be infected by a variety of
coronaviruses [7]; however, the evidence concerning the SARS-CoV-2 infection of cattle is
currently limited to a single study [17]. Ulrich et al. experimentally infected six cattle (Bos
taurus) via the intranasal route with a 1 × 105 tissue culture infectious dose 50% (TCID50)
and monitored the animals for twenty days. After 24 h, three naïve contact animals were
introduced to examine transmission. Low-level viral shedding was observed in two of the
six experimentally infected cattle, but no transmission was seen in in-contact animals [17].
Despite their apparent vulnerability to infection, to date, there is no evidence of a human
naturally transmitting the virus to cattle or other livestock. Likewise, there is currently no
evidence yet that sheep, horses, donkeys, camels, or llamas [18] can become infected with
SARS-CoV-2. Further research to explore the susceptibility of cattle and other livestock
animals is needed to determine if they can act as reservoirs of the virus.

The greatest evidence to date for reverse zoonosis is in minks (Neovison vison and
Mustela vison), farmed for their fur. There have been several reports of virus outbreaks on
mink farms in Spain, Denmark, the USA [19,20], the Netherlands [19], France, Italy, Sweden,
Canada, Greece, Lithuania [20], and Poland [21]. First reported in the Netherlands, the virus
was introduced by infected farm workers [22]. Minks on infected farms were culled,
and weekly testing of all animals that died was introduced, revealing that the virus has
since evolved due to the widespread transmission between minks [23]. In a total of 16 mink
farms that were affected, 68% of employees had evidence of SARS-CoV-2 infection. An in-
depth investigation of the Dutch outbreaks suggested that at least two farm workers
acquired the virus in turn directly from the animals [22–24]. This is the only evidence
presently that suggests a possible transmission from an animal directly to humans since the
beginning of the pandemic. However, an analysis of the genetic sequences of SARS-CoV-2
in patients living near the mink farms indicated they were not related to the clusters seen
at the mink farms [23].

In an analysis of viral genomes isolated from minks, three recurrent mutations in the
spike receptor-binding domain have been identified: Y453F, F486L, and N501T. These mu-
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tations are found at a low frequency in viruses circulating in humans, suggesting that they
could be responsible for the adaptation of the virus to infect minks [25].

In November 2020, reports emerged of a mink “variant” of SARS-CoV-2 in five mink
farms in North Jutland in Denmark. The mink variant appears to have infected 12 hu-
mans (named “cluster 5”); eight cases had a direct link to mink farms, while four cases
were from the community. “Cluster 5” represents a variant of the virus with a combi-
nation of mutations not previously seen. Human cases infected with the mink variant
presented with similar clinical presentation and transmission properties [26,27]. All the
viruses isolated from cases in “cluster 5” possessed the Y453F mutation. To date, 214
human cases of COVID-19 have been identified in Denmark that have been associated
with the mink variant of SARS-CoV-2. The Statens Serum Institute in Denmark performed
microneutralisation antibody assays and found an average 3.53-fold reduction in neutral-
ising antibody titres to the mink variant compared to the wild-type virus. This result
suggests that there could be an impact on antibody-mediated immunity acquired through
infection or vaccination [27] and has led to a call for the widespread culling of all minks
in Denmark [28]. Danish public health authorities have recommended the enhanced se-
quencing of human and mink infections and heightened the surveillance of the human
population in North Jutland, alongside movement restrictions for the population living
there. However, since then, scientists have stated that the mutations themselves are not a
cause for concern; they do not imply that the virus will transmit more efficiently between
people. Meanwhile, other human variants (e.g., the “British” and “South African” variants)
have become more concerning in that regard [29]. Furthermore, no further cases of the
“cluster 5” variant have been identified in people since September [30]. Further studies
are required to determine the impact this could have on the efficacy of vaccine candidates.
Taken together, this evidence demonstrates that determining if other mustelid species such
as badgers, weasels, polecats, martens, and otters could act as an intermediate host of the
virus is required [31].

Given the concern over livestock farming, rabbits, which are also farmed for their
meat and fur, have also been investigated. Rabbits (Oryctolagus cuniculus) have been
inoculated with SARS-CoV-2 and observed for 21 days. None of the rabbits exhibited any
clinical signs, but the animals shed infectious virus from their nose and throat and were
shown to seroconvert. This was performed using young New Zealand white rabbits and
thus may not reflect infections in different ages or breeds; therefore, further investigation
into their potential as viral hosts is appropriate [32].

2.3. Zoos

One of the early surprises during the pandemic was the apparent infection of a tiger
in the Bronx Zoo in New York [33,34]. Subsequently, another four tigers and three lions at
the same zoo were found to have SARS-CoV-2 [35]. The infectious virus was isolated from
both the tracheal wash fluid and feces of both animals [36]. Interestingly, whole-genome
sequencing revealed that both cat species were infected by different SARS-CoV-2 strains,
suggesting they acquired the virus through two different transmission events. The testing
of zoo keepers that were in contact with the animals revealed genetic and epidemiological
similarities between the keeper and animal virus isolates, indicating human-to-tiger trans-
mission [35]. However, a clear route of transmission was not identified for the infection
in the lions. As a result, the zoo implemented social distancing measures and the use
of masks/visors to protect the animals from acquiring the infection from their carers or
members of the public [35]. A lion in Spain also tested positive for SARS-CoV-2 RNA [20].
Other big cat species can be infected; a puma in a zoo in South Africa tested positive for
viral RNA after contact with an infected handler [36], and one snow leopard tested positive
for viral RNA in a zoo in Kentucky, USA [20]. Furthermore, reports have also emerged
of the infection of three gorillas in a zoo in San Diego, CA, USA [37], demonstrating that
extended safety measures should be taken in zoos to prevent the infection spreading from
humans to known susceptible animals.
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2.4. Companion Animals
2.4.1. Cats

Much like their larger counterparts, domestic cats are also susceptible to SARS-CoV-
2 infection. Cats have their own feline coronaviruses, FCoV I and II [7], which are only
distantly related to SARS-CoV-2. In addition, SARS-CoV RNA was detected in cats from
a live animal market in Guangzhou in 2004 [38]. Experimentally, cats have been infected
with SARS-CoV-2 and shown to transmit the virus to one another through respiratory
droplets [39–41]. Since the pandemic began, there have been sporadic cases of SARS-CoV-2
infections in domestic cats around the world. For example, SARS-CoV-2 RNA has been
found in 47.1% of 17 tested cats in the USA [42,43], in cats in Belgium, Greece, Switzerland,
Brazil [20], Italy [44], Hong Kong [45], France [46], Canada [20], Germany, Spain [47,48],
Japan [20], Russia [20], the Netherlands [22], and in the UK [49]. A survey in Chile found
that cats appeared to excrete viral RNA for a shorter duration than humans. In addition,
the similarity of the genetic sequences of viral RNA detected in humans and their pet
cats indicated direct human-to-animal transmission, though whether animal-to-animal
transmission occurred was not determined [50].

In addition to the presence of viral RNA, evidence of prior infections (i.e., neutralizing
antibodies) were demonstrated in cats. A study in Wuhan where cats were sampled both
during and after the outbreak revealed 11 out of 141 cats had neutralizing antibodies to the
virus using plaque reduction neutralization tests (PRNTs), while using an in-house ELISA
found 15 cats were positive for the antibody. No serological reactivity was found between
SARS-CoV-2 and FCoV I and II [51]. Another group evaluated 66 pet cats and 21 stray
cats across China using a commercial ELISA and found that no cats from Wuhan had
antibodies, contradicting the Wuhan observations [52]. This led to the further examination
of 630 feline serum samples collected before November 2019 and 423 samples collected
after the pandemic began across 20 cities in China. These were evaluated using the
same commercial ELISA. All cat samples taken both before and after the outbreak were
seronegative [53].

