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Abstract 
Background: The COVID-19 pandemic caused >1 million infections 
during January-March 2020. There is an urgent need for reliable 
antibody detection approaches to support diagnosis, vaccine 
development, safe release of individuals from quarantine, and 
population lock-down exit strategies. We set out to evaluate the 
performance of ELISA and lateral flow immunoassay (LFIA) devices. 
Methods: We tested plasma for COVID (severe acute respiratory 
syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by 
ELISA and using nine different LFIA devices. We used a panel of 
plasma samples from individuals who have had confirmed COVID 
infection based on a PCR result (n=40), and pre-pandemic negative 
control samples banked in the UK prior to December-2019 (n=142). 
Results: ELISA detected IgM or IgG in 34/40 individuals with a 
confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), 
vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). 
IgG levels were detected in 31/31 COVID-positive individuals tested 
≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG 
titres rose during the 3 weeks post symptom onset and began to fall by 
8 weeks, but remained above the detection threshold. Point estimates 
for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR 
and 65-85% versus ELISA, with specificity 95-100% and 93-100% 
respectively. Within the limits of the study size, the performance of 
most LFIA devices was similar. 
Conclusions: Currently available commercial LFIA devices do not 
perform sufficiently well for individual patient applications. However, 
ELISA can be calibrated to be specific for detecting and quantifying 
SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days 
following first symptoms.
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Introduction
The first cases of infection with a novel coronavirus (severe 
acute respiratory syndrome coronavirus 2; SARS-CoV-2) caus-
ing coronavirus infectious disease (COVID) emerged in Wuhan, 
China on December 31st, 20191. Despite intensive contain-
ment efforts, there was rapid international spread and three  
months later, there had been over 1 million confirmed infections 
and 60,000 reported deaths2. Containment efforts have relied heav-
ily on population quarantine (‘lock-down’) measures to restrict 
movement and reduce individual contacts3,4. To develop public  
health strategies for exit from lock-down, diagnostic test-
ing urgently needs to be scaled-up, including both mass  
screening and screening of specific high-risk groups (contacts 
of confirmed cases, and healthcare workers and their families), 
in parallel with collecting data on recent and past infection at  
individual and population levels2.

Laboratory diagnosis of infection has mostly been based on 
real-time RT-PCR, typically targeting the viral RNA-dependent 
RNA polymerase (RdRp) or nucleocapsid (N) genes using swabs 
collected from the upper respiratory tract5,6. This requires spe-
cialist equipment, skilled laboratory staff and PCR reagents, 
creating diagnostic delays. RT-PCR from upper respiratory 
tract swabs may also be falsely negative due to quality or tim-
ing; viral loads in upper respiratory tract secretions peak in  
the first week of symptoms7, but may have declined below the 
limit of detection in those presenting later8. In individuals who 
have recovered, RT-PCR provides no information about prior  
exposure or immunity.

In contrast, assays that reliably detect antibody responses  
specific to SARS-CoV-2 could contribute to diagnosis of acute 
infection (via rises in IgM and IgG levels) and to identify-
ing those infected with or without symptoms and recovered (via  
persisting IgG)9. Receptor-mediated viral entry to host cells occurs 
through interactions between the unique and highly-conserved 
viral spike (S) glycoprotein and the ACE2 cell receptor10. This S 
protein is the primary target of specific neutralising antibodies,  
and current SARS-CoV-2 serology assays therefore typically 
seek to identify these antibodies (Figure 1A–C). Rapid lateral 
flow immunoassay (LFIA) devices provide a quick, point-of-care  
approach to antibody testing. A sensitive and specific anti-
body assay could directly contribute to early identification and 
isolation of cases, address unknowns regarding the extent of  
infection to inform mathematical models and support individual 
or population-level release from lock-down. Laboratory-based  
ELISA platforms have also been evaluated as an approach to  
detection and quantification of SARS-CoV-2 antibodies11.

