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We explore strategies of contact tracing, case isolation and quarantine of
exposed contacts to control the SARS-CoV-2 epidemic using a branching
process model with household structure. This structure reflects higher trans-
mission risks among household members than among non-household
members. We explore strategic implementation choices that make use of
household structure, and investigate strategies including two-step tracing,
backwards tracing, smartphone tracing and tracing upon symptom report
rather than test results. The primary model outcome is the effect of contact
tracing, in combination with different levels of physical distancing, on the
growth rate of the epidemic. Furthermore, we investigate epidemic extinc-
tion times to indicate the time period over which interventions must be
sustained. We consider effects of non-uptake of isolation/quarantine, non-
adherence, and declining recall of contacts over time. Our results find that,
compared to self-isolation of cases without contact tracing, a contact tracing
strategy designed to take advantage of household structure allows for some
relaxation of physical distancing measures but cannot completely control the
epidemic absent of other measures. Even assuming no imported cases and
sustainment of moderate physical distancing, testing and tracing efforts,
the time to bring the epidemic to extinction could be in the order of
months to years.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Background
The COVID-19 pandemic, arising from infection with SARS-CoV-2, has rapidly
spread across the world leading to significant loss of life, with many different
interventions employed in attempts to reduce the spread of the disease. To
avoid overwhelming the capacity of healthcare systems and to limit mortality,
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many countries, including the UK, adopted policies to dra-
matically reduce the number of contacts via which infections
could occur [1]. These ‘lockdown’ policies have included:
requiring all but essential workers to stay physically in their
residences; schools, universities, entertainment venues and
all but essential businesses to close; and limitations on out-
side-household activities and meetings. In many countries,
including the UK, there were dramatic curtailments in the
number of outside-household social contacts made across
most of the population, but household contacts remained [1].
While effective in reducing epidemic growth, strict lockdown
policies are not sustainable economically and socially [2]. As
such regulations are relaxed, workplaces, schools and
businesses reopen (albeit with additional safety measures),
with increased contact between households occurring. In this
context, the role of contact tracing and isolation is to target
quarantine to households with higher risk of infection to
allow increased economic and social interaction without a
return to rapid epidemic growth.

Contact tracing policies consist of three main components:
isolation of identified infected individuals to prevent onwards
transmission, tracing of their recent contacts who might have
been exposed to infection, and the intervention, most com-
monly quarantine, applied to the traced individuals to try
to halt the chains of transmission. As of August 2020 in the
UK, a contact is defined as a case’s household member or a
sexual partner and/or someone with whom they have: had
skin-to-skin contact; coughed on; been within 1 m of for
more than 1 min; had a face-to-face conversation with
within 1 m; been within 2 m of for at least 15 min; or
shared a vehicle with (or sat near if a plane or large vehicle)
[3]. In the UK, case isolation and contact quarantine is done at
home, even though individuals are advised to distance them-
selves from household members. Given the likely difficulties
in achieving this in practice, case isolation and contact quar-
antine policies will likely not prevent within-household
transmission once an infection is introduced, but rather are
aimed at reducing transmission between households.

Previous research on other respiratory infections finds
households to be key structures in understanding population
level transmission dynamics [4]. The nature and extent of con-
tact between household members increases the likelihood of
transmission compared to other types of social contacts. House-
holds bring together disparate social networks such as those of
different workplaces and schools, and they often bring together
people of different age groups via family relationships [5]. For
SARS-CoV-2, emerging evidence is that household contacts of
cases are much more likely to become infected than non-house-
hold contacts and a systematic review estimated household
secondary attack rates to lie between 15.4 and 22.2% [6]. How-
ever, the reliance on symptomatic diagnosis of cases in many
studies means this is likely to be an underestimate. Household
structure should also benefit the contact tracing process in that
household contacts are much more easily identified, so models
or policies that do not account explicitly for this structure might
be less accurate in their conclusions or less efficient, respectively,
than those that do. For example, given that negative serial inter-
vals have been observed for SARS-CoV-2 [7], it is possible that a
non-index case in a household epidemic develops symptoms
before the index case, leading to a reduced time until symptoms
are reported for the household-structured branching process,
compared to an individual-level branching process where
symptoms must be reported at each step.
Here, we use a household-structured model to explore the
potential impact of contact tracing, isolation and quarantine
on epidemic growth, considering a range of social contact,
transmission, tracing performance and population adherence
assumptions. We model the effects of potential strategies to
improve contact tracing effectiveness and consider the time-
frame over which interventions must be kept in place to
achieve infection extinction in a closed population assuming
no importations, which may be difficult to achieve in practice.
2. Challenges to contact tracing and isolation
There are a number of challenges to using contact tracing and
isolation to suppress SARS-CoV-2 transmission. Early
models, even those made prior to upwards revision of uncon-
strained growth estimates [8], suggested that contact tracing
must operate with minimal delay and with high levels of
accuracy (70–90% of contacts traced for R0 2.5–3.5) [9,10] if
it is to interrupt enough transmission chains to achieve
control. The first step of identifying an index case is challen-
ging for SARS-CoV-2; many cases are asymptomatic, and
symptomatic cases frequently have mild or non-distinguish-
ing initial symptoms. Once identified, the index case is
isolated and subsequently interviewed to identify all individ-
uals who may have been exposed while the index case was
infectious, which becomes more difficult the longer the
pre-symptomatic infectious period. Asymptomatic cases
will not become index cases unless some testing is performed
regardless of the individuals’ symptom status. Some sub-
populations, such as healthcare workers, might receive
regular testing regardless of their symptom status, and
asymptomatic cases may become index cases through this
avenue, but this is the exception rather than the rule. The con-
tact tracing interview with an identified case is subject to the
delay between infection and symptom onset and/or case con-
firmation via testing, plus any further procedural delay to the
interview. The task of reaching the contacts is also subject to
delays and potentially impossible when they are non-identifi-
able (e.g. strangers to the case), unreported (e.g. if the case
fears disclosure of their contacts or the contact tracing process
is not adapted to the needs of the population [11]) or unreach-
able. For a new infection, it is also possible that the contact
definition used for tracing is not well matched to the main
modes of transmission. Traced contacts are then asked to
quarantine to restrict the potential spread of the infection
and are potentially monitored for signs of infection. If a quar-
antined contact meets the case definition or develops
symptoms, their contacts prior to quarantine are in turn
then the subjects of tracing attempts.

Timing of symptom onset versus infectiousness is impor-
tant [12,13]. Control of SARS-CoV-1 was facilitated by the
fact that peak infectiousness occurred after the onset of
noticeable symptoms and that there was little pre-sympto-
matic or asymptomatic transmission [14,15]. For SARS-
CoV-2, significant pre-symptomatic transmission means that
by the time an infected individual is identified, there is a
high probability that they have already infected others
[16–18]. Many infected people are asymptomatic or experi-
ence mild symptoms, remaining undiscovered [19]. This
issue is compounded by limited testing and high rates of
false negative in tests to diagnose active infections [20].



…

forwards tracing only forwards and backwards tracing

transmission

failed contact tracing

successful contact tracing

case

contact tracing index case

quarantined case

Figure 1. An illustration of backwards and forwards tracing. Here, the chain of
transmission is represented using black arrows. The blue circle represents the first
case in this chain to be detected. The left-hand contact tracing chain contains
only forwards contact tracing and as a result only the infectees of the index case
are traced. The right-hand plot has the same forwards tracing as before, and a
backwards contact tracing event in which the infector of the index case was
discovered, and forwards contact tracing then enables sibling infections to the
index case to be traced and quarantined. (Online version in colour.)
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In the UK, as of September 2020, contacts of identified
cases are asked to quarantine for a period of 14 days follow-
ing contact with the case (within which the vast majority of
incubation periods would occur [21]). If the contact develops
symptoms and tests positive, they must self-isolate for
10 days and their contacts, including those in their house-
holds, must quarantine for 14 days from the time of their
symptom onset [22]. Particularly in the absence of contact
testing and release from quarantine if negative, there will
be a proportion of society that is unable or unwilling to
take up or adhere to issued notices to quarantine or to isolate
for the full period. The effects of non-uptake or of partial
adherence on epidemic growth will depend on the dynamics
of within-household transmission, making this structure
important to capture explicitly in modelling. There might
also be practical trade-offs since a strict system that in
theory might be most effective in reducing transmission
could result in lower adherence; and there are complications
to releasing contacts early after a negative test when the test
has low sensitivity [23]. While there is evidence that the
average number of contacts made at the beginning of the
UK’s first ‘lockdown’ at the end of March 2020 was reduced
by over 70% [1] compared to a 2006 contact survey [15],
another survey from 2 days in early May 2020 found that
almost three quarters of individuals who showed or whose
household showed SARS-CoV-2 symptoms had left the
house in the previous 24 h, behaviour that was contrary to
policy at the time [24]. Across past studies, reporting of
adherence to quarantine orders varies widely, and generally
involves shorter time frames than those involved in the cur-
rent pandemic. Further, we would expect adherence to vary
over time as the perceived risk of breaking quarantine,
public trust in health services and government, and the
benefits of breaking quarantine (such as socializing, which
may be impossible under lockdown) change over time. In
practical terms, this means that we will not know what adher-
ence levels might be expected over the time period necessary
for control of SARS-CoV-2 in the absence of vaccination [25].
3. Contact tracing, isolation strategies and
considerations post-lockdown

Those countries that have maintained periods of SARS-CoV-2
epidemic suppression have used contact tracing, isolation
and quarantine measures alongside a variety of other inter-
ventions [26,27], and have re-deployed stricter physical
distancing again in the event of rising cases. This experience
is consistent with modelling that suggests that such suppres-
sion requires contact tracing to be implemented alongside
policies that reduce usual patterns of social contact [28].