In France, the status of 22 cats from the homes of people suspected or confirmed to
have had COVID-19 revealed one cat was positive for viral RNA and, subsequently, sero-
converted (measured using an adapted commercial ELISA) [46]. An additional small study
evaluated nine cats in a veterinary community of 20 students in which two students tested
positive for SARS-CoV-2 RNA and eleven others had suspected COVID-19 symptoms.
However, using an immunoprecipitation assay, they found that no cats had SARS-CoV-2-
specific antibodies one month after the first index case was reported, and no viral RNA
was detected in the cats [54]. In contrast, a further seroprevalence study demonstrated that
23.5% (8/34) of cats from COVID-19-positive households had antibodies, while one out of
16 cats from households of unknown status were positive for the antibodies [55].

Moreover, during the Dutch mink farm outbreaks, stray cats around the farm were
tested for the virus, with one out of 24 cats testing positive for viral RNA and seven out of
24 cats testing positive for antibodies against the virus using an in-house microneutraliza-
tion assay [22]. Whether they acquired the virus through contact with infected humans,
minks, or infectious fomites is not known. The role of cats in the transmission of SARS-
CoV-2 in between mink farms has yet to be evaluated [31].

A large Italian seroprevalence study provided further supporting evidence of SARS-
CoV-2 infection in cats. Neutralizing antibodies, with titres varying from 1:20 to 1:160,
were found in 3.9% of (6/152) tested cats in Italy [56]. No juvenile cats in this study
were found to have evidence of past infections, implying that infection may be linked to
age in this population. The study also found no connection between cat seropositivity
and the COVID-19 household infection status. This study was performed using plaque
reduction neutralisation tests (PRNTs), currently the gold standard for the detection of
neutralizing antibodies.

Most recently, some evidence has emerged to suggest that cats previously infected
with SARS-CoV-2 develop a partial nonsterilizing immunity and, as such, can be reinfected
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by the virus. However, on secondary infection, cats do not appear to shed the virus in
sufficient quantities to transmit the virus onwards to naïve cats [57].

Notably, each study varied with respect to the sampling strategy of animals from both
confirmed and suspected households, numbers of animals tested, and the choice of test
used to detect antibodies, perhaps explaining the disparities in the results. While currently,
there is no evidence to suggest cats can transmit the infection to humans, this trend in
domestic cats suggests routine testing and vigilance regarding pet cats would be a sensible
precaution, and well-designed studies are required to reveal the true prevalence of disease
in cats worldwide.

2.4.2. Dogs and Other Pets

Like cats, dogs have their own distantly related coronaviruses, including canine en-
teric coronavirus and canine respiratory coronavirus [7]. Experimentally infected dogs
shed little to no virus, indicating they would be unlikely to contract the virus and transmit
it [39]. However, seven dogs in the USA have now tested positive for SARS-CoV-2 RNA,
while eight have tested positive for antibodies to the virus [43]. In Hong Kong, two out
of 15 dogs from COVID-19-positive households tested positive for the virus and sero-
converted [58]. Both dogs were asymptomatic throughout the course of the infection.
Interestingly, one of the households had another dog that remained negative for the virus
throughout, suggesting transmission between dogs is not high [58]. Viral RNA was also
found in two dogs in Japan [20], and one dog tested positive for the virus in the Nether-
lands [59]. A further two dogs tested positive for SARS-CoV-2 in Germany [20], one dog
in Canada [20], and in Argentina, and Mexican reports have emerged of dogs positive for
SARS-CoV-2 RNA [20].

In France, a serological survey of companion animals showed 15.4% of dogs (2/13)
from COVID-19-positive households had neutralizing antibodies to SARS-CoV-2. No dogs
from households with an unknown COVID-19 status had neutralizing antibodies. To com-
bat the impact of variable antibody responses and differences in their detection, this study
utilized multiple methods to identify neutralizing antibodies [55]. In contrast, in a veteri-
nary campus, 12 dogs had no antibodies of the virus, despite close contact with humans
with SARS-CoV-2 [54]. Supporting evidence for infections in dogs in Italy showed that 3.4%
(13/388) of the tested dogs had neutralizing antibodies to the virus, but none were positive
for viral RNA [56]. Dogs with neutralizing antibodies were significantly more likely to
have come from a COVID-19-positive household. Interestingly, a higher proportion of male
dogs were seropositive for antibodies compared to female canines, inferring there may be
a behavioural or hormonal aspect to the acquisition of the virus in dogs. Sadly, none of
the current studies reported any information regarding the neutered status of the animals,
limiting our understanding of how gender and hormones may impact the SARS-CoV-2
infection in domestic pets.

In Spain, the evidence is further contrasting, with little support for the virus found in
dogs [47]. However, 40 dogs with pulmonary signs were evaluated alongside 20 healthy
dogs from COVID-19-positive households for evidence of SARS-CoV-2 infection. No dogs
were found to have SARS-CoV-2 RNA, but five healthy and one sick dog had antibodies
to SARS-CoV-2 [60]. A further survey in China evaluated 90 beagles, 250 street dogs,
and 147 pet dogs and found none had any antibodies to SARS-CoV-2 [52].

Taken together, this information indicates that further research is required to assess the
extent and situations that might lead dogs to contract the virus from their human contacts
and if they transmit it to other animals. Furthermore, working dogs such as bomb-sniffing
dogs or COVID-19-sniffing dogs could be adversely affected if they can acquire the virus.
Unlike some human infections, there is currently no indication that infection leads to
hyposmia/anosmia in dogs [61]. There are currently no reports that dogs can transmit the
virus to humans. However, as with cats, these studies used a variety of sampling methods,
animal numbers, and testing strategies, making comparisons difficult. Multiple studies
noted the increased risk of exposure to dogs in COVID-19-positive households. While there
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is no evidence of transmission back to humans or among pets, it would be prudent to
include pets in self-isolation measures. As with mink farms, any risk of zoonotic infection
would likely be highest where large groups of cats or dogs are housed together, such as
in kennels, catteries, and rescue shelters.

One guinea pig and two rabbits from three COVID-19-positive households in Spain
were tested for viral RNA, and none of these were positive for the virus [47].

3. Further Experimental Proof of Permissiveness to Infection

With many species’ ACE2 receptors predicted to recognize SARS-CoV-2 [10], much re-
search has been invested in identifying which animals are permissive to infection; in partic-
ular rodents, pigs, ducks, chickens, rabbits, racoon dogs, and tree shrews. While mice were
not predicted to have ACE2 receptors that could bind SARS-CoV-2 [10], researchers experi-
mentally infected deer mice (Peromyscus maniculatus) and found viral replication occurred
but the infection was not lethal, and mice did not develop clinical signs. However, the trans-
mission between mice through direct contact was observed, indicating it may be a useful
model to study the viral pathogenesis and transmission. While it is theoretically possible
that these mice could act as an intermediate reservoir, presently, there is no indication of
deer mouse infections in nature [62,63].

Single-cell screening for SARS-CoV-2 target cells (i.e., those that have the ACE2 recep-
tor) in a variety of animals has shown multiple susceptible cell types in the domestic pig
(Sus scrofa domesticus) [15]. Pigs inoculated with SARS-CoV-2 and their contacts tested nega-
tive for the virus by PCR and did not develop antibodies, signifying they are not susceptible
to infection [39]. Likewise, pigs could not be infected with SARS-CoV-2 intranasally [64].
This work contrasts with a study showing the live virus isolated from oronasally infected
pigs and the development of a humoral immune response [65]. Others have shown that pig
airway epithelial cells do not support the viral replication [18]. These conflicting studies
suggest further research into the ability of pigs to become infected with and transmit the
virus is needed. No data on the naturally acquired infection in pigs has come to light as yet.

