
Journal Pre-proof

Addressing the global snakebite crisis with geo-spatial analyses – Recent advances
and future direction

Anna FV. Pintor, Nicolas Ray, Joshua Longbottom, Carlos A. Bravo-Vega, Masoud
Yousefi, Kris A. Murray, Dileepa S. Ediriweera, Peter J. Diggle

PII: S2590-1710(21)00012-6

DOI: https://doi.org/10.1016/j.toxcx.2021.100076

Reference: TOXCX 100076

To appear in: Toxicon X

Received Date: 29 April 2021

Revised Date: 13 July 2021

Accepted Date: 14 July 2021

Please cite this article as: Pintor, A.F., Ray, N., Longbottom, J., Bravo-Vega, C.A., Yousefi, M.,
Murray, K.A., Ediriweera, D.S., Diggle, P.J., Addressing the global snakebite crisis with geo-spatial
analyses – Recent advances and future direction, Toxicon X (2021), doi: https://doi.org/10.1016/
j.toxcx.2021.100076.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.toxcx.2021.100076
https://doi.org/10.1016/j.toxcx.2021.100076
https://doi.org/10.1016/j.toxcx.2021.100076


Anna FV Pintor: Conceptualization, Writing - Original Draft, Writing - Review & Editing, 

Visualization, Methodology. Nicolas Ray: Writing - Original Draft, Writing - Review & Editing, 

Methodology. Joshua Longbottom: Writing - Review & Editing, Methodology. Carlos A Bravo-

Vega: Writing - Original Draft, Writing - Review & Editing, Methodology. Masoud Yousef: 

Writing- Reviewing and Editing, Methodology. Kris A Murray: Writing- Reviewing and Editing, 

Methodology. Dileepa S Ediriweera: Writing- Reviewing and Editing, Visualization, Methodology. 

Peter J Diggle: Writing- Reviewing and Editing, Methodology. 

 

Jo
urn

al 
Pre-

pro
of



1 
 

Addressing the global snakebite crisis with geo-spatial analyses – recent 1 

advances and future direction 2 

Anna FV Pintor1, 2,#, Nicolas Ray3,4, Joshua Longbottom5,6, Carlos A Bravo-Vega7, Masoud Yousefi8, 3 

Kris A Murray9,10, Dileepa S Ediriweera11, Peter J Diggle5 4 

1 Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland 5 

2 Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia 6 

3 GeoHealth group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland 7 

4 Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland 8 

5 Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom 9 

6 Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom 10 

7 Research Group in Mathematical and Computational Biology (BIOMAC), Department of biomedical engineering, University of los Andes, 11 

Bogotá, Colombia 12 

8 School of Biology, College of Science, University of Tehran, Iran 13 

9 MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK 14 

10  MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, The Gambia  15 

11 Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka 16 

# corresponding author: email: annafvp@gmail.com; phone: +61 450 452 605; postal address: Australian Institute of Tropical Health and 17 

Medicine, Division of Tropical Health and Medicine , James Cook University, 1/14-88 McGregor Road, Smithfield QLD 4870 AUSTRALIA  18 

Jo
urn

al 
Pre-

pro
of

mailto:annafvp@gmail.com


2 
 

Abstract 19 

Venomous snakebite is a neglected tropical disease that annually leads to hundreds of 20 

thousands of deaths or long-term physical and mental ailments across the developing world. 21 

Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and 22 

accessibility of medical treatment contribute substantially to ineffective on-ground 23 

management. There is an urgent need to collect data, fill knowledge gaps and address on-24 

ground management problems. The use of novel, and transdisciplinary approaches that take 25 

advantage of recent advances in spatio-temporal models, ‘big data’, high performance 26 

computing, and fine-scale spatial information can add value to snakebite management by 27 

strategically improving our understanding and mitigation capacity of snakebite. We review the 28 

background and recent advances on the topic of snakebite related geospatial analyses and 29 

suggest avenues for priority research that will have practical on-ground applications for 30 

snakebite management and mitigation. These include streamlined, targeted data collection on 31 

snake distributions, snakebites, envenomings, venom composition, health infrastructure, and 32 

antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite 33 

risk and incidence, intraspecific venom variation, and environmental change modifying human 34 

exposure. These measures could improve and ‘future-proof’ antivenom production methods, 35 

antivenom distribution and stockpiling systems, and human-wildlife conflict management 36 

practices, while simultaneously feeding into research on venom evolution, snake taxonomy, 37 

ecology, biogeography, and conservation. 38 

Keywords: snakebite incidence, envenomings, neglected tropical diseases, spatio-temporal 39 

epidemiology, medically relevant snakes, species distribution models  40 
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1. Background 41 