There are modifications to the contact tracing process that
could improve efficiency and effectiveness. The strong likeli-
hood of pre-symptomatic transmission within the household
means that tracing not only the index case’s contacts but con-
tacts of the whole household, and quarantining the whole
household of a traced contact might be effective. Immediate
quarantine of contacts rather than monitoring for symptom
development contributes to prevention of asymptoma-
tic transmission and pre-symptomatic transmission if
tracing occurs quickly enough [29]. Immediate tracing and
quarantining of contacts-of-contacts—‘two-step tracing’,
implemented for some contacts as part of Vietnam’s strategy
[26]—could further improve the speed of the control process
relative to transmission, but at the cost of a large number of
people being quarantined per case, which if widely applied
may lead to effectively placing small areas in lockdown
[30]. In the long run, this initial cost might be worthwhile if
better epidemic control is achieved. Delays due to testing
can be eliminated if tracing is initiated upon symptom report-
ing, though in practice many with symptoms will not
actually have SARS-CoV-2 and a sizable proportion with
SARS-CoV-2 will have no symptoms [31]. To reduce tracing
delays and increase the number of contacts who can be ident-
ified and traced, the use of smartphone apps that record
proximate devices (a proxy for contacts) and can send them
notifications to quarantine upon a case testing positive,
have been explored in a number of settings and trialled on
the Isle of Wight [32]. Modelling suggests that such an app
could potentially bring the effective reproduction number
below one, but only if population uptake is very high [10].
In the UK, this would equate to at least 80% uptake by smart-
phone owners [10], which is higher than that yet achieved
elsewhere. Fears over privacy, stigma and misinformation
could impede uptake [33]. In countries which have deployed
contact tracing apps the uptake is very mixed; in early
September 2020, data on app uptake was collected from
news articles for 30 countries, with 19/30 countries achieving
uptake of less than 10% [34].

In contact tracing, there is an implicit form of direction—an
individual is said to be forward contact traced if the direction
of contact tracing is the same as the direction of transmission,
which results in the traced individual being an infectee of the
case from whom the tracing attempt was initiated. Backwards
contact tracing is when the direction of tracing is opposite to
the direction of transmission, which results in the traced indi-
vidual being the infector of the case who initiated the tracing
attempt. For some diseases, backwards tracing can be an
important strategy as a backwards step can then be followed
by a forwards tracing step again to discover ‘sibling’ infections
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who share the same infector [35]. A visualization of backwards
and forwards tracing is plotted in figure 1, where a successful
backwards tracing event leads to the quarantine of a sibling
chain of transmission.

One implementation of backwards tracing involves increas-
ing the time window prior to symptom onset over which
contacts are traced to include the likely date of the case’s infec-
tion, in addition to covering their likely infectious period.
Backwards tracing might be especially efficacious due to a
biased sampling effect: the more secondary infections an indi-
vidual causes, the more likely they are to be isolated through
backwards tracing initiated by one of their secondary infections.
Therefore, backwards tracinghas an increased likelihoodof find-
ing individualswho caused a lot of secondary infections, and for
these individuals it might then be highly worthwhile forwards
tracing to find their infectees [36]. Following this logic, if the
number of secondary cases is highly overdispersed, as has
been estimated [37], then backwards tracing could be especially
useful to help identify ‘superspreading’ events involving large
numbers of transmissions [35]. However, tracing backwards to
move forwards again might be less useful when tracing delays
are high relative to the speed of transmission [38], and when
accurate recall or identification of contacts degrades over
longer time frames.

If contact tracing is adopted as a strategy to help achieve
local elimination, then to inform decision-making, we need to
understand the time scales over which contact tracing and con-
current physical distancing interventions must be sustained to
reach elimination (in the absence of new importations from out-
side), without which transmission is likely to climb again. Even
if interventions are enough to drive the infection to elimination,
we might expect a long ‘tail’ of ongoing but increasingly spora-
dic transmission during which time reintroduction of the
epidemic is an ongoing risk if tracing and physical distancing
measures are relaxed [39].

Here we consider what role contact tracing, isolation and
quarantine might play in suppressing epidemic growth across
a range of plausible epidemiological and behavioural assump-
tions. We begin more generally and then consider the case of
the UK more specifically during May – June 2020, considering
lockdown easing scenarios and the contact tracing, isolation
and quarantine policy adopted on 28 May 2020. To capture the
interplayofwithin- andbetween-household epidemic dynamics
[40], we use a household-structured branching process model to
investigate how contact tracing and isolating might affect the
growth rate, theprobabilityof epidemic extinctionandextinction
times for: contact tracing strategies performed at the household
or individual level; different levels of physical distancing;
assumptions about the probability of discovering infected indi-
viduals; a range of suggested improvements to contact tracing,
including an app to reduce tracing times and improve the prob-
ability of identifying and reaching contacts. We also examine
how key aspects of implementing the interventions, as well as
uptake and adherence to them among the population, might
affect their efficacy in practice.

4. Methods
(a) Model
(i) Household-structured branching processes and contact tracing
We model the SARS-CoV-2 epidemic as a branching process of
infections of individuals grouped into households [41].
Transmission is considered on two levels: local within-household
transmission and global between-household transmission. We
assume a static population distribution of household sizes,
excluding migration in and out of households, and that infection
can be introduced into a household only once. In mathematical
terms, a household-structured branching process is considered
to be a multitype branching process, where the type of a case
is the generation of the household epidemic they belong to, in
combination with their household size. The number of offspring
produced by a case is conditional upon the size of the household
they belong to, and how many susceptibles remain in that house-
hold. Upon introduction of the infection to a household, a
homogeneously mixing within-household epidemic is initiated,
referred to as the local epidemic. Individuals infected by a local
epidemic are able to propagate the infection globally by introdu-
cing the infection to a fully susceptible household. Individuals in
the model differ only by the size of the household they belong to,
and we do not model explicit household compositions (e.g. by
age, gender).

The household-structured branching process is an approxi-
mation to an epidemic that is derived when the epidemic is
considered to be spreading through a population of individuals
segmented into households, with homogenous mixing between
households, and homogenous mixing within households. If it
is early in the epidemic, and there is little to no susceptible
depletion then the homogenous mixing assumption implies
that the probability the infection is reintroduced into a previously
infected household is effectively zero, hence our assumption that
the infection is only introduced into the household once. This
effectively linearizes the transmission model at the level of
households, and the model is therefore limited in that the
approximation does not hold when there is significant global
depletion of susceptibles, and for this paper we therefore take
the population size to be infinite. As a result, the model always
represents a scenario with no immunity. In the UK in May–
June 2020, seroprevalence was estimated to range from 0.5% to
17.5% in the worst affected region, with immunity low overall
in the UK [42].

As a result of the infection being introduced only once to
each household, a tree-like structure of cases is created, which
grows as the epidemic progresses, with links representing infec-
tions between individuals. From this tree-like structure of cases,
we can also construct a distinct tree-like structure of infected
households, where each link connects two households if and
only if a global infection from a member of one household has
infected a member of, and therefore introduced the infection in,
the other household.

This transmission tree generated by the branching process
allows for modelling of contact tracing as a type of ‘superinfec-
tion’ along the tree; for a household-structured branching
process the contact tracing process could be considered to super-
infect at the level of households (figure 2). When the contact
tracing process ‘superinfects’ a household or individual, then
the effects of the contact tracing process are applied. These are
typically: quarantine, resulting in a reduced ability of cases in
the household to transmit the infection globally; and surveil-
lance, where all individuals in the household are on the
lookout for symptom onset.

The household structure introduces additional effects to the
contact tracing dynamics that enable the exploration of contact
tracing and isolation policies at the level of either individuals
or households. Each infection in a household has an independent
and identically distributed probability of being self-identified,
and therefore, infection is more likely to be identified in larger
households. Larger households tend to make more global con-
tacts than smaller ones, and therefore may be responsible for
spreading more of the infection but are also more likely to
have an infection identified in them. Later generations of a
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Figure 2. An illustration of the household branching process with contact
tracing. Households are identified by letters in the bottom right-hand
corner of each rectangle. The infection is discovered in case 4. This quaran-
tines household B and initiates contact tracing of connected households A, C
and D. The backwards tracing attempt to household A succeeds, with a time
delay of 2 days. Household C is traced immediately, quarantining several cases
early in their infection. When there is symptom onset in one of these cases
the contact tracing process will propagate again by attempting to reach
household E, potentially after a testing delay. The tracing attempt to house-
hold D did not succeed, and this household will continue to behave as
normal and spread the infection until an intervention is applied through a
different route. The x-axis refers to the temporal evolution of the transmission
process in this example. (Online version in colour.)
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local epidemic may be quarantined early in their infection due to
a household member belonging to an earlier generation of the
local epidemic self-identifying and reporting the infection.