While other respiratory viruses are known to be carried by chickens and waterfowl, lit-
tle is known of whether SARS-CoV-2 can be carried by birds. SARS-CoV-2 replicates poorly
in ducks and chickens and does not result in the generation of neutralizing antibodies [39].
This result has been replicated in chickens by others [64], and the same was seen for ducks,
turkeys, quails, and geese for both SARS-CoV-2 and MERS-CoV [66]. Taken together,
it seems unlikely that poultry can act as an intermediate reservoir of the virus.

Racoon dogs (Nyctereutes procyonoides), which are most closely related to foxes, are also
susceptible to infection with SARS-CoV-2, with six out of nine experimentally infected
racoon dogs able to produce the infectious virus. Furthermore, transmission of the virus
from infected dogs to two-thirds of the contact animals was demonstrated. Some authors
have suggested that, as part of the fur trade in China, this animal could have played a
role in the early stages of the pandemic [67]. Given the data supporting infection with
SARS-CoV-2 in their canid cousin, the domestic dog, further investigation of the caninae,
including racoon dogs, wolves, and foxes, would be reasonable.

The tree shrew (Tupaia belangeris) has been evaluated as a COVID-19 model. This ani-
mal is genetically similar to primates and has been used as a model for other viral infections.
Tree shews show little clinical signs of infection, but some histopathology and low-level
viral replication occurs [68]. However, compared to other models such as mice, the tree
shrew demonstrated lesser susceptibility to infection and would not be an optimal experi-
mental model. However, this is does not mean that it could not act as an intermediate host
of the virus [68].

White-tailed deer (Odocoileus virginianus) have been intranasally inoculated with the
virus and shown to efficiently transmit the virus to naïve deer. The deer had subclinical
infections and shed the virus through their nasal secretions and their feces. Of note,
the virus used to infect the deer was an isolate from a Malayan tiger infected with the
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virus [35,69]. Further research into the susceptibility of related species should therefore
be conducted.

4. Experimental Models of COVID-19 Disease

As the pandemic progresses and many countries are in their “second wave”, if not
“third wave” of the virus, the hunt for an appropriate animal model to study the COVID-19
pathology and identify therapeutics and vaccine candidates has intensified. Several animals
have already been assessed for their use as disease models.

While rodents have been shown in many cases to become infected with other coron-
aviruses [70], there is no suggestion yet of SARS-CoV-2 infection in wild rodents. Several
studies have examined their permissiveness to infection in vivo as an experimental model
of COVID-19, with the majority requiring genetic modification in order to express human
ACE2 proteins or viral adaptation to recognize murine ACE2. The predominantly used
mouse model is a transgenic model adapted to express human ACE-2 (K18-hACE-2) [71].
This model was recently used to demonstrate that infection with influenza followed by a
coinfection with SARS-CoV-2 results in a more severe disease [72]. A further transgenic
mouse model used experimentally is the HFH4-hACE-2 mouse [73]. This model has shown
similar pathology to that seen in human COVID-19, and the surviving mice demonstrated
a resistance to reinfection, with a neutralizing antibody response. Others have infected
BALB/c aged mice with a mouse-adapted strain of the virus (SARS-CoV-2-MA10) [74].
Another rodent, the golden Syrian hamster (Mesocricetus auratus), exhibits signs of disease
and can transmit the virus to other hamsters through close contact [75]. Similarly, Chinese
hamsters (Cricetulus griseus) have also been developed as a COVID-19 model [76].

An alternative experimental model of SARS-CoV-2 infection that has been assessed
for use is the ferret (Mustela putorius furo) [39,77,78]. Ferrets exhibit signs of the disease,
including a loss of appetite and fever [39]. In addition, ferrets can also transmit the virus
(seen both using environmental isolates from Wuhan and human isolates) through both
direct contact and transmission through respiratory droplets over more than one meter
distance [79]. The virus is found in the saliva, nasal washes, urine, and stool up to eight
days after infection [39,77,78]. In contrast to these experimental infections, ferrets that were
in prolonged close contact with humans with confirmed or probable SARS-CoV-2 infection
did not acquire the virus from their human handlers. It is likely that both the virus and host
genetic mutations pose a significant barrier to the transmission of the virus from humans
to ferrets, suggesting that ferrets do not pose a significant threat for transmission of the
virus in nature [80]. These findings contrast with the observations seen between farmed
minks and their human handlers, where the proof of transmission between humans and
minks is clear [22]. Furthermore there is a report of a pet ferret acquiring the infection
in Slovenia, most likely from its infected human owner [20].

The close genetic relationship between humans and other nonhuman primates (NHPs)
such as macaques, grivets, and marmosets means they have been employed to model
the COVID-19 disease and, in particular, the immune response to the virus. Repeated
infections in rhesus macaques (Macaca mulatta) have shown that viral loads from infected
monkeys reduced during the secondary infection implying some immunity following the
initial infection [81,82]. Viral shedding has been examined in different aged groups of
cynomolgus macaques (Macaca fascicularis), with the shedding duration extended in older
macaques compared to younger ones [83]. In African green monkeys (Chlorocebus sabeaeus),
a much lower dose of virus can be used to establish the disease than that required for other
primate models [84,85]. Finally, new world monkeys such as marmosets (Callithrix jacchus)
have been compared to old world monkey models and found that the marmoset was the
least susceptible to SARS-CoV-2 infection, while the rhesus macaques and cynomolgus
macaques were the most susceptible [86].
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5. Areas for Further Investigation

SARS-CoV-2, shed from humans, can be found in wastewater [87]. What threat this
may pose to aquatic life and those animals residing close to contaminated water has yet to
be determined. Using an ACE2 receptor modeling approach, marine mammal susceptibility
to infection has been evaluated, and fifteen species of seals, whales, and dolphins were
identified as potentially vulnerable [88]. There is currently no data to support the presence
of the virus in mammals exposed to wastewater contamination. This suggests that some
surveillance of species in areas where the wastewater treatment is suboptimal may be
important in the future. However, other enveloped RNA viruses have been shown to
experience declines in viral titres upon exposure to seawater, implying that the salt content
and natural dilution that would occur in seawater would likely minimize the risk of the
spread of SARS-CoV-2 to aquatic life [89].

Invertebrate species such as mosquitos have long been known to be important vectors
of existing and emerging diseases, but no evidence yet exists this the case for coronaviruses.
SARS-CoV-2 does not replicate in Aedes mosquito cells in vitro or in the live Aedes mosquitos
captured in Wuhan during the pandemic [90], while both Aedes and Culex mosquitos
injected with the virus do not support viral replication [91]. Biting midges (Culicoides
sonorensis) and two Culex species (Culex tarsalis and quinquefasciatus) when allowed to feed
on infected blood do not support the replication of SARS-CoV-2. Likewise, the cell lines
established from these species do not support viral replication [92]. Taken together, the data
suggests that biting insects ectoparasites do not carry and transmit the virus.

Finally, while not a direct infection of the animal, the role of animals and their byprod-
ucts (e.g., milk, meat, fur, and feathers) as inanimate carriers of the virus (fomites) has
begun to be explored, with the carriage in fish held at 4 ◦C demonstrated [93], ice cream in
China testing positive for the virus [94], and carriage for up to three weeks in refrigerated
and frozen meat demonstrated experimentally [95]. The threat of viral emergence from live
animal markets has long been highlighted; however, the present pandemic has generated
questions over the Western industrial approach to the meat/fur trade and the role it plays
in the transmission of viruses between people. With many reports of outbreaks of the
infection in meat-processing factory workers [96], the implementation of health and safety
policies will be important in limiting the spread of the infection. Meat-processing plants are
ideal environments for spread of viruses; low temperatures, close contact between humans,
the presence of feathers, feces, and dirt, combined with water, provide ideal conditions
for the generation of infectious aerosols. While it is unlikely that food is a major source
of infection, it appears there is the potential for fresh/frozen contaminated food to enter
the supply chain, as has been observed with other viruses [97].