However, before either laboratory assays or LFIA devices can 
be widely deployed, their performance needs to be carefully  
evaluated (Figure 1D, E)12. We therefore compared a novel 
laboratory-based ELISA assay with nine commercially-available 
LFIA devices using samples from patients with RT-PCR- 
confirmed infection, and negative pre-pandemic samples.

Methods
Research reporting
Samples. A total of 142 plasma samples designated seronegative 
for SARS-CoV-2 were collected from adults (≥18 years)  

in the UK before December 2019 (Underlying data, Table S1, 
including demographic details13) from three ethically approved 
sources: healthy blood donors, organ donors on ICU following  
cerebral injury and healthy volunteers from a vaccine study.

In total, 40 plasma samples were collected from adults  
positive for SARS-CoV-2 by RT-PCR from an upper respira-
tory tract (nose/throat) swab tested in accredited laboratories  
(Underlying data, Table S113). Acute (≤28 days from symptom 
onset) and convalescent samples (>28 days) were included 
to optimise detection of SARS-CoV-2 specific IgM and IgG  
respectively (Figure 1B). Acute samples were collected from 
patients a median 10 (range 4–27) days from symptom onset 
(n=16), and from recovering healthcare workers median 13 
[range 8–19] days after first symptoms; (n=6). Convalescent 
samples were collected from adults a median 48 [range 31–62] 
days after symptom onset and/or date of positive throat swab 
(n=18). Further sample details are provided in Extended data,  
Supplementary Material13.

Cases were classified following WHO criteria as critical  
(respiratory failure, septic shock, and/or multiple organ dysfunc-
tion/failure); severe (dyspnoea, respiratory frequency ≥30/minute, 
blood oxygen saturation ≤93%, PaO

2
/FiO

2
 ratio <300, and/or  

lung infiltrates >50% of the lung fields within 24–48 hours); 
or otherwise mild14. Among 22 acute cases, 9 were critical, 4 
severe and 9 mild. All but one convalescent individual had mild  
disease; the other was asymptomatic and screened during  
enhanced contact tracing.

ELISA
We developed a novel ELISA targeting the SARS-CoV-2 spike 
protein. Recombinant SARS-CoV-2 trimeric spike protein  
was constructed as described15, using mammalian codon opti-
mized SARS2 Spike (1–1208, Genbank accession MN908947)  
with a GSAS substitution at the furin cleavage site (aa 682–685) 
and double proline substitution at aa 986–987. The C-terminal 
was followed by T4 fibritin motif, an HRV3C protease cleavage 
site, a TwinStrep Tag and an 8-HisTag. The gene was cloned 
into a pHLsec and expressed in 293T cells. The HIS trap HP 
column (cat no 17524701; Cytiva) was used to purify the  
recombinant S protein.

We used ELISA to detect antibodies to the S protein.  
MAXISORP immunoplates (442404; NUNC) were coated 
with StrepMAB-Classic (2-1507-001;iba). Plates were blocked 
with 2% skimmed milk in PBS for one hour and then incubated 
with 0.125 µg of soluble trimeric SARS-CoV-2 trimeric S pro-
tein or 2% skimmed milk in phosphate buffered saline. After  
one hour, plasma was added at 1:50 dilution, followed by  
ALP-conjugated anti-human IgG (A9544, RRID:AB_258459; 
Sigma) at 1:10,000 dilution or ALP-conjugated anti-human 
IgM (A9794, RRID:AB_258474; Sigma) at 1:5,000 dilution. 
The reaction was developed by the addition of PNPP substrate  
and stopped with 1.0 M NaOH. The absorbance was measured at 
405nm after 90 minutes, and a final optical density (OD) value  
was calculated by subtracting the background (skimmed milk) 
from the test value. The ELISA assay takes 5–6 hours to perform  
with an experienced operator being able to process up to five  
96-well plates (480 samples including relevant controls).
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Figure 1. Cartoon to illustrate the generation of IgM and IgG antibodies to SARS nCoV-2 and detection of antibodies by a lateral flow 
device. (A) In vivo generation of antibodies to the trimeric SARS-CoV-2 spike protein. (B) Projected change in titres of specific IgM and IgG 
over time following infection, with arrows indicating typical time frames for collection of acute and convalescent samples. (C) Ex vivo detection 
of IgG and/or IgM using a lateral flow immunoassay (LFIA): S= sample well, T=test antibody; C=control. Diagram shows a positive sample 
on the left, with positive lines at both C and T, and a negative test on the right with a line present only at C. Any other combination of lines 
renders the test invalid. Some devices have two test lines, for separate detection of anti-SARS-CoV-2-IgG and -IgM. Assays variably suggest 
use of plasma, serum and/or whole blood. (D) Outcomes of testing negative and positive samples using LFIA. (E) Calculation of sensitivity, 
specificity, positive and negative predictive value of a test. Image created with BioRender.com; exported under a paid subscription.