At time 0, the infection is seeded by creating a number of
initial infections with infectious age 0, with each infection
being the sole index case in a household epidemic. In simulations
where we estimate the epidemic growth rate, the first 10 days are
discarded as model burn-in (see electronic supplementary
material, figure S1), as we must allow the local within-household
epidemics to progress, introduce the infection into new house-
holds and for the contact tracing process to be initiated by a
symptomatic case self-identifying their infection. The epidemic
growth rate is then estimated using log-linear regression on
days 10–25 of the simulation.
(ii) Social contacts and infection
Each day, individuals make contacts, the number of which is
sampled from an overdispersed negative binomial distribution
(overdispersion parameter 0.32; see electronic supplementary
material for technical details) estimated with data on ‘all contacts’
(i.e. physical and non-physical) from the 2006 POLYMOD study
[5], stratified according to the size of the household in which the
individual resides. Household sizes are aligned with the 2019
Office for National Statistics (ONS) survey [43], and are categor-
ized as of size 1, 2, 3, 4, 5, 6+. Contacts are only distinguished
by whether they are within (local) or outside (global) the house-
hold, with the proportion of each again estimated using
POLYMOD. Given it is challenging to distinguish one long contact
from separate short contacts between household members when
measuring them, we assume at most one local contact per day
with each other household member, which occurs each day with
fixed probability that depends upon household size. As such,
the number of local contacts is binomially distributed. The
number of global contacts is given by the difference between the
number of contacts made in total and the number of local contacts.
If an illegal combination of contacts is observed (e.g. three local
and two total), then all contacts are redrawn from their distri-
butions until a legal combination occurs. We do not consider
repeated global contacts, so individuals experience no susceptible
depletion among those whom they might infect globally. We do
not consider the extent to which each household member’s
global contacts overlap. That is, every global contact reaches a
new individual that belongs to a new household. Again, this rep-
resents a worst case scenario for epidemic spread, although not
necessarily for the efficacy of contact tracing [44].

Physical distancing and lockdown measures are modelled
through a Bernoulli thinning of an individual’s global contacts,
with their local contact remaining unchanged, leading to a per-
centage reduction in global contacts made. For example,
suppose that physical distancing is leading to a 50% reduction
in global contacts, then we would draw the number of global
contacts that an individual would make in the absence of phys-
ical distancing, and then consider each contact to occur with
probability p = 0.5. This leads to a binomial number of actual con-
tacts made conditional upon the number of trials being drawn
from an overdispersed negative binomial (see §3.2 in the elec-
tronic supplementary materials for details). We explore
physical distancing by applying the same reduction in global
contacts to every individual, which we refer to as uniform phys-
ical distancing. Because we expect the level of physical distancing
to have some dependence upon household size and composition
in practice, we later assume lockdown relaxation scenarios and
derive physical distancing parameters for these scenarios where
the physical distancing reduction is conditional upon the size
of the household.

Once the number of contacts of an infective has been drawn on
each day, we compute the probability that such a contact is able to
transmit the infection. Because the probability of a contact causing
infection cannot be directly observed, we condition the probability
that a contact spreads the infection upon the infectious age of the
individual, in such away that generation times areWeibull-distrib-
utedwith amean of 5 days and standarddeviation of 1.92 days [10],
where a generation time is defined as the delay from becoming
infected to a transmission of the virus (see §4 in the electronic sup-
plementary materials). The distribution of generation times is an
important quantity to calibrate, as it defines a variety of timings
and quantities within the model, for example, the infectious age
and number of secondary infections generated by the time an indi-
vidual tests positive. The probability of a contact leading to
infection is tuned for the local and global settings such that the
model has a baseline growth rate of r = 0.22 d−1 [8] and a household
secondary attack rate of 21.4%, based on themean of several studies
that were available during early April 2020 [45–47]. The baseline
scenario assumes that individuals activate self-isolation and house-
hold quarantinewhen they believe they are infected, but there is no
active contact tracing process. Thus, any observed reduction in the
growth rate can be attributed solely to the contact tracing process,
and not to effects of the case’s household quarantine.

(iii) Case identification and contact tracing delays
For contact tracing to be initiated, an infected individual first
needs to be identified. If an individual develops symptoms,
their incubation period, i.e. the time between their infection
and onset of symptoms, is gamma distributed with mean of
4.84 days and standard deviation of 2.79 [21]. Given estimates
for the probability of being asymptomatic ranges between 30
and 70% [31,48–50], we consider an upper limit in the untraced
case self-identification probability of 50%, to account for mild
cases that do experience symptoms but do not report them.

For untraced individuals, we assume a gamma distributed
delay with a mean of 2.62 days and standard deviation 2.38
days between symptom onset and case self-identification,
to account for symptom reporting delays. However, for



one-step tracing and quarantine
(household level)

two-step tracing and quarantine
(household level)

Figure 3. An illustration of the two-step tracing at the household level. We assume that all within-household contacts are always traced. For both one- and two-
step tracing at the household level, all household members undergo quarantine and tracing regardless of whether they are the index case or not. In both of these
examples, all of the individuals have been placed under quarantine or isolation once detected (for the index case) or traced. Households who were not successfully
traced are not shown here. (Online version in colour.)
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contact-traced individuals we remove this delay, because traced
individuals are aware they have been exposed and therefore
are assumed to report infection at symptom onset without the
symptom reporting delay. Case identification in a household
that is not already quarantined leads to an immediate quarantine
of all other household members, and we explore initiating tracing
both immediately upon symptom report and waiting for a posi-
tive test result before initiating tracing. If tracing begins after a
positive test, we add a further testing delay to account for the
delay from swabbing to receiving results, which is gamma dis-
tributed with a mean of 1.54 days and standard deviation of
1.1, parametrized using a truncation corrected maximum likeli-
hood estimator applied to anonymized UK line-list data [21,51].

Contacts are traced with a probability of success, and suc-
cessfully traced individuals are assigned a tracing delay time
from a Poisson distribution, with a mean value that we vary
between 1.5 and 2.5 days. We explore a range of possible contact
tracing success probabilities from 70 to 95%, the upper bound of
which was the percentage of known contacts (i.e. those who
could be identified) who were successfully traced by Public
Health England during the containment phase [52]. At the
end of the tracing delay, the successfully traced household is
quarantined. If an individual is adhering to quarantine or iso-
lation, we assume they make no global contacts at all, but
within-household contacts continue. From CoMix [1], it appears
that the frequency of household contacts does not increase
when outside-household contacts reduce. Therefore, although
we recognize the intensity of the contacts might change, in the
absence of evidence we assume no increase in local transmission
while a household is quarantined.
(iv) Contact tracing strategies
Our default contact tracing strategy is ‘household level’ and
designed to take advantage of the household structure; when
an infection is identified in a household all members of the
household have their contacts traced. When a contact is success-
fully traced, their whole household quarantines. We compare this
to an ‘individual-level’ contact tracing process in which only
individual cases have their contact traced, and only the specific
people identified as contacts and successfully traced are quaran-
tined. The rationale behind household-level contact tracing is that
once a case has been detected in a household, there is an
increased likelihood that the other household members are
already infected and have possibly spread the infection outside
the household but have not had symptom onset or received a
test result. Thus, household-level contact tracing would initiate
contact tracing earlier in the infection for cases who were infected
by a household member. The individual-level contact tracing
model, with household structure affecting infection dynamics
but quarantining of contacts implemented on an individual
level, is closest to what was adopted in the UK in May 2020.

Given the speed of transmission, we further consider a ‘two-
step’ contact tracing process at the level of households, as illus-
trated in figure 3. One-step contact tracing attempts to isolate
individuals who are distance 1 from a known case, and two-
step contact tracing attempts to isolate individuals who are
distance 2 from a known case. As previously discussed, contact
tracing can either occur at the household level or the individual
level, and this leads to slightly different distances as the funda-
mental epidemiological unit is different. For household-level
contact tracing, the distance between two individuals is defined
in terms of the distances between their households: individuals
who live in the same household are distance 0, individuals are
distance 1 if they live in different households, but there has
been contact between the households by any two members. Vari-
ations on this approach have been used in Vietnam for SARS-
CoV-2 [26], although typically only on the level of individuals.

To consider a smartphone tracing app scenario [53], we allo-
cate a random proportion of the population to be running the
app on their smartphones, considering a wide range (table 2).
When both individuals on the ends of a transmission event have
been allocated the app, we assume any contact tracing attempts
between these individuals succeed with 100% probability, and
the tracing delay is reduced to zero. As both ends of a trans-
mission event are required to have the app, the probability of
seeing the app trace the transmission event is quadratic in the
probability of an individual having the app. Here, we are consid-
ering a ‘perfect world’ contact tracing app and making the
assumption that the app is able to record all epidemiologically
relevant contacts. We do not allow for the possibility that the
app misses a contact which causes a transmission.