6. Conclusions

Since the SARS-CoV-2 outbreak has spread globally, the threat of a reverse zoonosis
from humans to animals has become a distinct possibility. Currently, the best proof of
transmission from humans to animals has been in farmed minks and domestic cats and dogs.
The infection of domestic pets appears to be limited, with no evidence to suggest they can
transmit the virus back to humans or to other species. However, there is some indication
to suggest that minks can transmit the virus back to humans, posing a risk of continued
reinfection from the virus circulating on mink farms and indicating that investigations
into other mustelid species is important. The increased vigilance and screening of such
farmed mammals could prevent the circulation of the virus between humans and animals
and eliminate all other potential sources of the virus. However, it should be noted that
many of the studies discussed here are yet to be peer reviewed, and many suffer from
small population sizes, differing methods used, and sampling strategies. In the absence of
greater understanding, it would seem wise to be particularly vigilant where large groups
of susceptible species are housed, such as farms, kennels, and catteries.

Understanding where the SARS-CoV-2 adapted to humans is critical for our under-
standing and prevention of future outbreaks of not only COVID-19 but, also, other po-
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tential diseases. The best suggestion is that the virus evolved from a bat coronavirus;
however, no intermediate host has yet been identified. The role of live animal markets in
the emergence of new zoonotic diseases has long been recognized. It is unlikely that the
COVID-19 pandemic will encourage changes in the culture around meat trading in known
hot spots, as it would require changes in the political, economic, and cultural landscapes of
regions already under considerable economic pressures. The continued human destruction
of rural habitats and climate change will likely exacerbate the frequency of spillover events
of emerging viruses from animals to humans. In the meantime, the continued surveil-
lance of such wet markets and wildlife living at urban–rural borders is necessary to help
understand the zoonotic transmission of viruses and prevent further emerging epidemics.

It is possible that SARS-CoV-2 may never be entirely eradicated, partly due to in-
complete global vaccination and varying degrees of immunity such vaccines may provide.
As yet, we do not know how long any immunity, whether vaccine-induced or due to
prior infection, will last. Global coordination in vaccine rollouts and the development of
variant-resistant vaccines are likely necessary to control the caseloads [98], in addition to
the continued surveillance of SARS-CoV-2 in animals. With the exception of minks, it is
encouraging that domestic animals such as cats and dogs are unlikely to act as a reservoir
for continued infection in humans upon a background of rolling vaccinations. In addition
to vaccinations, the ongoing surveillance of farmed, domestic, and wild animals must
continue, alongside the interrogation of SARS-CoV-2 sequencing data in both humans
and animals, in order to bring the pandemic under control and restore life to a modicum
of normality.

Author Contributions: Conceptualization, T.P., S.L.S., A.D.R., T.S., G.L.H. and E.I.P.; writing—
original draft preparation, T.P.; and writing—review and editing, T.P., S.L.S., A.D.R., T.S., G.L.H.
and E.I.P. All authors have read and agreed to the published version of the manuscript.

Funding: EIP was supported by a Liverpool School of Tropical Medicine Director’s Catalyst Fund award.
GLH was supported by the BBSRC (BB/T001240/1 and V011278/1), the Royal Society Wolfson Fel-
lowship (RSWF\R1\180013), NIH grants (R21AI138074 and R21AI129507), UKRI (20197), and the
NIHR (NIHR2000907). TS was supported by the National Institute for Health Research (NIHR)
Health Protection Research Unit in Emerging and Zoonotic Infections (Grant No. IS-HPU-1112-
10117), NIHR Programme Grant for Applied Research (No. RP-PG-0108-10, 048), NIHR Global
Health Research Group on Brain Infections (No. 17/63/110), and the European Union’s Horizon 2020
research and innovation program ZikaPLAN (Preparedness Latin America Network), grant agree-
ment No. 734584. TP, TS, and GLH were affiliated with the National Institute for Health Research
Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University
of Liverpool in partnership with Public Health England (PHE) in collaboration with the Liverpool
School of Tropical Medicine and the University of Oxford. TP, ADR, SLS, and TS are based at the
University of Liverpool, and GLH and EIP are based at LSTM. The views expressed are those of
the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health, or Public
Health England.

Acknowledgments: We would like to thank Manuela Bernardi for preparation of the summary figure.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak

associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [CrossRef] [PubMed]
2. Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.;

Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying
2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [CrossRef]

3. Wang, L.F.; Eaton, B.T. Bats, civets and the emergence of SARS. Curr. Top. Microbiol. Immunol. 2007, 315, 325–344. [CrossRef]
4. Dudas, G.; Carvalho, L.M.; Rambaut, A.; Bedford, T. MERS-CoV spillover at the camel-human interface. Elife 2018, 7. [CrossRef]
5. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and

epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]

http://doi.org/10.1038/s41586-020-2012-7
http://www.ncbi.nlm.nih.gov/pubmed/32015507
http://doi.org/10.1038/s41564-020-0695-z
http://doi.org/10.1007/978-3-540-70962-6_13
http://doi.org/10.7554/eLife.31257
http://doi.org/10.1016/S0140-6736(20)30251-8


Viruses 2021, 13, 494 11 of 14

6. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020,
26, 450–452. [CrossRef]

7. Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol. 2020,
244, 108693. [CrossRef] [PubMed]

8. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.;
Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease In-
hibitor. Cell 2020, 181, 271–280.e8. [CrossRef] [PubMed]

9. Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional
receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [CrossRef]
[PubMed]

10. Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based
on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, 127–147. [CrossRef]

11. Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.; Liu, D.; Yang, J.; Holmes, E.C.; et al. A Novel Bat Coronavirus
Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr. Biol. 2020,
30, 2196–2203.e3. [CrossRef] [PubMed]

12. Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol.
2020, 92, 433–440. [CrossRef] [PubMed]

13. Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol. 2020,
30, 1346–1351.e2. [CrossRef]

14. Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation of SARS-CoV-2-related
coronavirus from Malayan pangolins. Nature 2020, 583, 286–289. [CrossRef] [PubMed]

15. Chen, D.; Sun, J.; Zhu, J.; Ding, X.; Lan, T.; Zhu, L.; Xiang, R.; Ding, P.; Wang, H.; Wang, X.; et al. Single-cell screening of
SARS-CoV-2 target cells in pets, livestock, poultry and wildlife. bioRxiv 2020. [CrossRef]

16. Lee, J.; Hughes, T.; Lee, M.H.; Field, H.; Rovie-Ryan, J.J.; Sitam, F.T.; Sipangkui, S.; Nathan, S.K.; Ramirez, D.; Kumar, S.V.; et al.
No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife
trade via Malaysia. bioRxiv 2020. [CrossRef]

17. Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Ulrich, L. Experimental infection of cattle with SARS-CoV-2. bioRxiv 2020.
[CrossRef] [PubMed]

18. Gultom, M.; Licheri, M.; Laloli, L.; Wider, M.; Straessle, M.; Steiner, S.; Kratzel, A.; Thao, T.T.; Stalder, H.; Portmann, J.; et al.
Susceptibility of well-differentiated airway epithelial cell 1 cultures from domestic and wildlife animals to SARS-CoV-2 2 3.
bioRxiv 2020. [CrossRef]

19. Cahan, E. COVID-19 hits U.S. mink farms after ripping through Europe. Science 2020. [CrossRef]
20. OIE—World Organisation for Animal Health. Events in Animals. 2020. Available online: https://www.oie.int/en/scientific-

expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/
(accessed on 28 August 2020).