LFIA
We tested LFIA devices designed to detect IgM, IgG or total 
antibodies to SARS-CoV-2 produced by nine manufacturers  
short-listed as a testing priority by the UK Government Depart-
ment of Health and Social Care (DHSC), based on appraisals  
of device provenance and available performance data. Individ-
ual manufacturers did not approve release of device-level data,  
so device names are anonymised.

Testing was performed in strict accordance with the manufactur-
er’s instructions for each device. Typically, this involved adding  
5–20 µl of plasma to the sample well, and 80–100 µl of manu-
facturer’s buffer to an adjacent well, followed by incubation at  
room temperature for 10–15 minutes. The result was based 
on the appearance of coloured bands, designated as positive  

(control and test bands present), negative (control band only), 
or invalid (no band, absent control band, or band in the wrong  
place) (Figure 1C).

We recorded results in real-time on a password-protected elec-
tronic database, using pseudonymised sample identifiers,  
capturing the read-out from the device (positive/negative/invalid), 
operator, device, device batch number, and a timestamped  
photograph of the device.

Testing protocol
We tested 90 samples using ELISA to quantify IgM and IgG 
antibody in plasma designated SARS-CoV-2 negative (n=50) 
and positive (n=40). All positive samples were included and an  
unstratified random sample of negative plasma from healthy blood 
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donors (n=23) and organ donors (n=27). We tested the nine dif-
ferent LFIA devices using between 39–165 individual plasma  
samples (8–23 and 31–142 samples designated SARS-CoV-2 
positive and negative, respectively, Table S213). Total numbers  
varied according to the number of devices supplied to the DHSC; 
samples were otherwise selected at random.

Statistical analysis
Analyses were conducted using R (version 3.6.3) and Stata (ver-
sion 15.1), with additional plots generated using GraphPad 
Prism (version 8.3.1). Binomial 95% confidence intervals (CI) 
were calculated for all proportions. The association between  
ELISA results and time since symptom onset, severity, need 
for hospital admission and age was estimated using multivari-
able linear regression, without variable selection. Non-linearity in  
relationships with continuous factors was included via natural 
cubic splines. Differences between LFIA devices were estimated 
using mixed effects logistic regression models, allowing for  
each device being tested on overlapping sample sets. Differ-
ences between devices were compared with Benjamini-Hochberg  
corrected p-value thresholds. (Further details in Extended data, 
Supplementary Material13.)

Ethical approval and role of the funding source
Our work was undertaken with ethical approval from the 
National Health Service Blood and Transplant (NHSBT) eth-
ics, providing donor consent for plasma use; NIHR Biobank  
REC agreement (REC 13/NW/0017; IRAS 87824); International  
Severe Acute Respiratory and Emerging Infection Consortium  
(‘ISARIC’) approval by the South Central (Oxford C) Research 
Ethics Committee in England (Ref: 13/SC/0149), and Scotland  
A Research Ethics Committee in Scotland (Ref: 20/SS/0028).  
The UK Government DHSC selected the lateral flow devices 
for testing as described above. Otherwise, the funders had no  
role in study design or in the collection, analysis, and inter-
pretation of data. Authors from DHSC contributed to writing  
of the report and in the decision to submit the paper for  
publication.