In our models exploring the effect of adherence to quaran-
tine, we consider (i) non-uptake of quarantine among traced
contacts, implemented at the level of households; and (ii) declin-
ing adherence to quarantine over time, whereby a proportion of



Table 1. Data-driven parameters.

parameter values source

baseline epidemic growth rate

(pre-interventions)

0.22 per day (doubling time approx. 3 days) [8]

incubation period gamma (mean = 4.84 days, s.d. = 2.79 days) [21]

generation time Weibull (mean = 5.0, s.d. = 1.92 days) [10]

household size distribution 1: 0.29, 2: 0.35, 3: 0.15, 4: 0.14, 5: 0.05,

6+: 0.02

[43]

onset to identification delay gamma (mean = 2.62 days, s.d. = 2.38 days) assumed using data from Singapore onset

to visit to medical provider [8]

recall decay rate 10% assumed from experience of contact tracers
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households have a propensity for declining adherence [24].
Among these households, each individual has a fixed probability
of early exit from quarantine each day, at which point the
individual then resumes making global contacts again.

A practical implementation of backwards tracing is con-
sidered, as it relates to the strategy implemented in the UK.
The probability of including the infecting individual on a list of
contacts to be traced depends on how many days pre-symptom
onset is included as days when eligible contacts were made.
For instance, the UK policy traces back 2 days in recognition of
the significant role that pre-symptomatic transmission plays,
but this is unlikely to include the infecting individual, given
the distribution of incubation periods (with an approx. 5 day
mean). To include the infecting individual as a potentially trace-
able contact, this time window would need to be up to 14 days.
However, the further ago a contact was, the more difficult it
might be to recall. A simple model of recall is applied, where
the ability to recall a contact decays at a geometric rate as a func-
tion of the number of days since the contact occurred. There is
little evidence to inform this parameter; our assumed parameters
come from the personal experience of contact tracers. If the con-
tact tracing is performed digitally through the app, then there is
no recall decay and we explore the interaction between
digital contact tracing and recall decay, as the increased speed
of digital contact tracing also should allow for the sibling
chains of transmission to be traced more rapidly.

(b) Parameters
Parameter values used for our simulation and their sources are
summarized in tables 1 and 2. We distinguish between several
types of parameters: data-driven, uncertain and scenario
parameters. Data-driven parameters (table 1), such as the house-
hold size distribution, are not varied in the sensitivity analysis.
Other parameters, such as the probability of contact tracing
success, are subject to significant uncertainty and we sample
these from a prior distribution between simulation runs to per-
form a sensitivity analysis, as detailed in table 2. In several
sections of this paper, we choose parameters that represent
fixed scenarios and compare structural model variations without
further parameter variation, to make the results more inter-
pretable; for example, when we examine increasing the amount
of backwards tracing that is performed then we keep the epi-
demic and contact tracing parameters fixed. The fixed
parameters assumed when we are investigating backwards
tracing are detailed in table 3. Our assumed scenarios of lock-
down relaxations are detailed in table 4, and the resulting
reduction in social contacts stratified by household size are
described in table 5.
(c) Simulated scenarios
(i) Effects of household structure and contact tracing strategies

and parameters on growth rates
To examine the effects of households on transmission and tracing
dynamics, we first study the relationship between growth rates
and global contact reductions, comparing models with and with-
out household structure. We implement models with no
household structure by giving each household in the model a
size of one. For models with households, we compare the effec-
tiveness of individual-level tracing with household-level tracing,
as described previously.

We estimate the epidemic growth rate by simulating 5000
infected cases to start on day 0 with infectious age 0, which
ensures there are enough infections to remove the probability
that the epidemic goes extinct immediately and for a sufficiently
narrow variability in the growth rate. The epidemic is simulated
for 25 days and log-linear regression is used to estimate the
growth rate during days 10–25. The first 10 days are discarded
as model burn-in, so that visual inspection (electronic supplemen-
tary material, figure S1) suggests enough cases of all infectious
ages and enough within-household epidemics of various duration
have appeared, and for the contact tracing to have been initiated.
We first compare the growth rate from a baseline scenario where
symptomatic cases initiate self-isolation by themselves and their
household members quarantine as described above, but there is
no contact tracing initiated upon self-identification of symptoms.

Using a model with household structure and household-level
tracing, we examine manual tracing, the effects of a hypothetical
tracing app, and two-step tracing across simulations with some
parameters set as described in table 1 and other parameters
varied as described in table 2. We explore the effects of some
households not taking up quarantine or reducing their adherence
over time, and we consider initiating tracing on test results rather
than on symptoms. The resulting variability observed in esti-
mates of the growth rate is due to the stochastic nature of the
simulations and the variability in the parameters, which are
sampled from prior distributions as described in table 2.

(ii) Simulation of extinction times and probabilities with contact
tracing

Using the household-level contact tracing model, we explore the
probability that simulated epidemics beginning with a small
number of initial infections go extinct over a 2-year period
(assuming no additional importations), and the time that it
takes them to do so. Because the level of physical distancing
has a strong effect on the course of the epidemic, we show the
relationship between epidemic end states and extinction times



Table 2. Sensitivity analysis parameters. PHE, Public Health England.

parameter value source
sensitivity analysis
distribution

reduction in global contacts per day

due to physical distancing

0–90% lockdown reduction around

90% [1]

uniform (0.0, 0.9)

probability of untraced case self-

identification

0.1, 0.2, 0.3, 0.4, 0.5 bounded using asymptomatic

infection probabilities

equal probability

testing delay (from identification,

isolation and specimen collection

to test result)

gamma distributed, with mean varied

between 1.5 and 2.5 days, having a

fixed standard deviation of 1.11 days.

(only applies to simulations that require

testing before tracing)

estimates from PHE anonymized

line-list data

mean varied

between 1.5 days

and 2.5 days

tracing delay (from identification and

isolation of infector to effect of

tracing on infectee)

Poisson with mean distributed between

1.5 and 2.5 days

estimates from PHE anonymized

line-list data

Poisson parameter∼
uniform (1.5, 2.5)

probability of contact tracing success

for global contacts (in the absence

of an app)

70–95% based on 95.2% of all identified

contacts successfully traced during UK

containment period

PHE containment period contact

tracing [52]

uniform (70, 95)

proportion of population with a

smartphone and with app

installed

0–50% Singapore’s Trace Together uptake

of approximately 40% (Sept

2020) [54]. Other apps reporting

lower uptake [34].

uniform (0, 0.5)

uptake of quarantine among traced

households

50–100% (only applies to simulations

where non-adherence is allowed)

assumed uniform (0.5,1)

proportion of households that have

the propensity to not adhere to

full quarantine stay

0–50% (only applies to simulations where

non-adherence is allowed)

assumed uniform (0, 0.5)

daily probability to leave isolation or

quarantine early (if household has

the propensity to not adhere to

full quarantine stay)

0–5% (only applies to simulations where

non-adherence is allowed)

assumed uniform (0, 0.05)

Table 3. Model parameters for the simulations where we only vary the
number of days prior to symptom onset are traced.

parameter value

untraced case self-identification probability 30%

contact tracing success probability 80%

mean contact tracing delay 2 days

reduction in global contacts 30%

mean testing delay 1.5 days

Table 4. Assumed lockdown relaxation scenarios. The baseline number of
cases is calibrated to the England lockdown of March–April 2020 [1], and
we consider increasing the number of contacts that occurred.

scenario

effect on different contact types

workplace
contacts

school
contacts

leisure
contacts

A 20% increase 10% resume 0% resume

B 30% increase 25% resume 10% resume

C 30% increase 50% resume 10% resume

D 40% increase 60% resume 30% resume

E 50% increase 100% resume 75% resume
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for 0–90% reductions in global contacts with one starting infec-
tion and with 100 starting infections. If a branching process
model of an epidemic experiences sufficient growth, it will
never go extinct since we assume an infinite population and no
depletion of susceptibles. As a result, simulated epidemics are
stopped once they hit 5000 active infections, as the probability
of extinction is effectively zero at this point and exponential
growth is achieved. Some parameters are fixed as described in
table 1 and others were varied as described in table 2. Addition-
ally, we evaluate the extinction times for scenarios A and E of
physical distancing as described in tables 4 and 5.



Table 5. The global contact reduction relative to POLYMOD for the scenarios
described in table 4. For these scenarios, we apply a reduction in global
contacts that is stratified by household size.

household
size

global contact reduction relative to POLYMOD
(%) in each scenario

A B C D E

1 68.0 63.8 62.8 56.1 41.3

2 83.0 78.6 76.0 69.8 54.4

3 83.0 76.0 68.5 61.0 39.3

4 82.1 73.3 63.2 54.3 27.8

5 84.6 76.5 66.8 58.9 34.8

6 83.6 75.5 66.8 57.7 31.5
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(iii) Backwards contact tracing, with recall decay and digital
contact tracing

The NHS England Test and Trace system uses individual-level
tracing with tracing initiated on test results [55]. To assess the
potential for improving the effectiveness of contact tracing
using backwards tracing, we explore the relationship between
the growth rate and the number of days prior to symptom
onset over which contacts are traced using the individual-level
tracing model, i.e. the model where the household structure
impacts the infection dynamics, but only the contacts of individ-
uals who test positive are traced and the household members of
traced global contact do not quarantine.