21. Rabalski, L.; Kosinski, M.; Smura, T.; Aaltonen, K.; Kant, R.; Szewczyk, B.; Grzybek, M. Detection and molecular characterisation
of SARS-CoV-2 1 in farmed mink (Neovision vision) in Poland 2. bioRxiv 2020. [CrossRef]

22. Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Munnink, B.B.; Hakze-van Der Honing, R.W.; Gerhards, N.; Tolsma, P.;
Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance
2020, 25, 2001005. [CrossRef] [PubMed]

23. Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; Van Der Spek, A.; Tolsma, P.;
Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.
Science 2020, 371, 172–177. [CrossRef] [PubMed]

24. Enserink, M. Coronavirus rips through Dutc mink farms, triggering culls. Science 2020, 368, 1169. [CrossRef]
25. Van Dorp, L.; Tan, C.C.; Lam, S.D.; Richard, D.; Owen, C.; Berchtold, D.; Orengo, C.; Balloux, F. Recurrent mutations in

SARS-CoV-2 genomes isolated from mink point to rapid host-adaptation. bioRxiv 2020. [CrossRef]
26. WHO. SARS-CoV-2 Mink-Associated Variant Strain—Denmark. 2020. Available online: https://www.who.int/csr/don/06

-november-2020-mink-associated-sars-cov2-denmark/en/ (accessed on 10 November 2020).
27. ECDC. Detection of New SARS-CoV-2 Variants Related to Mink. Eur. Cent. Dis. Prev. Control. 12 November 2020. ECDC:

Stockholm. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-
2020.pdf (accessed on 7 January 2021).

28. WHO. Coronavirus Disease (COVID-19) Outbreak—Mink-Strain of COVID-19 Virus in Denmark. 2020. Available online:
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/11/mink-strain-
of-covid-19-virus-in-denmark (accessed on 10 November 2020).

29. GOV.UK. New SARS-CoV-2 Variant—GOV.UK. 2020. Available online: https://www.gov.uk/government/collections/new-sars-
cov-2-variant (accessed on 7 January 2021).

30. Mallapaty, S. COVID mink analysis shows mutations are not dangerous—Yet. Nature 2020, 587, 340–341. [CrossRef]

http://doi.org/10.1038/s41591-020-0820-9
http://doi.org/10.1016/j.vetmic.2020.108693
http://www.ncbi.nlm.nih.gov/pubmed/32402329
http://doi.org/10.1016/j.cell.2020.02.052
http://www.ncbi.nlm.nih.gov/pubmed/32142651
http://doi.org/10.1002/path.1570
http://www.ncbi.nlm.nih.gov/pubmed/15141377
http://doi.org/10.1128/JVI.00127-20
http://doi.org/10.1016/j.cub.2020.05.023
http://www.ncbi.nlm.nih.gov/pubmed/32416074
http://doi.org/10.1002/jmv.25682
http://www.ncbi.nlm.nih.gov/pubmed/31967321
http://doi.org/10.1016/j.cub.2020.03.022
http://doi.org/10.1038/s41586-020-2313-x
http://www.ncbi.nlm.nih.gov/pubmed/32380510
http://doi.org/10.1101/2020.06.13.149690
http://doi.org/10.1101/2020.06.19.158717
http://doi.org/10.3201/eid2612.203799
http://www.ncbi.nlm.nih.gov/pubmed/33034284
http://doi.org/10.1101/2020.11.10.374587
http://doi.org/10.1126/science.abe3870
https://www.oie.int/en/scientific-expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/
https://www.oie.int/en/scientific-expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/events-in-animals/
http://doi.org/10.1101/2020.12.24.422670
http://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005
http://www.ncbi.nlm.nih.gov/pubmed/32553059
http://doi.org/10.1126/science.abe5901
http://www.ncbi.nlm.nih.gov/pubmed/33172935
http://doi.org/10.1126/science.368.6496.1169
http://doi.org/10.1101/2020.11.16.384743
https://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/
https://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/
https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/11/mink-strain-of-covid-19-virus-in-denmark
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/11/mink-strain-of-covid-19-virus-in-denmark
https://www.gov.uk/government/collections/new-sars-cov-2-variant
https://www.gov.uk/government/collections/new-sars-cov-2-variant
http://doi.org/10.1038/d41586-020-03218-z


Viruses 2021, 13, 494 12 of 14

31. Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.;
Rietveld, A.; Brouwer, M.; et al. Jumping back and forth: Anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink
farms Affiliations. bioRxiv 2020. [CrossRef]

32. Mykytyn, A.Z.; Lamers, M.M.; Okba, N.M.; Breugem, T.I.; Schipper, D.; van den Doel, P.B.; van Run, P.; van Amerongen, G.;
de Waal, L.; Koopmans, M.P.; et al. Susceptibility of rabbits to SARS-CoV-2. bioRxiv 2020. [CrossRef]

33. Wang, L.; Mitchell, P.K.; Calle, P.P.; Bartlett, S.L.; McAloose, D.; Killian, M.L.; Yuan, F.; Fang, Y.; Goodman, L.B.;
Fredrickson, R.; et al. 2020 Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection.
Microbiol. Resour. Announc. 2020, 9. [CrossRef] [PubMed]

34. USDA. USDA Statement on the Confirmation of COVID-19 in a Tiger in New York. 2020. Available online: https://www.aphis.
usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19 (accessed on 12 August 2020).

35. McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.;
Cronk, B.D.; et al. From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. bioRxiv 2020.
[CrossRef]

36. Bartlett, S.L.; Diel, D.G.; Wang, L.; Zec, S.; Laverack, M.; Martins, M.; Caserta, L.C.; Killian, M.L.; Terio, K.; Olmstead, C.; et al.
SARS-CoV-2 Infection and Longitudinal Fecal Screening In Malayan Tigers (Panthera tigris jacksoni), Amur Tigers (Panthera
tigris altaica), And African Lions (Panthera leo krugeri) At The Bronx Zoo, New York, USA. bioRxiv 2020. [CrossRef]

37. USDA APHIS. Confirmation of COVID-19 in Gorillas at a California Zoo. 2021. Available online: https://content.govdelivery.
com/accounts/USDAAPHIS/bulletins/2b5837f/ (accessed on 13 January 2021).

38. Wang, M.; Jing, H.Q.; Xu, H.F.; Jiang, X.G.; Kan, B.; Liu, Q.Y.; Wan, K.L.; Cui, B.Y.; Zheng, H.; Cui, Z.G.; et al. Surveillance on
severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu
Xing Bing Xue Za Zhi 2005, 26, 84–87. [PubMed]

39. Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; Zhao, Y. Susceptibility of ferrets, cats, dogs,
and different domestic animals to SARS-coronavirus-2. bioRxiv 2020. [CrossRef]

40. Gaudreault, N.N.; Trujillo, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Indran, S.V.; Bold, D.; Balaraman, V.;
Kwon, T.; et al. SARS-CoV-2 infection, disease and transmission in domestic cats Running title: SARS-CoV-2 in domestic cats.
Emerg. Microbes Infect. 2020, 9, 2322–2332. [CrossRef] [PubMed]

41. Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.I.; Sakai-Tagawa, Y.;
Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [CrossRef]
[PubMed]

42. Hamer, S.A.; Pauvolid-Corrêa, A.; Zecca, I.B.; Davila, E.; Auckland, L.D.; Roundy, C.M.; Tang, W.; Torchetti, M.; Killian, M.L.;
Jenkins-Moore, M.; et al. Natural SARS-CoV-2 infections, including virus isolation, among serially tested cats and dogs in
households with confirmed human COVID-19 cases in Texas, USA. bioRxiv 2020. [CrossRef]

43. USDA APHIS. Confirmed Cases of SARS-CoV-2 in Animals in the United States. 2020. Available online: https://www.aphis.
usda.gov/aphis/ourfocus/animalhealth/sa_one_health/sars-cov-2-animals-us (accessed on 28 August 2020).