Venomous snakebite is recognized as a ‘category A’ neglected tropical disease (NTD) by the 42 

World Health Organization (Longbottom et al., 2018; WHO, 2017; Williams et al., 2010; 43 

Williams et al., 2011) and disproportionately affects agricultural workers, especially young 44 

males in poor rural communities in the developing world (Hansdak et al., 1998 [Nepal]; 45 

Harrison et al., 2009 & Mohapatra et al., 2011 [India]; Yates et al., 2010 [Tanzania]; Dehghani 46 

et al., 2014 [Iran]; Mendonça-da-Silva et al., 2017 [Brazil]; Ediriweera et al., 2019 [Sri Lanka]). 47 

The most heavily affected regions are tropical sub-Saharan Africa, the Indian subcontinent, 48 

South-East Asia, and tropical Latin America (Ediriweera et al., 2019; Kasturiratne et al., 2008). 49 

Estimates of the number of people affected globally vary greatly: between 1.2 and 5.5 million 50 

people are bitten every year, 420,000–2.7 million are envenomed, up to 137,880 die, and a 51 

further ~400,000 suffer from resulting long-term medical conditions (Chippaux, 1998; 52 

Gutiérrez et al., 2017; Kasturiratne et al., 2008; Mion and Olive, 1997). Despite high snakebite 53 

prevalence, substantial knowledge gaps on many components of the issue remain, existing 54 

knowledge is often outdated, and, as shown by large ranges in bite [1.2-5.5 million] and 55 

envenoming [420,000 – 2.7 million] estimates provided above, contemporary burden estimates 56 

lack precision. Knowledge gaps directly stem from: 57 

(i) historical lack of investment into research on medical conditions that primarily 58 

affect the developing world, 59 

(ii) difficulties involved in data collection across remote regions with limited physical 60 

accessibility, unstable political conditions, and lack of reliable reporting systems, 61 

and 62 

(iii) limited access to and affordability of medical treatment, resulting in poor medical 63 

records on the distribution and frequency of snakebite. 64 
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The resulting knowledge gaps have clear spatial components, i.e. to effectively distribute 65 

antivenoms and manage snakebite more generally, we need to understand the geographic 66 

variation of causative processes and their consequences, and identify efficient interventions 67 

from a geographical perspective, in addition to addressing the cultural, and financial problems. 68 

The main knowledge gaps fit into several broad categories:  69 

Sparse & Heterogeneous Data 70 

Firstly, sparse and heterogeneous data on distributions and geographic variation in abundance 71 

of medically relevant snake species (Genevieve et al., 2018; Gutiérrez et al., 2013; Yañez-72 

Arenas et al., 2016), exposure of vulnerable human populations to venomous snakes, snakebite 73 

frequency (Gutiérrez et al., 2010; Longbottom et al., 2018), and community-based 74 

epidemiology (Ediriweera et al., 2016) lead to a lack of knowledge on high risk snakebite areas, 75 

and on adequate prioritization for the improvement of access to antivenom and medical 76 

facilities or preventive intervention campaigns. This lack of data stands in stark contrast with 77 

the potential benefits of using ‘big data’ spatio-temporal modelling approaches to analyze 78 

relevant patterns. Whilst rich distribution datasets exist for some snakes, e.g. in the Americas 79 

and Europe (Nogueira et al., 2019; Sillero et al., 2014), such data is not complete across all 80 

relevant snake species and spatial domains. Additionally, snakebite incidence data are collected 81 

by a variety of methods, ranging from community-based randomized surveys to clinical 82 

presentations, which makes direct comparisons across geographical areas challenging. Lastly, 83 

many aspects of snake biology that could help with predicting the epidemiology of snakebite 84 