We consider individual-level contact tracing with and without
a tracing app, and also consider a decay in contact recall as the
number of days back to trace increases (10% daily decrease in
probability of successfully recalling a contact). If an individual is
identified as infectious, then their household is quarantined. Test-
ing is ordered for the individual, and anyone else in the household
who has had symptom onset. Upon an individual receiving a
positive test result, contact tracing is initiated for contacts that
occurred up to X days prior to symptom onset, and up to
7 days post symptom onset, where X is the number of days
prior to symptom onset over which contacts are traced, a par-
ameter to be varied. We assumed an unvarying set of parameter
values (as shown in table 2) to explore the relationship between
growth rates and the number of days back over which to trace.
(d) Concurrent global contact reductions
While useful to demonstrate the effect of contact tracing in
combination with physical distancing, uniform reductions in
global social contacts is not inherently an interpretable scenario;
the assumption that all households will perform physical distan-
cing equally is expected to be violated in practice. As such, we
consider scenarios of different assumed lockdown relaxations
by conditioning the reduction in global contacts upon household
size, relative to the mean number of global contacts by household
size that was estimated in the POLYMOD survey [5]. The lock-
down scenario was parametrized using population contact
survey data (CoMix) from the lockdown period from end
March to end April 2020 [1].

The UK government’s plan to relax lockdown consisted of
three stages [56], starting with an increase in exercise allowed
per day, followed by a phased return of children to schools and
opening non-essential retail, followed by places of worship,
leisure facilities and hospitality. We loosely based our assumed
relaxation scenarios around this plan (tables 4 and 5), though
do not model household composition explicitly (table 6).

We ran 100 simulations for each relaxation scenario, varying
all strategies and parameters across their priors. Adherence and
uptake of quarantine is assumed to be perfect, and testing is
not required for contact tracing to be initiated. The resulting dis-
tribution of the growth rates can be seen in figure 6 and the end
states of the simulations are described in table 8.
5. Results
(a) Effects of household structure and tracing

on growth rates
In models with household structure (figure 4b,c), the decline
in growth rates associated with higher global contact
reductions was less steep compared to epidemics with no
household structure (figure 4a). A reduction in global con-
tacts is a smaller proportion of total contacts when
household structure is modelled explicitly, because there are
no local contacts when there is no household structure. To
achieve a growth rate of zero, a higher percentage global con-
tact reduction is required in models that include household
structure (approx. 70%, no tracing) compared to those that
do not (approx. 65%, no tracing).

Therewas a greater variability in the outcomes of epidemics
from models with household structure (figure 4b,c) compared
to the model with no household structure (figure 4a), but the
potential gains in controlling the epidemics were greater
when household-level tracing was used, for the same range
of parameter values (figure 4b). The effect of tracing
on growth rates was more sensitive to the untraced case self-
identification probability in the model with household
structure and tracing (0.0110 compared to −7.79 × 10−3 for a
0.1 increase in the untraced case self-identification probability).
However, when considering a model with household structure
but individual-level tracing (figure 4c), the effects of contact
tracing on the growth rate appeared lower (an approximate
0.02 reduction in the growth rate per day compared to
epidemics without tracing).
(b) Growth rates for a range of household-level contact
tracing strategies

In a baseline case where individuals with symptoms and
their household members quarantine as per UK policy, but
there is no contact tracing, the unconstrained growth rate
drops below 0 when there is approximately at least a 70%
reduction in global contact rates (figure 5). Household-level
contact tracing initiated on symptoms report, varying par-
ameter values as described in table 2 (including two-step
tracing, unlike in the household comparison simulations
above), reduced the growth rate of simulated epidemics by
approximately 0.05 d−1 compared to baseline across the
range of global contact reductions. This controlled the epi-
demic at global contact reductions of less than 50% for
some, but not all, simulated epidemics.

For each 1 day increase in mean testing delay, the growth
rate was associated with an increase of 0.0138 (95% CI 0.009–
0.018, table 7) when the mean testing delay was varied across
the range of 1.5–2.5. This represents a substantial decrease in
contact tracing efficacy as testing delays increase.



Table 6. Regression coefficients for the effect of contact reductions and contact tracing parameters on growth rates across models with and without household
structure and with individual- and household-level contact tracing. We performed 100 simulations for each model, with 5000 starting infections and estimated the
growth rates using days 10–25 of the simulation. There is no interpretation of the intercept because we do not simulate scenarios where there is no contact tracing.

parameter
without household structure,
test before trace

with household
structure, test before
trace, household-level
tracing

with household structure, test
before trace, individual-level tracing

intercept (instantaneous growth rate) 0.240

(0.220, 0.260)

0.240

(0.224, 0.256)

0.235

(0.220, 0.251)

reduction in global contacts (per 10%

reduction in global contacts)

−0.0212
(−0.0310, −0.0114)

−0.0132
(−0.0211,
−5.35 × 10−3)

−0.0151
(−0.0238, −0.0635)

(reduction in global contacts)2

(per 10% reduction in global

contacts)

−4.02 × 10−3

(−8.47 × 10−4, 4.37 × 10−4)

−5.45 × 10−3

(−9.17 × 10−3,

−1.72 × 10−3)

−3.56 × 10−3

(−7.32 × 10−5, 1.90 × 10−4)

(reduction in global contacts)3

(per 10% reduction in global

contacts)

7.56 × 10−4

(1.15 × 10−5, 1.50 × 10−3)

8.36 × 10−4

(2.02 × 10−4,

1.47 × 10−3)

4.57 × 10−4

(−1.53 × 10−4, 1.06 × 10−3)

(reduction in global contacts)4

(per 10% reduction in global

contacts)

−7.41 × 10−5

(−1.15 × 10−4,

−3.32 × 10−5)

−5.98 × 10−5

(−9.50 × 10−5,

−2.45 × 10−5)

−3.87 × 10−5

(−7.15 × 10−5, −5.78 × 10−6)

(probability of having the tracing app)2

(per 0.1 increase in probability)

−4.08 × 10−4

(−5.66 × 10−4,

−2.49 × 10−4)

−1.23 × 10−4

(−2.70 × 10−4,

2.36 × 10−5)

1.72 × 10−5

(−1.18 × 10−4, 1.52 × 10−4)

probability that a contact made is

successfully traced

(per 0.1 increase in probability)

−5.43 × 10−3

(−7.27 × 10−3,

−3.59 × 10−3)

−5.35 × 10−3

(−7.00 × 10−3,

−3.70 × 10−3)

−2.43 × 10−3

(−3.82 × 10−3, −1.05 × 10−3)

mean contact tracing delay

(per day)

0.0101

(5.67 × 10−3, 0.0145)

5.49 × 10−3

(1.38 × 10−3,

9.59 × 10−3)

1.40 × 10−3

(−1.97 × 10−3, 4.77 × 10−3)

mean testing delay

(per day)

9.42 × 10−3

(5.01 × 10−3, 0.013)

9.71 × 10−3

(6.10 × 10−3, 0.0133)

5.98 × 10−3

(2.38 × 10−3, 9.58 × 10−3)

untraced case identification probability

(per 0.1 increase in probability)

−7.79 × 10−3

(−8.72 × 10−3,

−6.87 × 10−3)

−0.0110
(−0.0118, −0.0103)

−9.09 × 10−3

(−9.84 × 10−3, −8.33 × 10−3)
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After global contact reductions, the parameter with the
greatest effect on epidemic growth across scenarios was the
probability that infections are identified in the absence of con-
tact tracing (table 7). This is perhaps unsurprising since all
other tracing parameters depend on this.

Two-step tracing at the level of households had a greater
effect when tracing was initiated on a positive test result
rather than on symptoms (table 7). Fundamentally, two-
step tracing is a strategy that improves the speed of the
contact tracing process by tracing contacts of contacts of
an infected case, as opposed to waiting until a one-step
generation contact develops symptoms and tests positive.
As such, the improvement from two-step tracing is greater
when it is used to offset the slowdown caused by testing
every individual before propagating contact tracing. We
assume that it does not affect the probability that a contact
is successfully traced, though if a model of recall is con-
sidered there can be interactions with the probability a
contact is recalled, since first generation contacts would be
asked to recall their contacts earlier. No appreciable effect
of two-step tracing was observed in the model including
non-uptake and waning adherence to isolation and quaran-
tine: its slight gains appear to have been eroded by the
non-adherence effects. In particular, adverse effects might
occur in the model when adherence to quarantine decreases
over time: the two-step contact tracing strategy would
result in individuals being quarantined earlier, so when
individuals start non-adhering to quarantine, they may
have just reached the most infectious part of their infectious
period, with an overall potentially detrimental effect of
the strategy. In general, though, non-uptake of isolation or
quarantine was associated with higher growth rates;
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Figure 4. The effect of contact tracing on growth rates of simulated epi-
demics with and without household structure and by individual-level or
household-level tracing strategy. (a) No household structure. (b) With house-
hold structure, household-level tracing. (c) With household structure,
individual-based tracing. All scenario required a positive test result to initiate
tracing. Negative values on the doubling time axis imply a halving time and
a declining epidemic for these values. The growth rate without contact tra-
cing was derived by simulation of the branching process without contact
tracing. (Online version in colour.)
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Figure 5. The effect of household-level contact tracing on growth rates of
simulated epidemics: tracing initiation and adherence. (a) Tracing initiated
without waiting for a test result (initiated on symptom report for untraced
cases, symptom onset for traced cases). (b) Positive test result required to
initiate tracing. (c) Tracing initiated without waiting for a test result (initiated
on symptom report for untraced cases), imperfect adherence to quarantine.
For all simulations, household-level contact tracing was used. Two-step tra-
cing was performed at the household level for 50% of simulations.
Negative values on the doubling time axis imply a halving time and a declin-
ing epidemic for these values. The growth rate without contact tracing was
derived by simulation of the branching process without contact tracing.
(Online version in colour.)
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however, a waning effect on adherence to isolation or
quarantining (i.e. leaving early) was not.