44. Musso, N.; Costantino, A.; La Spina, S.; Finocchiaro, A.; Andronico, F.; Stracquadanio, S.; Liotta, L.; Visalli, R.; Emmanuele, G.
New SARS-CoV-2 Infection Detected in an Italian Pet Cat by RT-qPCR from Deep Pharyngeal Swab. Pathogens 2020, 9, 746.
[CrossRef]

45. Barrs, V.R.; Peiris, M.; Tam, K.W.; Law, P.Y.; Brackman, C.J.; To, E.M.; Yu, V.Y.; Chu, D.K.; Perera, R.A.; Sit, T.H. SARS-CoV-2
in Quarantined Domestic Cats from COVID-19 Households or Close Contacts, Hong Kong, China. Emerg. Infect. Dis. 2020,
26, 3071–3074. [CrossRef] [PubMed]

46. Sailleau, C.; Dumarest, M.; Vanhomwegen, J.; Delaplace, M.; Caro, V.; Kwasiborski, A.; Hourdel, V.; Chevaillier, P.; Barbarino, A.;
Comtet, L.; et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound. Emerg. Dis. 2020.
[CrossRef] [PubMed]

47. Ruiz-Arrondo, I.; Portillo, A.; Palomar, A.M.; Santibáñez, S.; Santibáñez, P.; Cervera, C.; Oteo, J.A. Detection of SARS-CoV-2 in
pets living with COVID-19 owners diagnosed during the COVID-19 lockdown in Spain: A case of an asymptomatic cat with
SARS-CoV-2 in Europe. Transbound. Emerg. Dis. 2020. [CrossRef] [PubMed]

48. Segalés, J.; Puig, M.; Rodon, J.; Avila-Nieto, C.; Carrillo, J.; Cantero, G.; Terrón, M.T.; Cruz, S.; Parera, M.; Noguera-Julián, M.; et al.
Detection of SARS-CoV-2 in a cat owned by a COVID-19-affected patient in Spain. Proc. Natl. Acad. Sci. USA 2020,
117, 24790–24793. [CrossRef]

49. Hosie, M.J.; Epifano, I.; Herder, V.; Orton, R.; Stevenson, A.; Johnson, N.; MacDonald, E.; Dunbar, D.; McDonald, M.;
Howie, F.; et al. Respiratory disease in cats associated with human-to-cat transmission of SARS-CoV-2 in the UK. bioRxiv 2020.
[CrossRef]

50. Neira, V.; Brito, B.; Agüero, B.; Berrios, F.; Valdés, V.; Gutierrez, A.; Ariyama, N.; Espinoza, P.; Retamal, P.; Holmes, E.C.; et al.
A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats 6 compared to their human owners.
7 Affiliations. bioRxiv 2020. [CrossRef]

51. Zhang, Q.; Zhang, H.; Gao, J.; Huang, K.; Yang, Y.; Hui, X.; He, X.; Li, C.; Gong, W.; Zhang, Y.; et al. A serological survey of
SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infect. 2020, 9, 2013–2019. [CrossRef] [PubMed]

http://doi.org/10.1101/2020.09.01.277152
http://doi.org/10.1101/2020.08.27.263988
http://doi.org/10.1128/MRA.00468-20
http://www.ncbi.nlm.nih.gov/pubmed/32467283
https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19
https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19
http://doi.org/10.1128/mBio.02220-20
http://doi.org/10.1101/2020.08.14.250928
https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/2b5837f/
https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/2b5837f/
http://www.ncbi.nlm.nih.gov/pubmed/15921605
http://doi.org/10.1101/2020.03.30.015347
http://doi.org/10.1080/22221751.2020.1833687
http://www.ncbi.nlm.nih.gov/pubmed/33028154
http://doi.org/10.1056/NEJMc2013400
http://www.ncbi.nlm.nih.gov/pubmed/32402157
http://doi.org/10.1101/2020.12.08.416339
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/sa_one_health/sars-cov-2-animals-us
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/sa_one_health/sars-cov-2-animals-us
http://doi.org/10.3390/pathogens9090746
http://doi.org/10.3201/eid2612.202786
http://www.ncbi.nlm.nih.gov/pubmed/32938527
http://doi.org/10.1111/tbed.13659
http://www.ncbi.nlm.nih.gov/pubmed/32500944
http://doi.org/10.1111/tbed.13803
http://www.ncbi.nlm.nih.gov/pubmed/32810370
http://doi.org/10.1073/pnas.2010817117
http://doi.org/10.1101/2020.09.23.309948
http://doi.org/10.1101/2020.10.31.20220608
http://doi.org/10.1080/22221751.2020.1817796
http://www.ncbi.nlm.nih.gov/pubmed/32867625


Viruses 2021, 13, 494 13 of 14

52. Deng, J.; Jin, Y.; Liu, Y.; Sun, J.; Hao, L.; Bai, J.; Huang, T.; Lin, D.; Jin, Y.; Tian, K. Serological survey of SARS-CoV-2 for experimental,
domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transbound. Emerg. Dis.
2020, 67, 1745–1749. [CrossRef] [PubMed]

53. Deng, J.; Liu, Y.; Sun, C.; Bai, J.; Sun, J.; Hao, L.; Li, X.; Tian, K. SARS-CoV-2 Serological Survey of Cats in China before and after
the Pandemic. Virol. Sin. 2020, 1–3. [CrossRef] [PubMed]

54. Temmam, S.; Barbarino, A.; Maso, D.; Behillil, S.; Enouf, V.; Huon, C.; Jaraud, A.; Chevallier, L.; Backovic, M.; Pérot, P.; et al.
Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus.
One Health 2020, 10, 100164. [CrossRef]

55. Fritz, M.; Rosolen, B.; Krafft, E.; Becquart, P.; Elguero, E.; Vratskikh, O.; Denolly, S.; Boson, B.; Vanhomwegen, J.; Gouilh, M.A.; et al.
High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 2020, 11, 100192. [CrossRef]
[PubMed]

56. Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.;
Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 1–5.
[CrossRef] [PubMed]

57. Gaudreault, N.N.; Carossino, M.; Morozov, I.; Trujillo, J.D.; Meekins, D.A.; Madden, D.W.; Cool, K.; Artiaga, B.L.; McDowell, C.;
Bold, D.; et al. Experimentally re-infected cats do not transmit SARS-CoV-2. bioRxiv 2021. [CrossRef]

58. Sit, T.H.; Brackman, C.J.; Ip, S.M.; Tam, K.W.; Law, P.Y.; To, E.M.; Veronica, Y.T.; Sims, L.D.; Tsang, D.N.; Chu, D.K.; et al.
Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [CrossRef] [PubMed]

59. Delong, J. Dutch Minister Confirms Dog, Three Cats Have Caught Novel Coronavirus|Armenian American Reporter. 2020. Avail-
able online: https://www.reporter.am/dutch-minister-confirms-dog-three-cats-have-caught-novel-coronavirus/ (accessed on
17 August 2020).