An earlier version of this article can be found on medRxiv  
(DOI: https://doi.org/10.1101/2020.04.15.20066407).

Results
Detection of SARS-CoV-2 IgM and IgG antibody by ELISA
The 40 positive (RT-PCR-confirmed SARS-CoV-2 infection) 
and 50 designated negative (pre-pandemic) plasma samples 
were tested by ELISA to characterise antibody profiles. Negative  
samples had median optical density (OD) for IgM of -0.0001 
(arbitrary units) (range -0.14 to 0.06) and for IgG -0.01 (range -
0.38 to 0.26). The median IgM reading in 40 positive samples  
was 0.18 (range -0.008 to 1.13; Kruskal-Wallis p<0.001 vs.  
negative) and IgG median 3.0 (range -0.2 to 3.5; p<0.001).

As safe individual release from lock-down is a major applica-
tion for serological testing, we chose OD thresholds that main-
tained 100% specificity (95%CI 93–100%), while maximising  
sensitivity. Using thresholds of 0.07 for IgM and 0.4 for IgG (3 
and 5 standard deviations above the negative mean, respectively; 

Figure 2A, B), the IgG assay had 85% sensitivity (95%CI 70–94%;  
34/40) vs. RT-PCR diagnosis. All six false negatives were from 
samples taken within 9 days of symptom onset (Figure 2D). 
IgG levels were detected in 31/31 RT-PCR-positive individuals  
tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 
89–100%). The IgM assay sensitivity was lower at 70% (95%CI 
53–83%; 28/40). All IgG false-negatives were IgM-negative.  
No sample was IgM-positive and IgG-negative.

Considering the relationship between IgM and IgG titres and 
time since symptom onset (Figures 2C, D), univariable regres-
sion models showed IgG antibody titres rising over the first 3  
weeks from symptom onset. The lower bound of the pointwise  
95%CI for the mean expected titre crosses our OD threshold  
between days 6–7 (Figure 2D). However, given sampling  
variation, test performance is likely to be optimal from several 
days later. IgG titres fell during the second month after symptom  
onset but remained above the OD threshold. No temporal  
association was observed between IgM titres and time since 
symptom onset (Figure 2C). There was no evidence that  
SARS-CoV-2 severity, need for hospital admission or patient 
age were associated with IgG or IgM titres in multivariable  
models (p>0.1, Table S313).

Detection of SARS-CoV-2 antibodies by LFIA vs. RT-PCR
We first considered performance of the nine different LFIA 
devices using RT-PCR-confirmed cases as the reference standard 
(Table 1A and Extended data, Figure S113) and considering any  
LFIA positive result (IgM, IgG or both) as positive. The LFIA 
devices achieved sensitivity ranging from 55% (95%CI 36–72%) 
to 70% (51–84%) and specificity from 95% (95%CI 86–99%) 
to 100% (94–100%). There was no evidence of differences  
between the devices in sensitivity (p≥0.015, cf. Benjamini- 
Hochberg p=0.0014 threshold) or specificity (p≥0.19 for all 
devices with at least one false-positive test). Restricting to 31 
samples collected ≥10 days post symptom-onset (all ELISA IgG- 
positive), LFIA sensitivity ranged from 61% (95%CI 39–80%) 
to 88% (68–97%) (Extended data, Table S413).