The tracing delay was less important when considering
tracing on test results rather than on symptoms and when
considering non-uptake and non-adherence to quarantine
(table 7). The tracing delay occurs relatively late in the trans-
mission process, after the time until case identification, the
fact that not all cases are identifiable (e.g. asymptomatic)
and the testing delay, so the relative gains or losses that can
be seen at this stage in the process are more limited.
(c) Backwards contact tracing and recall
We consider the role that implementing backwards tracing
might play in improving the effectiveness of England’s Test
and Trace policy, by varying the number of days prior to
symptom onset over which to trace contacts.

We find that increasing the number of days prior to symp-
tom onset over which contact tracing is performed improves



Table 7. Regression coefficients for the effect of contact reductions and contact tracing parameters and strategies on growth rates across models with household
structure, household-level tracing and different tracing strategies. Some parameters were fixed as described in table 1 and other parameters were varied as
described in table 2. We performed 100 simulations for each model, with 5000 starting infections and estimated the growth rates using days 10–25 of the
simulation. Note that the intercept has no interpretation because we do not simulate scenarios with no contact tracing here.

parameter
initiating tracing on
symptoms report initiating tracing on test result

initiating tracing on symptoms
report, imperfect adherence

intercept

(instantaneous growth rate)

0.289

(0.270, 0.308)

0.220

(0.193, 0.247)

0.3311

(0.310, 0.352)

two-step tracing at the household level

(if implemented, compared to not

implemented)

−6.70 × 10−3

(−9.25 × 10−3,

−4.16 × 10−3)

−0.0106
(−0.0134, −7.78 × 10−3)

−6.93 × 10−4

(−3.78 × 10−3, 2.39 × 10−3)

reduction in global contacts

(per 10% reduction in contacts)

−0.0214
(−0.0324, −0.0104)

1.95 × 10−3

(−0.0146, 0.0185)
−0.0227
(−0.0344, −0.0109)

(reduction in global contacts)2

(per 10% reduction in contacts)

−2.33 × 10−3

(−7.29 × 10−3,

2.63 × 10−3)

−0.0103
(−0.0170, −3.62 × 10−3)

−2.33 × 10−3

(−7.59 × 10−3, 2.94 × 10−3)

(reduction in global contacts)3

(per 10% reduction in contacts)

4.42 × 10−4

(−3.90 × 10−4,

1.27 × 10−3)

1.51 × 10−3

(4.73 × 10−4, 2.55 × 10−3)

5.29 × 10−4

(−3.46 × 10−4, 1.40 × 10−3)

(reduction in global contacts)4

(per 10% reduction in contacts)

−4.08 × 10−5

(−8.72 × 10−5,

5.63 × 10−6)

−9.36 × 10−5

(−1.48 × 10−4, −3.91 × 10−5)

−5.11 × 10−5

(−9.92 × 10−5, −2.91 × 10−6)

(probability of having the tracing app)2

(per 0.1 increase in probability)

−3.63 × 10−4

(−5.30 × 10−4,

−1.96 × 10−4)

−2.78 × 10−4

(−4.70 × 10−4, −8.79 × 10−5)

−1.26 × 10−4

(−3.55 × 10−4, 1.02 × 10−4)

probability that a contact made is

successfully traced

(per 0.1 increase in probability)

−0.0106
(−0.0122,
−8.98 × 10−3)

−5.05 × 10−3

(−0.705 × 10−3, −3.05 × 10−3)

−5.92 × 10−3

(−8.09 × 10−4, −3.75 × 10−4)

mean contact tracing delay

(per day)

0.0152

(0.011, 0.019)

0.0104

(5.46 × 10−3, 1.53 × 10−2)

6.66 × 10−3

(1.53 × 10−3, 0.0118)

untraced case self-identification

probability

(per 0.1 increase in probability

−0.0227
(−0.0275, −0.0178)

−0.0205
(−0.0255, −0.0155)

−7.29 × 10−3

(−0.0130, −1.56 × 10−3)

(untraced case self-identification

probability)2

(per 0.1 increase in probability)

9.35 × 10−4

(1.63 × 10−4,

1.71 × 10−3)

1.30 × 10−3

(4.81 × 10−4, 2.12 × 10−3)

1.04 × 10−4

(−8.49 × 10−4, 1.06 × 10−3)

mean testing delay

(per day)

n.a. 0.0138

(9.17 × 10−3, 0.0184)

n.a.

probability a household will take up

isolation (per 0.1 increase in

probability)

n.a. n.a. −9.76 × 10−3

(−0.0109, −8.61 × 10−3)
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the efficacy in reducing epidemic growth rate (figure 6a),
especially when app uptake is high (50%, figure 6c) resulting
in more digital contact tracing which has no contact tracing
delay and more contacts successfully traced. There is a
linear decrease in the growth rate up until around 8–10
days, after which no more gains appear achievable.

However, identified cases might struggle to remember
contacts they have had back in the past. We find that
including a daily 10% reduction in the probability of
recalling a contact in the model erodes the gains of backwards
contact tracing almost completely, such that there is little
difference in the growth rate of the epidemic according to
the number of days pre-symptom onset a case’s contacts are
traced (figure 6b). For the index case in a contact tracing
chain to have occurred, the index case must have had symp-
tom onset, followed by a symptom reporting delay and a
possible testing delay before the backwards tracing attempt
to the infector is initiated, a combination that would have
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Figure 6. Backwards tracing: effects on growth rates of increasing the days
prior to symptom onset over which tracing is performed. (a) No recall decay
and no digital contact tracing app. (b) Recall probability decaying at 10%
each day and no digital contact tracing app. (c) No recall probability decay
and 50% uptake of the digital contact tracing app. (Online version in colour.)
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Figure 7. Distributions of epidemic growth rates under the different lock-
down relaxation scenarios. Scenarios are as described in tables 4 and 5,
with scenario A on one extreme representing a small increase in school
and workplace contacts, and scenario E on the other extreme representing
a larger increase in work contacts, as well as resumption of school contacts
and resumption of most leisure contacts. Negative values on the doubling
time axis imply a halving time. (Online version in colour.)
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already led to significant decay in the ability to recall. A
further contact tracing delay would ensue until the infector
is reached, who would then have to recall the other contacts
that they made at around the time they contacted the index
case. As a result, the recall decay significantly impacts the
probability that backwards and then forward tracing is suc-
cessful. In general, however, the overall reduction on the
growth rate of the epidemic appears limited.
(d) Lockdown exit scenarios
In figure 7, we plot the observed distribution of the growth
rates under the assumed scenarios described in tables 4 and
5. With household-level contact tracing and global contact
patterns analogous to scenarios A and B, i.e. with small
increases in school and workplace contacts for both and an
additional 10% increase in leisure contacts for B, the growth
rate for all simulations remained below zero. However, for
scenarios C and D, the results for positive or negative
growth were mixed, with nearly all simulated epidemics
with contact levels analogous to scenario E finding positive
growth of the epidemic.
(e) Extinction times
We simulated epidemics for a duration of 2 years (730 days)
to estimate the proportion of epidemics that go extinct, and
the time taken to do so, varying contact tracing parameters
as in table 2.