60. Perisé-Barrios, A.J.; Tomeo-Martín, B.D.; Gómez-Ochoa, P.; Delgado-Bonet, P.; Plaza, P.; Palau-Concejo, P.; González, J.;
Ortiz-Díez, G.; Meléndez-Lazo, A.; Gentil, M.; et al. Humoral response to SARS-CoV-2 by healthy and sick dogs during
COVID-19 pandemic in Spain. bioRxiv 2020. [CrossRef]

61. McNamara, T.; Richt, J.A.; Glickman, L. A Critical Needs Assessment for Research in Companion Animals and Livestock
Following the Pandemic of COVID-19 in Humans. Vector-Borne Zoonotic Dis. 2020, 20, 393–405. [CrossRef] [PubMed]

62. Fagre, A.; Lewis, J.; Eckley, M.; Zhan, S.; Rocha, S.M.; Sexton, N.R.; Burke, B.; Geiss, B.; Peersen, O.; Kading, R.; et al. SARS-CoV-2
infection, neuropathogenesis and transmission among deer mice: Implications for reverse zoonosis to New World rodents.
bioRxiv 2020. [CrossRef]

63. Griffin, B.D.; Chan, M.; Tailor, N.; Mendoza, E.J.; Leung, A.; Warner, B.M.; Duggan, A.T.; Moffat, E.; He, S.; Garnett, L.; et al.
North American deer mice are susceptible to SARS-CoV-2. bioRxiv 2020. [CrossRef]

64. Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.;
Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020,
1, e218–e225. [CrossRef]

65. Pickering, B.S.; Smith, G.; Pinette, M.M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of domestic swine to
experimental infection with SARS-CoV-2. bioRxiv 2020. [CrossRef]

66. Suarez, D.L.; Pantin-Jackwood, M.J.; Swayne, D.E.; Lee, S.A.; Deblois, S.M.; Spackman, E. Lack of susceptibility of poultry to
SARS-CoV-2 and MERS-CoV. bioRxiv 2020. [CrossRef] [PubMed]

67. Freuling, C.M.; Breithaupt, A.; Müller, T.; Sehl, J.; Balkema-Buschmann, A.; Rissmann, M.; Klein, A.; Wylezich, C.; Höper, D.;
Wernike, K.; et al. 2020 Susceptibility of raccoon dogs for SARS-CoV-2 Title: Susceptibility of raccoon dogs for experimental
SARS-CoV-2 infection. bioRxiv 2020. [CrossRef]

68. Zhao, Y.; Wang, J.; Kuang, D.; Xu, J.; Yang, M.; Ma, C.; Zhao, S.; Li, J.; Long, H.; Ding, K.; et al. 2020 Susceptibility of tree shrew to
SARS-CoV-2 infection. bioRxiv 2020. [CrossRef]

69. Palmer, M.V.; Martins, M.; Falkenberg, S.; Buckley, A.C.; Caserta, L.C.; Mitchell, P.K.; Cassmann, E.; Rollins, A.; Zylich, N.C.;
Renshaw, R.W.; et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. bioRxiv 2021. [CrossRef]

70. Ge, X.Y.; Yang, W.H.; Zhou, J.H.; Li, B.; Zhang, W.; Shi, Z.L.; Zhang, Y.Z. Detection of alpha- and betacoronaviruses in rodents
from Yunnan, China. Virol. J. 2017, 14, 1–11. [CrossRef] [PubMed]

71. Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; et al. The pathogenicity of SARS-CoV-2 in
hACE2 transgenic mice. Nature 2020, 583, 830–833. [CrossRef]

72. Clark, J.J.; Penrice-Randal, R.; Sharma, P.; Kipar, A.; Dong, X.; Davidson, A.D.; Williamson, M.K.; Matthews, D.A.; Turtle, L.;
Prince, T.; et al. Sequential infection with influenza A virus followed by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) leads to more severe disease and encephalitis in a mouse model of COVID-19. bioRxiv 2020. [CrossRef]

73. Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shan, C.; Zhou, Y.W.; Shen, X.R.; Li, Q.; Zhang, L.; Zhu, Y.; Si, H.R.; et al. Pathogenesis of
SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell 2020, 182, 50–58.e8. [CrossRef]
[PubMed]

74. Leist, S.R.; Dinnon, I.I.I.K.H.; Schäfer, A.; Longping, V.T.; Okuda, K.; Hou, Y.J.; West, A.; Edwards, C.E.; Sanders, W.;
Fritch, E.J.; et al. A Mouse-adapted SARS-CoV-2 induces Acute Lung Injury (ALI) and mortality in Standard Laboratory Mice.
Cell 2020, 183, 1070–1085. [CrossRef] [PubMed]

http://doi.org/10.1111/tbed.13577
http://www.ncbi.nlm.nih.gov/pubmed/32303108
http://doi.org/10.1007/s12250-020-00284-5
http://www.ncbi.nlm.nih.gov/pubmed/32870451
http://doi.org/10.1016/j.onehlt.2020.100164
http://doi.org/10.1016/j.onehlt.2020.100192
http://www.ncbi.nlm.nih.gov/pubmed/33169106
http://doi.org/10.1038/s41467-020-20097-0
http://www.ncbi.nlm.nih.gov/pubmed/33277505
http://doi.org/10.1101/2021.01.18.427182
http://doi.org/10.1038/s41586-020-2334-5
http://www.ncbi.nlm.nih.gov/pubmed/32408337
https://www.reporter.am/dutch-minister-confirms-dog-three-cats-have-caught-novel-coronavirus/
http://doi.org/10.2139/ssrn.3689866
http://doi.org/10.1089/vbz.2020.2650
http://www.ncbi.nlm.nih.gov/pubmed/32374208
http://doi.org/10.1101/2020.08.07.241810
http://doi.org/10.1101/2020.07.25.221291
http://doi.org/10.1016/S2666-5247(20)30089-6
http://doi.org/10.1101/2020.09.10.288548
http://doi.org/10.3201/eid2612.202989
http://www.ncbi.nlm.nih.gov/pubmed/33219803
http://doi.org/10.1101/2020.08.19.256800
http://doi.org/10.1101/2020.04.30.029736
http://doi.org/10.1101/2021.01.13.426628
http://doi.org/10.1186/s12985-017-0766-9
http://www.ncbi.nlm.nih.gov/pubmed/28549438
http://doi.org/10.1038/s41586-020-2312-y
http://doi.org/10.1101/2020.10.13.334532
http://doi.org/10.1016/j.cell.2020.05.027
http://www.ncbi.nlm.nih.gov/pubmed/32516571
http://doi.org/10.1016/j.cell.2020.09.050
http://www.ncbi.nlm.nih.gov/pubmed/33031744


Viruses 2021, 13, 494 14 of 14

75. Chan, J.F.; Zhang, A.J.; Yuan, S.; Poon, V.K.; Chan, C.C.; Lee, A.C.; Chan, W.M.; Fan, Z.; Tsoi, H.W.; Wen, L.; et al. Simulation of the
clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: Implications
for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020, 71, 2428–2446. [CrossRef] [PubMed]

76. Bertzbach, L.D.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Gruber, A.D.; Osterrieder, N.; Trimpert, J. SARS-CoV-2 in-
fection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model.
Transbound. Emerg. Dis. 2020. [CrossRef] [PubMed]

77. Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.; van Vlissingen, M.F.; Rockx, B.;
Haagmans, B.L.; Koopmans, M.P.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun.
2020, 11, 1–6. [CrossRef]

78. Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.; et al. Infection and
Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [CrossRef] [PubMed]

79. Kutter, J.S.; de Meulder, D.; Bestebroer, T.M.; Lexmond, P.; Fouchier, R.A.; Herfst, S. SARS-CoV and SARS-CoV-2 are transmitted
through the air between ferrets over more than one meter distance. bioRxiv 2020. [CrossRef]