Detection of SARS-CoV-2 antibodies by LFIA vs. ELISA
We also considered performance relative to ELISA (Extended 
data, Table S5, Figure S113), because the LFIA devices target 
the same antibodies. We considered patients positive by this  
alternative standard if their IgG OD reading exceeded the 
threshold described above, since no samples were IgM-positive, 
IgG-negative). Sensitivity of antibody detection by LFIA ranged 
from 65% (95%CI 46–80%) to 85% (66–96%) and specifi-
city from 93% (95%CI 83–98%) to 100% (94–100%); however, 
the device with the highest sensitivity had one of the lowest  
specificities (Extended data, Figure S113). There was no evidence 
of differences in sensitivity (p≥0.010, cf. p=0.0014 threshold) or 
specificity between devices (p≥0.19).

Of 50 designated negative samples tested by both ELISA and 
the nine different LFIA devices, nine separate samples gener-
ated at least one false-positive, on seven different LFIA devices  
(Figure 3). Four samples generating false-positive results 
did so on more than one LFIA device, despite the absence of  
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Figure 2. Results of testing 90 plasma samples for SARS-CoV-2 IgM and IgG by Enzyme linked Immunosorbent Assay (ELISA). (A) IgM 
readings for SARS-CoV-2 pre-pandemic plasma (designated negatives, shown in blue, n=50), and RT-PCR confirmed cases of SARS-CoV-2  
infection (designated positives, shown in orange, n=40; divided into acute cases, n=22, and convalescent cases, n=18. Threshold of  
OD = 0.07 discriminates accurately between negative controls and convalescent sera. (B) IgG data shown for the same subgroups described 
for panel (A). A threshold of OD = 0.4 discriminates between designated negatives and positives. (C) IgM OD values plotted against the 
time post symptoms at which plasma was obtained. The line shows the mean OD value expected from a spline-based linear regression  
model, the ribbon indicates the pointwise 95% confidence interval. (D) IgG OD values plotted against the time post symptoms at which 
plasma was obtained. Coloured dots in panels C and D indicate disease severity. OD = optical density.
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quantifiable IgM or IgG on ELISA, potentially suggesting a  
specific  attribute of the sample causing a cross-reaction on  
certain LFIA platforms.

Of the 22 samples collected from RT-PCR positive patients in the 
acute setting, six fell below the ELISA detection threshold for 
IgM or IgG; two of these six were positive on LFIA testing, each 
on one (different) device. Of the remaining 16 acute samples (all  
ELISA IgG-positive), only nine were consistently positive across 
all nine LFIA devices. Due to limited availability of LFIA devices, 
fewer tests were performed on the 18 convalescent samples with 
available ELISA data, all with quantifiable IgG (Figure 2B,  
Figure 3A). Two had no antibody detected on any LFIA device, 
and only eight were consistently positive across all LFIA 
devices tested (between 1 and 9 devices tested per sample). Full  
metadata for results of ELISA and LFIA devices are available  
in Underlying data, Supplementary Table S613.

Discussion
We here present the performance characteristics of a novel  
ELISA and nine selected LFIA devices for detecting SARS-CoV-2  
IgM and IgG. Among 40 RT-PCR-confirmed positive patients,  
85% had IgG detected by ELISA, including 100% patients tested 
≥10 days after symptom onset. A panel of LFIA devices had 
sensitivity between 55 and 70% against the reference-standard 
RT-PCR, or 65–85% against ELISA, with specificity of  
95–100% and 93–100%, respectively. These estimates come 
with wide confidence intervals due to constraints on the number 
of devices made available. Comparable results have been 

obtained through a similar appraisal undertaken independently,  
in which specificity ranged from 84–100.0%, and the proportion 
of specimens testing positive increased over time from symptom 
onset, with >80% sensitivity achieved by some LFIA devices at  
later time points16. Our study, and these parallel data from 
another centre16, provide a benchmark against which to assess the  
performance of future antibody testing platforms, with the 
aim of guiding decisions about deploying antibody testing and  
informing the design of second-generation assays.