We define several possible end states for an epidemic;
‘Never grew’, where the first generation produces no off-
spring; ‘Grew exponentially’, where we stop the simulation
once 5000 active infections is reached, as at this point we
assume the probability of extinction is zero due to the size
of the epidemic; ‘Timed out’, where we stop simulating epi-
demics that were not extinct after 2 years nor hit 5000
active infections; and finally ‘Went extinct’, where the first
generation produces some offspring, but the number of
active infections then drops to zero and no more infection
events occur. Which end state occurs depends strongly on
the global contact reductions (figure 8). For a single infection,
approximately half of epidemics go extinct if the global con-
tact reduction is at least 50%. For 100 starting infections
approximately half of simulated epidemics go extinct at a
contact reduction of approximately 65%, with variation in
the end states occurring between 50 and 70%. That is,
below a 50% global contact reduction, contact tracing
and quarantine does not bring the epidemic under control,
in line with what was already discussed in terms of growth
rates (figure 5a). Above the 50–70% range, the mean and
variance in extinction times reduces as all epidemics rapidly
go extinct.
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Table 8. End states of simulated epidemics with a single initial case for assumed scenarios of physical distancing relaxation. Scenarios are as described in tables
4 and 5, with scenario A on one extreme representing a small increase in school and workplace contacts, and scenario E on the other representing a larger
increase in work contacts, as well as resumption of school contacts and resumption of most leisure contacts.

scenario
% epidemics that did not
reproduce

% epidemics that went
extinct

% epidemics that grew
exponentially

% epidemics that
timed out

A 45.8 54.2 0 0

B 39.8 60.2 0 0

C 35.3 64.0 0.3 0.4

D 30.4 61.6 7.8 0.2

E 20.6 36.1 43.3 0
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Considering lockdown exit scenarios linked to increases
in work, school and leisure contacts, from scenario A to E
described in tables 4 and 5, we found that the likelihood of
an initial infection causing secondary infections increased
(table 8), and that once this occurred, there were more epi-
demics that could not be controlled. Among epidemics that
were controlled, there were more simulated epidemics
which took longer to go extinct in scenario E compared to
A (figure 9), though even in scenario A interventions clearly
need to be kept in place for a long time (even ignoring the
chances of external introduction).

When we considered epidemics with no physical distan-
cing, the probability of epidemic extinction arising from a
single initial infected individual was much lower, even
given contact tracing with 100% adherence to quarantine
(not shown here).
6. Discussion
We find that implementing a contact tracing, isolation and
quarantine policy could contribute to controlling the SARS-
CoV-2 epidemic if lockdown levels of physical distancing are
partially relaxed, but not if they are relaxed completely. In
our household-structured branching process model, none of
our strategies to improve contact tracing would prevent the
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Figure 9. Extinction times of simulated epidemics started with a single infec-
tion that reproduced at least once for the two extreme scenarios of social
distancing relaxation described in tables 4 and 5. Scenario A represents a
small increase in school and workplace contacts, and scenario E represents
a larger increase in work contacts, as well as resumption of school contacts
and resumption of most leisure contacts. All other parameters vary as
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re-emergence of epidemic growth once global contacts relative
to pre-pandemic times are reduced by less than approximately
40%. In our simulations, we find that the probability that an
untraced case is identified is one of the most important par-
ameters for contact tracing and quarantine effectiveness. We
have explored strategies that could be used to make contact
tracing more effective. Notably, household-level tracing was
more effective in reducing the growth rate of epidemics than
individual-level tracing, though this and other strategies
need to be considered in terms of the increased number of
individuals whowould need to be traced and go into isolation.
The extinction times of some simulated epidemics, even with
very small starting numbers of infections, could be poten-
tially very long, which underlines the need to account for
sustainability of interventions over long periods of time,
particularly if local SARS-CoV-2 elimination is deemed a
goal. Consideration should be given to our findings that
effectiveness gains could be eroded when the population is
effectively unable or unwilling to take up isolation and quar-
antine, and by implementation challenges, such as contact
recall difficulties in the case of backwards tracing.

Countries that have suppressed the number of SARS-CoV-
2 cases have done so with a combination of policies, including
different types of contact tracing and varied levels of suggested
and enforced physical distancing policies. Our findings that
contact tracing, isolation and quarantine are unlikely to be
effective on their own in suppressing the SARS-CoV-2 epi-
demic are consistent with those of other models [23,28,57].
The contribution of contact tracing and isolation in our
model was most significant when global contacts were
reduced to 40–70% of their pre-pandemic levels, above
which growth was not suppressed and below which very
few epidemics took off (contingent on the transmission par-
ameters we assumed). Further evidence on the
transmissibility among different groups, types of contacts
and in different settings will allow a more nuanced interpret-
ation of which physical distancing policies are most
important to retain.
After the global contact rate, the probability that a case is
identified was the next most important model parameter to the
effectiveness of contact tracing, isolation and quarantine. In our
model, this parameter reflects a combination of biological factors
(e.g. proportion of asymptomatic and subclinical infections), test-
ing policies (who is tested and when in their infection), and test
characteristics (sensitivity and specificity). Estimating the pro-
portion of cases who are identified overall is challenging;
studies in other European countries indicate that the overall pro-
portion of cases who are identified was low at time of writing
(20% in Spain, 10% in France after their first lockdown of 2020
[58,59], though widespread testing in the second half of 2020
has possibly increased these proportions). Our findings suggest
that evenwith a contact tracing, isolation and quarantine system
in place, additional case identification methods would be ben-
eficial, for instance frequent screening of high-risk groups. This
is analogous to the approaches taken for the control of sexually
transmitted infections, which uses both screening of high-trans-
mission risk groups and tracing (partner notification), but
requires an understanding of the links between ‘high’ and
‘low’ risk individuals and how their definition changes over
the course of the epidemic [60].

Once the number of global contacts and the proportion of
cases discovered are in a range in which contact tracing, iso-
lation and quarantine could hypothetically control the
epidemic, the speed of the process relative to the speed of
transmission—fast in the case of SARS-CoV-2—is important.
Strategies to either minimize or eliminate delays, including
symptom-initiated tracing rather than waiting for test results
and digital contact tracing were more effective in suppressing
epidemic growth compared to manual tracing (at least under
the assumption of high app uptake, in line with what others
have found [53]). Other strategies to ‘get ahead’ of trans-
mission, including earlier isolation of contacts via two-step
contact tracing and isolation or concurrently isolating a con-
tact’s whole household, also reduced growth rates but less
significantly so. Backwards tracing improved effectiveness
up to tracing 8–10 days prior to symptom onset assuming
no change in the probability of successfully tracing contacts,
after which presumably the time delay incurred before tra-
cing ‘forwards’ again on previously missed transmission
branches becomes too long to ‘catch-up’.

However, for each of the strategies that could theoretically
improve the effectiveness of contact tracing, there are
implementation challenges that could erode their effective-
ness. When considering a possible decrease in successfully
tracing contacts back in time to enable backwards tracing,
we found that a plausible ‘worst case’ assumption in declin-
ing recall of contacts could almost cancel out any gains made.
Many outbreaks occur in settings with specific environmental
conditions, so implementing backwards tracing by asking
individuals where they have been, instead of who they met,
could help facilitate the discovery of clusters of infections.

If uptake of isolation policies is less than 100% and if
adherence to isolation wanes over the period of isolation,
during which time household transmission could continue,
we found that effectiveness in suppressing epidemic growth
degraded. Monitoring of adherence and policies to enable
and support people to take up and adhere to testing, tracing
and isolation are crucial.

Finally, in our analysis, the time it would theoretically
take to eliminate SARS-CoV-2 could be in the order of
months or years given slight relaxations of lockdown. These
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long theoretical extinction time estimates assume no further
importation of cases into the population, which is not likely
in practice, suggesting that control policies would be required
over a long timeframe.
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200267
(a) Strengths and limitations
One of the key elements that set our model apart from most
other published studies of contact tracing is the explicit pres-
ence of the household structure, which enables more realistic
transmission dynamics and explicit modelling of household
quarantines and isolation and the strategic options these
create. Interactions between physical distancing and house-
hold structure are important to consider—a 90% reduction in
global contacts does not necessarily correspond to a 90%
reduction in transmission, as within-household epidemics
will continue to spread. However, we have not explicitly mod-
elled increased levels of local transmission following high
levels of global contact reductions causing individuals to
spend more time at home, because an increase in the number
of local contacts was not observed in a population survey
after the first lockdown [1]. We found that models that do
not include the household structure explicitly risk underesti-
mating the potential impact of an individual-level tracing
strategy, nor are they able to model household-level contact
tracing strategies, which prove to be more effective when
used in a real population with households. However, we do
not include other important clustering in our model that
would connect households, such as workplaces or schools,
which are important to consider as children return to school
andmoreworkers are encouraged to stopworking fromhome.

The branching process structure of our model means that
we cannot account for global susceptible depletion, though
local within-household susceptible depletion is accounted
for. For example, most individuals likely repeat the same
global contacts each day resulting in a finite pool of individ-
uals they could infect, such as office workers who repeat
contacts with their colleagues each day [61]. If the pool of
individuals a case could infect is very small, which we
might expect during lockdown, then it is possible the
model is overestimating the number of secondary infections
from a case since it does not allow for the depletion of the
pool of susceptibles contacted outside the household. This
would result in the model overestimating the growth rate at
high levels of physical distancing, and possibly underestimat-
ing the extinction probability. At low levels of physical
distancing, where outside-household contact pools are pre-
sumably larger, this is less likely to be a concern.