80. Sawatzki, K.; Hill, N.; Puryear, W.; Foss, A.; Stone, J. Ferrets not infected by SARS-CoV-2 in a high-exposure domestic setting.
bioRxiv 2020. [CrossRef]

81. Bao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Liu, J.; Yu, P.; Xu, Y.; et al. Reinfection could not occur in SARS-CoV-2
infected rhesus macaques. bioRxiv 2020. [CrossRef]

82. Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.;
Nekorchuk, M.; et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020, 369, 812–817.
[CrossRef] [PubMed]

83. Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; Munnink, B.B.; de Meulder, D.; van Amerongen, G.;
van den Brand, J.; Okba, N.M.; et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model.
Science 2020, 368, 1012–1015. [CrossRef] [PubMed]

84. Woolsey, C.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Deer, D.J.; Dobias, N.S.; Heymann, J.C.; Foster, S.L.; Levine, C.B.;
Medina, L.; et al. Establishment of an African green monkey model for COVID-19. bioRxiv 2020. [CrossRef]

85. Cross, R.W.; Agans, K.N.; Prasad, A.N.; Borisevich, V.; Woolsey, C.; Deer, D.J.; Dobias, N.S.; Geisbert, J.B.; Fenton, K.A.;
Geisbert, T.W. Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding
and lung injury still present in the early convalescence phase. Virol. J. 2020, 17, 1–12. [CrossRef]

86. Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; et al. Comparison of SARS-CoV-2
infections among 3 species of non-human primates. bioRxiv 2020. [CrossRef]

87. Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al.
First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance
of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [CrossRef] [PubMed]

88. Mathavarajah, S.; Stoddart, A.K.; Gagnon, G.A.; Dellaire, G. Pandemic danger to the deep: The risk of marine mammals
contracting SARS-CoV-2 from wastewater. bioRxiv 2020. [CrossRef] [PubMed]

89. Mordecai, G.J.; Hewson, I. Coronaviruses in the Sea. Front. Microbiol. 2020, 11, 1795. [CrossRef] [PubMed]
90. Xia, H.; Atoni, E.; Zhao, L.; Ren, N.; Huang, D.; Pei, R.; Chen, Z.; Xiong, J.; Nyaruaba, R.; Xiao, S.; et al. SARS-CoV-2 Does Not

Replicate in Aedes Mosquito Cells nor Present in Field-Caught Mosquitoes from Wuhan. Virol. Sin. 2020, 35, 355–358. [CrossRef]
[PubMed]

91. Huang, Y.J.S.; Vanlandingham, D.L.; Bilyeu, A.N.; Sharp, H.M.; Hettenbach, S.M.; Higgs, S. SARS-CoV-2 failure to infect or
replicate in mosquitoes: An extreme challenge. Sci. Rep. 2020, 10, 1–4. [CrossRef] [PubMed]

92. Balaraman, V.; Drolet, B.S.; Gaudreault, N.N.; Wilson, W.C.; Owens, J.; Bold, D.; Swanson, D.A.; Jasperson, D.C.; Noronha, L.E.;
Richt, J.A.; et al. Susceptibility of midge and mosquito vectors to SARS-CoV-2 by natural route of infection. bioRxiv 2020.
[CrossRef]

93. Dai, M.; Li, H.; Yan, N.; Huang, J.; Zhao, L.; Xu, S.; Jiang, S.; Pan, C.; Liao, M. Long-term survival of salmon-attached SARS-CoV-2
at 4 ◦C as a potential source of 2 transmission in seafood markets Running Title: Survival of salmon-attached SARS-CoV-2.
bioRxiv 2020. [CrossRef]

94. 2021 COVID-19: Ice Cream Tests Positive for Coronavirus in China|World News|Sky News. Available online: https://news.sky.
com/story/covid-19-ice-cream-tests-positive-for-coronavirus-in-china-12188761 (accessed on 18 January 2021).

95. Fisher, D.; Reilly, A.; Kang, A.; Zheng, E.; Cook, A.R.; Anderson, D.E. Seeding of outbreaks of COVID-19 by contaminated fresh
and frozen food. bioRxiv 2020. [CrossRef]

96. Waltenburg, M.A.; Victoroff, T.; Rose, C.E.; Butterfield, M.; Jervis, R.H.; Fedak, K.M.; Gabel, J.A.; Feldpausch, A.; Dunne, E.M.;
Austin, C.; et al. Update: COVID-19 Among Workers in Meat and Poultry Processing Facilities—United States, April–May 2020.
Morb. Mortal. Wkly. Rep. 2020, 69, 887–892. [CrossRef] [PubMed]

97. Sarvikivi, E.; Roivainen, M.; Maunula, L.; Niskanen, T.; Korhonen, T.; Lappalainen, M.; Kuusi, M. Multiple norovirus outbreaks
linked to imported frozen raspberries. Epidemiol. Infect. 2012, 140, 260–267. [CrossRef] [PubMed]

98. Kegg, D.; Gluckman, P.; Boulton, G.; Hackmann, H.; Karim, S.S.A.; Piot, P.; Woopen, C. Future scenarios for the COVID-
19 pandemic. Lancet 2021, 397, 777–778.

http://doi.org/10.1093/cid/ciaa644
http://www.ncbi.nlm.nih.gov/pubmed/32472679
http://doi.org/10.1111/tbed.13837
http://www.ncbi.nlm.nih.gov/pubmed/32946664
http://doi.org/10.1038/s41467-020-17367-2
http://doi.org/10.1016/j.chom.2020.03.023
http://www.ncbi.nlm.nih.gov/pubmed/32259477
http://doi.org/10.1101/2020.10.19.345363
http://doi.org/10.1101/2020.08.21.254995
http://doi.org/10.1101/2020.03.13.990226
http://doi.org/10.1126/science.abc4776
http://www.ncbi.nlm.nih.gov/pubmed/32434946
http://doi.org/10.1126/science.abb7314
http://www.ncbi.nlm.nih.gov/pubmed/32303590
http://doi.org/10.1101/2020.05.17.100289
http://doi.org/10.1186/s12985-020-01396-w
http://doi.org/10.2139/ssrn.3578773
http://doi.org/10.1016/j.scitotenv.2020.138764
http://www.ncbi.nlm.nih.gov/pubmed/32387778
http://doi.org/10.1016/j.scitotenv.2020.143346
http://www.ncbi.nlm.nih.gov/pubmed/33160659
http://doi.org/10.3389/fmicb.2020.01795
http://www.ncbi.nlm.nih.gov/pubmed/32793180
http://doi.org/10.1007/s12250-020-00251-0
http://www.ncbi.nlm.nih.gov/pubmed/32602045
http://doi.org/10.1038/s41598-020-68882-7
http://www.ncbi.nlm.nih.gov/pubmed/32681089
http://doi.org/10.1101/2020.09.29.317289
http://doi.org/10.1101/2020.09.06.284695
https://news.sky.com/story/covid-19-ice-cream-tests-positive-for-coronavirus-in-china-12188761
https://news.sky.com/story/covid-19-ice-cream-tests-positive-for-coronavirus-in-china-12188761
http://doi.org/10.1101/2020.08.17.255166
http://doi.org/10.15585/mmwr.mm6927e2
http://www.ncbi.nlm.nih.gov/pubmed/32644986
http://doi.org/10.1017/S0950268811000379
http://www.ncbi.nlm.nih.gov/pubmed/21418716

	Introduction 
	SARS-CoV-2 Infections in Animals 
	In the Wild 
	Livestock Farming 
	Zoos 
	Companion Animals 
	Cats 
	Dogs and Other Pets 


	Further Experimental Proof of Permissiveness to Infection 
	Experimental Models of COVID-19 Disease 
	Areas for Further Investigation 
	Conclusions 
	References