(abundance, population dynamics, etc.) are understudied (Murray et al., 2020). 85 

Changing Processes 86 

Secondly, our world is changing rapidly due to climate change (IPCC, 2019; O'Connor et al., 87 

2020; Ortiz et al., 2021; Peace, 2020) and human land use change (Hurtt et al., 2020; Li et al., 88 
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2017; Ortiz et al., 2021). Both processes affect the spatial use of land by humans and snakes, 89 

and consequently their interactions (Ediriweera et al, 2018; Goldstein et al., 2021; Martin et al, 90 

2021, this issue). Predicting how snakebite prevalence and distribution will change is 91 

challenging and requires urgent attention to ensure successful snakebite management. 92 

Antivenom Research 93 

Thirdly, the efficacy of available antivenoms and geographic variation thereof is poorly 94 

characterized. Because of limited quality control and case studies, it is often unclear which 95 

species or populations were used to create each antivenom, how much of the antivenom is 96 

required to effectively treat envenomation by each species, and sometimes even if the 97 

antivenom effectively neutralizes venom of a certain species at all (Chippaux et al., 1991; Fry 98 

et al., 2003; Gutiérrez et al., 2011; Gutiérrez et al., 2010; Saravia et al., 2002; Warrell, 1997; 99 

Williams et al., 2011). These issues are exacerbated by substantial intraspecific venom 100 

variation (Casewell et al., 2020; Casewell et al., 2014; Currier et al., 2010; Daltry et al., 1996; 101 

Pla et al., 2019; Senji Laxme et al., 2021a; Senji Laxme et al., 2021b), and limited knowledge 102 

on the geographic distribution of different intraspecific ‘venom lineages’. 103 

On Ground Measures 104 

Lastly, there is limited financial investment in antivenom improvements, availability of 105 

protective equipment, and access to high quality medical treatment. Victims are often hours 106 

away from medical facilities and cannot afford treatment, and often seek local healers instead 107 

of western medicine (Ediriweera et al., 2017; Newman et al., 1997). Additionally, farmers often 108 

tend to fields barefoot (particularly rice), and dwellings generally offer limited protection from 109 

wildlife (Harrison et al., 2009). These factors highlight the urgent need for stockpiles of free, 110 

high-quality antivenoms in strategic locations along with provision of protective equipment 111 

(WHO, 2019). Encouraging such measures requires accompanying community engagement 112 
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and education campaigns (WHO, 2019), to build community knowledge and appreciation for 113 

the importance of snakebite prevention, adequate first aid, and attendance of approved medical 114 

facilities. 115 

In response to the impact of snakebite on health and economies in the developing world (Habib 116 

and Brown, 2018; Harrison and Gutiérrez, 2016; Kasturiratne et al., 2017; Kasturiratne et al., 117 

2008), WHO has compiled new guidelines for antivenom production and testing (WHO, 2010a, 118 

2018) and plans to stockpile antivenoms at key facilities to alleviate and manage the issue 119 

(WHO, 2019). Such efforts would benefit from filling the above knowledge gaps. 120 

Over the last decade, spatial analytical methods and availability of high resolution, high quality 121 

spatial datasets have increased immensely, along with advancements in ‘big data’ processing 122 

capacities, high resolution satellite imagery, and access to high performance computing 123 

facilities. Many tasks that would have been computationally prohibitive 10 years ago have 124 

become feasible in recent years. While many traditional spatial analytics prove useful for the 125 

analysis of spatial patterns in snakebite epidemiology, more advanced approaches to solving 126 

the World’s problems require revaluation at a frequent rate; snakebite management is a good 127 

example of this. Numerous new approaches to some of the spatial challenges outlined above, 128 

or similar ones in different fields, have been developed and successfully applied to varying 129 

regions of the world. This review aims to provide a transdisciplinary summary of recent 130 

advances in managing the global snakebite crisis from a spatial perspective using novel spatio-131 

temporal modelling and ‘big data’ approaches.  132 

Because the relevant literature and knowledge gaps span a broad range of topics and sub-topics, 133 

we review them in individual sections. First we discuss the sparsity of data on snake 134 

distributions [section 2], and how the typically conservation related field of human-wildlife 135 

conflict can lead to a unique, transdisciplinary scenario akin to, but distinct from traditional 136 
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epidemiology [section 3]. We then elaborate on how an improved understanding of snake 137 

biology [section 4] and spatio-temporal patterns in snakebite incidence [section 5] is needed to 138 

address the global snakebite crises. This is followed by a review of how human populations 139 

become particularly vulnerable to the medical consequences of snakebite and how such 140 

vulnerability can be mitigated by spatial optimization of medical resource allocation [section 141 