As the pandemic continues, modelling a level of immu-
nity in the population will be required. In the UK, the ONS
has estimated seroprevalence from antibody testing on
blood donors at approximately 6% in England (as of 23
August 2020), with regional variations [19]. It is also not
yet clear how durable the immune response to a repeat
exposure is, and how this might vary by severity of the initial
infection and other factors. Levels of immunity will continue
to be heterogenous by region and sociodemographic factors,
which need to be accounted for. A relatively simple model
extension could be employed to account for infection-
acquired immunity: as we expect larger households to be
depleted fastest, given the more members of a household
there are, the greater the rate of importing the infection into
that household, one could simply approximate the exact
epidemic process by shifting the size distribution of newly
infected households towards lower values, based on total
numbers of households of each size in the simulated regions
and counting for those household that have already been
infected. This may result in strategies that are designed to
take advantage of the influence of larger households on
both transmission and contact tracing, such as household-
level contact tracing, decrease in effectiveness over time as
the infection gradually shifts from larger to smaller house-
holds. However, an explicit network structure or an agent-
based model would be needed to correctly account for mul-
tiple introductions on SARS-CoV-2 in the same households.

When considering high levels of immunity, contact net-
work effects would further come into play at the individual
level, as elements of the population who make a large
number of contacts on a regular basis will have an increased
likelihood of immunity. Our model is currently limited to
households, but other settings such as schools and work-
places should be considered. We have not explicitly
modelled ‘support bubbles’, whereby households of single
individuals have been allowed to function as one larger
household under physical distancing restrictions. Individ-
ual-level heterogeneities, such as age, specific vulnerabilities
to severe infection or characteristics associated with increased
exposure and transmission, and the relationship to household
structure were not included in the model. An underlying
assumption of our model is homogenous mixing between
households, as such network effects are not included in this
model, meaning we could be underestimating the effective-
ness of contact tracing, which preferentially removes
individuals with many contacts (those with ‘high degree’)
[11], though this might be subject to other epidemic
characteristics and contact tracing performance [36,53,62].

Relatedly, we do not explicitly model the ‘costs’ to differ-
ent contact tracing, isolation and quarantine strategies and
choices, including the number of people required to isolate
per identified case. This will vary according to contact pat-
terns in the population at a given point in time, and the
impact on individuals and society, for instance, via the iso-
lation of key workers, will also vary. The risk of digital
tracing of identifying a large number of non-epidemiologi-
cally relevant contacts is another potential problem to
consider. Previous studies of quarantine orders vary widely
in their findings as to adherence patterns over time [25]. We
also do not model indirect benefits to reducing transmission
that contact tracing could bring, such as improved surveil-
lance and understanding of transmission patterns that
could enable better timed and targeted interventions.

We conclude that while there are strategies to improve the
effectiveness of contact tracing, isolation and quarantine on
epidemic growth, contact tracing as modelled here will not
be effective in suppressing epidemic growth on its own,
given current understanding about transmissibility of the
virus, without continued reductions in out-of-household con-
tacts. To be effective, contact tracing, isolation and quarantine
need to be performed with minimal delays and a high degree
of accuracy. Further, it is important to consider support to
uptake and adherence to policies, and to better understand
potential trade-offs between strategies that reduce epidemic
growth but which might have a negative effect upon adher-
ence, such as digital tracing. Thought needs to be paid to
practical implementations in order to gain the theoretical
effect. It is likely that, as more is understood about
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transmission settings, dynamics and testing, contact tracing,
isolation and quarantine can continue to be refined and will
remain an important part of a targeted approach to the
control of SARS-CoV-2, as well as of future infections.
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200267
7. In context
This model and further development of it have been used to
inform the design and expectations of the effectiveness of
Test, Trace and Isolate (TTI) policies. The authors have been
reporting on this topic to the Scientific Pandemic Influenza
Group on Modelling (SPI-M) and the Scientific Advisory
Group for Emergencies (SAGE) from the beginning of May
2020 until the present time (March 2021), and will continue
throughout the rest of the pandemic. During the first UK
national lockdown (March–May 2020) falling SARS-CoV-2
death, hospitalisation and case numbers were the result of
strict physical distancing policies and, once these policies
were eased, the expectation was that prevalence would rise
again. There was a need to assess the potential effectiveness
of various contact tracing strategies on controlling epidemic
growth while physical distancing measures were gradually
relaxed, and to assess optimal implementation choices.

Early modelling analyses had found that contact tracing
would very likely struggle to control epidemic growth of
SARS-CoV-2 on its own and would need to be implemented
alongside other physical distancing measures [9,57]. The com-
monly used ‘forwards’ contact tracing strategy aims to find
and quarantine exposed contacts of a confirmed or probable
case before they have had an opportunity to transmit. However,
for SARS-CoV-2 the significant proportion of pre-symptomatic
and asymptomatic transmission makes this very challenging.
It was therefore important to assess potential modifications to
the process that could improve the effectiveness.

The model we use in the analyses presented here was
developed from January 2020 onwards, with a focus upon
household structure, and the interaction between household
structure and contact tracing. Households play an important
role in the transmission of respiratory infections given the
close and repeated nature of contacts within them. However,
household structure should also increase the efficiency of
contact tracing, given that the tracing of household contacts
is expected to be easier when compared to out-of-household
contacts, resulting in the rapid quarantine of a whole house-
hold when a case is discovered. Further, the explicit
implementation of household structure allows us to assess
the utility of strategies that take advantage of the household
structure to benefit the contact tracing process—the ‘house-
hold-level’ contact tracing strategy we refer to in the article,
which treats household as the units of contact tracing, as
opposed to individuals. In analyses sent to SPI-M in early
May 2020, we assessed the effects on epidemic growth of
relaxing restrictions on out-of-household contacts broadly in
alignment with assumed lockdown easing scenarios, and
the probabilities and timescales with which household-level
contact tracing, in combination with remaining physical dis-
tancing policies, would reduce the epidemic to extinction in
the absence of additional importations. The latter investi-
gations on epidemic extinction were not a full investigation
into the eradication or elimination prospects of SARS-
CoV-2, as these depend on other factors such as importation,
but were intended to bring broad insight to perceptions of the
period of time over which restrictions would need to be in
place. At the same time, we explored the possible effects of
a range of potential strategies to improve the potential effec-
tiveness of TTI including initiation of tracing on symptoms,
‘two-step’ tracing and quarantining of contacts-of-contacts,
and a hypothetical contact tracing app.

At the end of May 2020, the structure and policies of NHS
Test and Trace were announced and we modified our model
to reflect such information. The approach did not include
household-level tracing and required a positive test in order
to initiate tracing, rather than tracing on symptoms alone.
As modelled, the existing policy should have a reduced effec-
tiveness compared to household-level tracing or symptom-
initiated tracing. These strategies could potentially be more
effective at reducing epidemic growth, but at the cost of an
increase in the number of individuals who have to quarantine
[30]—a quantity that our model is less well-suited to measure
given the lack of non-infected individuals. Once adapted to
the UK policy, we used our model to assess the effectiveness
of a ‘backwards tracing’ strategy, which aims to identify a
case’s infector and allows for the identification of more
branches of transmission when compared to forwards tra-
cing. We, and other groups [35,36], found that in theory it
could improve contact tracing, but also that implementation
challenges could reduce this effect. Ultimately, the NHS
Test and Trace programme in England continued to use for-
wards tracing for standard cases not associated with a
particular list of high-risk settings.

The publication in this issue includes analyses up until
August 2020. Since then, the model has been used to investi-
gate and report via SPI-M/SAGE a range of other TTI policy
choices including: out-of-household isolation of cases or
quarantine of vulnerable household members; trade-offs
between lengths of quarantine and uptake/adherence to
symptomatic testing and quarantine, in recognition of chal-
lenges in uptake and adherence to policies as implemented
(along with another contact tracing model described here
[63]); and the implications for TTI effectiveness of limited
testing capacity, an analysis that clarified the need to main-
tain testing capacity where prevalence is still low to avoid
local epidemics spiralling out of hand precisely where contact
tracing is more likely to succeed at achieving control. More
recent work involves investigations into daily contact testing
using lateral flow tests in lieu of quarantine [64], testing and
quarantining strategies of travellers returning to households
from abroad [65], and potential changes to the symptom
criteria required for PCR-testing.

Our investigations have highlighted the importance of
interdisciplinary collaboration with behavioural and social
scientists, and our work has fed into interdisciplinary reports
[66]. As indicated in this paper, the extent towhich symptomatic
testing is takenup in the presence of symptoms and the extent to
which individuals are enabled to adhere to isolation and quar-
antine measures are critical; subsequent behavioural research
[67–69] has been widely varying, but often indicative of low
adherence to policies. Throughout the pandemic, it has been
clear that support and communication for members of the
public to get tested, self-isolate and quarantine is extremely
important, as these are the foundations of a successful contact
tracing-based public health response.

The underlying mathematical assumptions of the model
do not allow for the modelling of immunity in a population,
both infection- and vaccine-acquired, and this has lately



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.So

18

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

ul
y 

20
21

 

motivated moving onto other model structures. Overall, the
model has proven a useful and flexible tool to provide
rapid responses to emerging policy questions, while retaining
the important aspects and complexity induced by household
structure. We are continuing to develop the code for release
as a fully featured Python library, for use in rapid response
to future epidemics.

Data accessibility. The datasets/code generated during and/or analysed
during the current study are available in the HouseholdContactTracing
repository https://github.com/martyn1fyles/HouseholdContactTra-
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and we are unable to share these data.
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