LFIA devices are cheap to manufacture, store and distribute, 
and could be used as a point-of-care test, offering an appealing  
approach to diagnostics and evaluating exposure, were adequate  
performance to be confirmed. A positive antibody test is  
currently regarded as a probable surrogate for immunity to  
reinfection. Secure confirmation of antibody status would  
therefore reduce anxiety, provide confidence to allow individu-
als to relax social distancing measures, and guide policy-makers 
in the staged release of population lock-down, potentially in  
tandem with digital approaches to contact tracing17. As a  
diagnostic tool, serology may have a role in combination with 
RT-PCR testing to improve sensitivity, particularly of cases  
presenting some time after symptom onset18,19. Reproducible  
methods to detect and quantify vaccine-mediated antibodies are 
also crucial as COVID vaccines enter clinical trials.

Appropriate thresholds for sensitivity and specificity depend on 
the primary purpose of the test. For diagnosis in symptomatic 
patients, high sensitivity is required (generally ≥90%). Specificity  

Table 1. Results of nine lateral flow immunoassays (LFIA) devices and an 
ELISA assay, tested with plasma classified as positive (RT-PCR positive) and 
negative (pre-pandemic). n=91–182 per LFIA device. Different manufacturers 
are designated 1–9. 95% confidence intervals (CI) are presented for each point 
estimate. Any LFIA positive result (IgM, IgG or both) was considered positive. ELISA 
positive samples were all positive for IgG, no sample was IgM-positive and  
IgG-negative.

Assay RT-PCR positive Pre-pandemic 
control

Sensitivity 
(95% CI)

Specificity 
(95% CI)

True 
positive

False 
negative

True 
negative

False 
positive

ELISA 34 6 50 0 85 (70,94) 100 (93,100)

1 18 15 60 0 55 (36,72) 100 (94,100)

2 23 15 90 1 61 (43,76) 99 (94,>99)

3 21 12 58 2 64 (45,80) 97 (88,>99)

4 25 13 59 1 66 (49,80) 98 (91,>99)

5 19 12 58 2 61 (42,78) 97 (91,>99)

6 20 11 59 1 65 (45,81) 98 (91,>99)

7 23 10 57 3 70 (51,84) 95 (86,>99)

8 18 14 60 0 56 (38,74) 100 (94,100)

9 22 18 138 4 55 (38,74) 97 (93,>99)
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Figure 3. Comparison between ELISA and LFIA for SARS-CoV-2 designated negative and positive plasma. (A) Quantitative optical 
density (OD) readout from ELISA for IgG for designated negative plasma (n=50) and from individuals with RT-PCR confirmed infection (n=40, 
divided into acute and convalescent plasma). IgM results are shown in Extended data, Figure S213. (B) Results from LFIA produced by nine 
manufacturers. Any positive test for IgG, IgM, both or total antibody is shown as positive; see Extended data, Figure S2 for more detailed 
breakdown13. Grey blocks indicate missing data as a result of insufficient devices to test all samples and one assay on one device with an 
invalid result. Samples in both panels are ranked from left to right by quantitation of IgG, as indicated in panel (A).

is less critical as some false-positives could be tolerated (pro-
vided other potential diagnoses are considered, and accepting 
that over-diagnosis causes unnecessary quarantine or hospital  
admission). However, if antibody tests were deployed as an 
individual-level approach to inform release from quarantine, 
then high specificity is essential, as false-positive results return  
non-immune individuals to risk of exposure. For this reason, 
the UK Medicines and Healthcare products Regulatory Agency  
has currently set a minimum 98% specificity threshold for 
LFIAs20.

Appraisal of test performance should also consider the influ-
ence of population prevalence, acknowledging that this changes 
over time, geography and within different population groups.  
The potential risk of a test providing false reassurance and 

release from lock-down of non-immune individuals can be con-
sidered as the proportion of all positive tests that are wrong.  
Based on the working ‘best case’ scenario of a LFIA test with 
70% sensitivity and 98% specificity, the proportion of posi-
tive tests that are wrong is 35% at 5% population seroprevalence  
(19 false-positives/1000 tested), 10% at 20% seroprevalence  
(16 false-positives/1000) and 3% at 50% seroprevalence (10  
false-positives/1000) (Figure 4).