6]. The penultimate section [section 7] synthesizes the dynamic nature of snakebite 142 

epidemiology by describing how climate change and land use change need to be incorporated 143 

into analyses to keep mitigation efforts up-to-date. Lastly [section 8], we discuss the geographic 144 

aspects of antivenom distribution and development, which is quite distinct from the previous 145 

sections and ties snake biology and on-ground snakebite management into medical 146 

pharmacology. Throughout, we provide table overviews of key literature, give details of where 147 

‘big data’ approaches are currently hindered by insufficient existing data, and suggest how 148 

remaining knowledge gaps could be closed to resolve practical challenges in snakebite 149 

management.  150 
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  2. Back to basics: Improving our knowledge of snake distributions 151 

Despite the enormous burden snakebite causes every year, our understanding of some basic 152 

features of the issue remains limited. WHO maintains a list of medically relevant snakes 153 

(WHO, 2018); updated annually, David Williams pers. com.), their known distributions 154 

(WHO, 2010b); previously updated infrequently but soon biannually), and their categorization 155 

into class 1 (highest medical importance) or 2 (secondary medical importance; see 156 

https://apps.who.int/bloodproducts/snakeantivenoms/database/), depending on the impact they 157 

cause in any given country (WHO 2018). Taxonomic revisions of snake taxa warrant a rigorous 158 

and continuous review process, which is currently under development in form of an interactive 159 

online WHO database (David Williams, pers. com). Establishing accurate distribution maps of 160 

snakes is often hampered by surprising data sparsity. Even category 1 species that contribute 161 

immensely to the global burden of snakebite sometimes have few verified geographic 162 

occurrence localities, and data availability for range restricted, threatened or rarer taxa is much 163 

worse (Fig. 1). This showcases the dual need of distribution information for epidemiology as 164 

well as for conservation management. It is noteworthy that WHO listed species only include 165 

those that contribute substantially to the annual snakebite burden - snakes which cause 166 

occasional bites or less severe symptoms are often even more data deficient. Snake distribution 167 

estimates are usually based on limited scientific literature and expert opinion. Range estimates 168 

are provided by different databases (such as the latest WHO distribution estimate (Longbottom 169 

et al., 2018; WHO, 2010b), ‘the Global Assessment of Reptile Distributions’ (Meiri et al., 170 

2017; Roll et al., 2017) and ‘RepFocus’ (Midtgaard, 2021), which often disagree (Fig. 1). Such 171 

discrepancies stem from differences in occurrence records used and from different 172 

interpretations of what best defines the habitat of a species (boundaries may be drawn 173 

subjectively based on similarities in vegetation or altitude), factors which need to be resolved 174 

urgently. 175 
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Point (fine-scale) occurrence data lies at the core of most distribution estimates. These data 176 

come from a combination of different sources including primary literature records, museum 177 

records, and other observations, and are often collated in public and private databases. Some 178 

frequently used public databases are global platforms such as the Global Biodiversity 179 

Information Facility (GBIF, 2021), USGSs Biodiversity Information Serving Our Nation 180 

(BISON, 2021), Biocollections (iDigBio, 2021), VertNet (VertNet, 2021), Arctos (Arctos, 181 

2021), as well as country specific platforms (e.g., the Atlas of Living Australia (ALA, 2021), 182 

and a growing number of citizen science platforms such as iNaturalist (iNaturalist, 2021) or 183 

HerpMapper (HerpMapper, 2021). The ever-growing number of publically accessible 184 

databases presents new opportunities for biodiversity research, although biodiversity data is 185 

unfortunately typically spatially and temporally biased (Boakes et al., 2010) towards developed 186 

regions, i.e., the USA, Europe, and Australia (Peterson, 2014), and towards accessible areas 187 

within regions (Ficetola et al., 2013; Piccolo et al., 2020). 188 

Data from taxonomically reliable sources such as museum records and scientific literature has 189 

its obvious advantages: often they relate to voucher specimen or DNA samples, which enable 190 

re-examination to verify identification or re-attribution after taxonomic revisions. However, 191 

enormous advances in data processing capacities over the last decade, combined with the ever-192 

growing number of mobile phone devices with cameras used by the general public even in the 193 

developing world, present a promising opportunity to fill data gaps without the need for time 194 

consuming and costly fieldwork by experts. For example, iNaturalist has a mobile phone 195 

application that allows users to identify organisms on photos using automatic image 196 

recognition (Seek, 2021). Furthermore, taxonomic identification of organisms can be validated 197 

by experts within iNaturalist to achieve ‘research grade’ status (see 198 

https://www.inaturalist.org/pages/help#quality). The platform has even been used to create a 199 

specific project for ‘medically important venomous snakes’ (Genevieve et al., 2018), which 200 
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now contains over 12,000 georeferenced observations from 285 species by 3,440 observers 201 

(https://www.inaturalist.org/observations?project_id=10715).  202 

Citizen science platforms could prove valuable in filling sampling gaps (Chandler et al., 2017), 203 

especially if contributions from poorly sampled regions can be elicited (Genevieve et al., 2018). 204 

Further data can be extracted directly from social media platforms along with coordinates 205 

automatically recorded by smartphones (Barve, 2014). However, a suitable system to vet 206 

citizen science data rigorously needs to be established before integration into research grade 207 

datasets. Some vetting tools may include superior image recognition systems, crowdsourcing 208 

of snake identification (Durso et al., 2021), and data pipelines for targeted expert vetting of 209 

priority data or areas. These systems could be integrated into the new WHO database 210 

mentioned above, which is already planned to include an interactive map viewer of expert 211 

vetted snake distributions, species photos and information on antivenoms and antivenom 212 

producers, and will provide a ‘one-stop-shop’ for data access and collaboration between 213 

researchers, stakeholders, and the general public. It will function as a nexus to continuously 214 

update taxonomy and distributions based on literature and occurrence data from a broad range 215 

of databases under consultation with an expert panel and contributions from the general public 216 

(David Williams, pers. com.). 217 

As mentioned, simple presence points or area maps of snake distributions are informed by 218 

occurrence records, maps in scientific publications, expert knowledge, and subjective 219 

interpretations of connectivity between clusters of distribution records. In the age of ‘big data’ 220 

(Leonelli, 2014; sourcing, processing and analysis of large datasets using information 221 

technology) and high performance computing systems, such bias can be greatly reduced using 222 

statistical methods that describe species’ habitat suitability, referred to as ecological niche 223 

models (ENMs; Sillero, 2011), should sufficient input data exist. A large suite of ENM methods 224 
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has evolved over the last two decades, many of which are already extensively used in 225 

conservation (Guisan and Thuiller, 2005; Guisan et al., 2013; Mizsei et al., 2020) and 226 

epidemiology of zoonotic diseases (Escobar and Craft, 2016; Escobar et al., 2013; Murray et 227 

al., 2018; Peterson, 2014; Soucy et al., 2018). ENMs use known occurrence localities and 228 

environmental conditions to estimate environmental suitability across the study area and 229 

predict potentially occupied habitat (Fig. 1). The availability of increasingly fine-scale, gridded 230 

geographic data on land use, climate, vegetation, topography, and other landscape features 231 

enable prediction of suitable habitats for a species, how suitability varies between grid cells, 232 

and when linked to back-casts or future projections of these factors also how it may have 233 

changed in the past or will change in the future. Reliable ENMs can often be created with 234 

reasonably small data sets (20-50 occurrence records; Stockwell and Peterson, 2002) and for 235 

large batches of species using high-performance computing infrastructure (Pintor et al., 2018; 236 

Pintor et al., 2019). ENMs can help delineate boundaries of suitable habitat around known 237 

occurrences objectively, detect habitat patches that are suitable but unsampled (Terribile et al., 238 

2018; Yousefi et al., 2015), determine the degree of habitat connectivity, describe the 239 

likelihood of snake encounters as opposed to simple presence or absence (Yañez-Arenas et al., 240 