More data are needed to investigate antibody-positivity as a cor-
relate of protective immunity. Indeed, pre-existing IgG could  
enhance disease in some situations21, with animal data dem-
onstrating that SARS-CoV-2 anti-spike IgG contributes to a  
proinflammatory response associated with lung injury in 
macaques22.
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Figure 4. Influence of population prevalence of seropositivity on assay performance. Scenarios with population prevalence of 5%, 20% 
and 50% are shown within each panel. (A) The proportion of all positive tests that are wrong (1-positive predictive value), which would lead to 
false release from lock-down of non-immune individuals, for varying test sensitivity (x-axis) and 1-specificity (line colour). (B) The proportion 
of negative tests that are wrong. (C) The absolute number of false positive tests per 1000 tests. (D) The absolute number of false negative 
tests per 1000 tests.

Our study, and another undertaken independently in parallel11, 
demonstrates accurate performance of ELISA targeting anti-
spike protein antibodies. Additionally, our ELISA results are  
supported by context regarding disease severity and the time of 
sampling relative to symptom onset. Our data on the kinetics of 
antibody responses build upon studies of hospitalised patients 
in China reporting a median 11 days to seroconversion for total 
antibody, with IgM and IgG seroconversion at days 12 and 14,  
respectively18, and others that report 100% IgG positivity by 15–19  
days19,23. Our ELISA data show IgG titres rose over the first 3 
weeks of infection and that IgM testing identified no additional 
cases. Methods to enhance sensitivity, especially shortly after  
symptom onset, could consider different sample types (e.g. 
saliva), different antibody classes (e.g. IgA)24, T-cell assays or 
antigen detection25. In contrast to others19,26–28, we did not find  
evidence of an association between disease severity and anti-
body titres. We observed several LFIA false positives, which may 
have potentially resulted from cross-reactivity of non-specific  
antibodies (e.g. reflecting past exposure to other seasonal corona-
virus infections).

The main study limitation is that numbers tested were too small 
to provide tight confidence intervals around performance esti-
mates for any specific LFIA device. Expanding testing across  
diverse populations would increase certainty, but given the 
broadly comparable performance of different assays, the cost 
and manpower to test large numbers may not be justifiable. 
Demonstrating high specificity is particularly challenging; for  
example, if the true underlying value was 98%, 1000 nega-
tive controls would be required to estimate the specificity of an 
assay to ±1% with approximately 90% power. Full assessment  
should also include a range of geographical locations and  
ethnic groups, children, and those with immunological disease 
including autoimmune conditions and immunosuppression.

In summary, antibody testing is a crucial component of meas-
ures that may be required to inform release from lockdown. 
Our findings suggest that while current LFIA devices may  
provide some information for population-level surveys, their 
performance is inadequate for most individual patient appli-
cations. The ELISA we describe is currently being optimised  
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and adapted to run on a high-throughput platform and provides 
promise for the development of reliable approaches to antibody 
detection that can support decision making for clinicians, the  
public health community, policy-makers and industry.

Data availability
Underlying data
Figshare: Antibody testing for COVID-19: A report from 
the National COVID Scientific Advisory Panel [Supporting  
Data]. https://doi.org/10.6084/m9.figshare.1222992213.

This project contains the following underlying data: 
•    Supplementary_table_s1 (XLSX). (Metadata describing 

origin and characteristics of designated negative controls  
and individuals with confirmed SARS-CoV-2 infection.)

•    Supplementary_table_s6 (XLSX). (Results of all assays  
performed and relevant metadata.)

Extended data
Figshare: Antibody testing for COVID-19: A report from 
the National COVID Scientific Advisory Panel [Supporting  
Data]. https://doi.org/10.6084/m9.figshare.1222992213.

File ‘Supplementary material’ (PDF) contains the following 
extended data: 

•    Supplementary methods.

•    Figure S1. Sensitivity and specificity of lateral flow  
devices compared with RT-PCR confirmed cases and  
pre-pandemic controls (panels A and B) and compared  
with ELISA results (panels C and D).

•    Figure S2. Comparison between ELISA and LFIA for  
SARS-CoV-2 designated negative and positive plasma.

•    Supplementary table S2. Summary grid presenting 
the number of samples from each cohort tested using  
different assay platforms.

•    Supplementary table S3. Multivariable regression models 
for relationship between ELISA IgM and IgG readings  
and covariates in RT-PCR positive cases.

•    Supplementary table S4. Results of nine LFIA devices 
and an ELISA assay, tested with plasma classified as 
positive (RT-PCR positive) obtained from patients ≥10  
days after onset of symptoms.

•    Supplementary table S5. Results of nine LFIA devices, 
tested with plasma classified as positive and negative  
using ELISA as an alternative reference standard.

Reporting guidelines
Figshare: STARD checklist for ‘Antibody testing for COVID-19: 
A report from the National COVID Scientific Advisory Panel’.  
https://doi.org/10.6084/m9.figshare.1222992213.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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This is a systematic study that compares a laboratory-based home-made ELISA serological assay 
for COVID-19 with nine commercially-available rapid lateral flow immunoassay (LFIA). The results 
presented are convincingly and important for the development/improvement of serological assays 
for COVID-19. It will be helpful if the authors can clarify the following points: 
 

Page 4, Methods: 2nd paragraph, line 4: Acute (28 days). 
Query: How did the authors decide on the 28 days cut-off? Is this definition similar to other 
studies on COVID-19 seroconversion? It would be good to discuss and include citation. 
 

1. 

 
Page 15 of 17

Wellcome Open Research 2020, 5:139 Last updated: 08 MAR 2021

https://doi.org/10.21956/wellcomeopenres.17469.r40226
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4097-9984
http://orcid.org/0000-0002-2278-4497


Page 6, it was stated “We also considered performance relative to ELISA (Extended data, 
Table S5, Figure S1), because the LFIA devices target the same antibodies.” 
Query: The viral protein used each of the LFIA device is not stated in the manuscript. Based 
on this sentence, are the authors stating that all of them use SARS-CoV-2 Spike residues 1-
1208? If not, please state the viral protein or fragment used for each device. 
 

2. 

Page 9, “… with animal data demonstrating that SARS-CoV-2 anti-spike IgG contributes to a 
proinflammatory response associated with lung injury in macaques.” 
Query: SARS-CoV-2 should be SARS-CoV. 
 

3. 

Page 10, it was stated “We observed several LFIA false positives, which may have potentially 
resulted from cross-reactivity of non-specific antibodies (e.g. reflecting past exposure to 
other seasonal coronavirus infections). 
Query: Are these LFIA using the same viral protein or fragment? What is the sequence 
homology between SARS-CoV-2 and endemic coronaviruses for each of viral protein used? 
 

4. 

Page 10, it was stated “In contrast to others, we did not find evidence of an association 
between disease severity and antibody titres” 
Query: Is there any difference in study design between this study and the published studies 
cited? Were the published studies measuring anti-Spike binding antibodies or were they 
measuring neutralizing antibodies? Are the sample size and distribution of cases (mild vs 
severe, etc) comparable? Please highlight any limitation that may explain the discrepancy. 
 

5. 

For the simulations shown in Figure 4. 
Query: Please provide details on method/program as well as assumptions used. 
 

6. 

The ELISA described by the authors is important and adds value to the development of 
serological assay for COVID-19. To briefly show the robustness of the assay, can authors 
provide information on (a) intra-assay variability, (b) inter-assay variability, (c) inter-
operators variations and (d) the turnaround time i.e. from sample to result?
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