2018), and generally increase the resolution of distribution maps. In essence they enable 241 

description of the area of occupancy (actually occupied habitat patches) within a snakes’ extent 242 

of occurrence (approximate outline encompassing all occurrences; IUCN, 2020). 243 

ENMs have already been used to predict distributions of venomous species for studies on 244 

biogeography, phylogeography, or conservation (Asadi et al., 2019; Barlow et al., 2013; Brito 245 

et al., 2008; Burbrink and Guiher, 2015; Di Cola and Chiaraviglio, 2011; Gül; Terribile et al., 246 

2018; Yousefi et al., 2015), and to estimate human risk of exposure to snakebite (Bravo-Vega 247 

et al., 2019; Nori et al., 2014; Saupe et al., 2011; Yañez-Arenas et al., 2018; Yañez-Arenas et 248 

al., 2014; Yañez-Arenas et al., 2016; Yousefi et al., 2020; Zacarias and Loyola, 2019; Table 249 
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1). The most commonly used ENM method amongst the set of studies in Table 1, and probably 250 

amongst ENM literature in general, is Maxent. Maxent (i.e., the maximum entropy algorithm; 251 

Phillips et al., 2006; Phillips and Dudík, 2008) is a machine learning algorithm that performs 252 

well compared to many other methods (Elith et al., 2006), especially when working with 253 

presence only datasets, i.e. without ‘true absences’ where the species is known not to occur. 254 

Presence only datasets are common, especially for data deficient species, because substantial 255 

sampling effort is needed to confirm a species’ absence from a location with certainty while 256 

confirming its presence only requires one observation (Phillips et al., 2009). Other commonly 257 

used methods are boosted regression trees (BRTs; Elith et al., 2006; Elith and Leathwick, 2017; 258 

Elith et al., 2008), generalized linear models (GLM; Guisan et al., 2002; McCullagh, 2019), 259 

generalized additive models (GAM; Grego, 2006; Guisan et al., 2002; Hastie and Tibshirani, 260 

1987; Hastie and Tibshirani, 1990; Liu, 2008), generalized boosting models (GBM; Ridgeway, 261 

2007), Artificial Neural Networks (ANN; Colasanti, 1991; Lek and Guégan, 1999), random 262 

forest models (RF; Breiman, 2001; Evans et al., 2011), Integrated Nested Laplace 263 

Approximation (INLA) Bayesian methods for fitting models with spatial random effects (R-264 

INLA; Lindgren and Rue, 2015; Redding et al., 2017), and the genetic algorithm for rule-set 265 

production (GARP; Stockwell, 1999). Often several methods are combined into ensemble 266 

models to allow uncertainty to be quantified by comparing where models disagree and to 267 

compare model performance more generally since novel advances of existing model methods 268 

occur frequently (Araújo and New, 2007; Diniz‐ Filho et al., 2009). 269 

Knowledge of snake distributions is fundamental to understanding where vulnerable human 270 

populations are exposed to snakebite, the degree of exposure, and where antivenom for each 271 

species is needed. As such, they form the basis for all other aspects of snakebite management 272 

and for conservation. Consequently, we recommend a thorough, iterative, globally consistent 273 

approach to fill knowledge gaps, where each component is updated regularly and feeds into 274 
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improvements of the next (Fig. 2). The components are (i) an up-to-date list of medically 275 

relevant snakes, (ii) a database of expert vetted occurrence localities for each species, (iii) 276 

mapped range estimates based on occurrences, literature, and expert advice, and (iv) ENMs 277 

based on known occurrences and high quality, biologically relevant geographic layers of 278 

environmental conditions. ENMs ultimately feed into (v) targeted research. The snake master 279 

list is updated regularly based on novel taxonomic and epidemiological data. New occurrence 280 

data is added from publications, public databases and vetted citizen science data. Range maps 281 

are updated under expert advice. ENMs are rerun using new data and environmental layers. 282 

Lastly, ENMs can provide information on where additional sampling efforts are needed, or 283 

where taxonomy needs revision (e.g. disjunct populations). Efforts to address these knowledge 284 

gaps, such as targeted research, then feed back into the master list, the occurrence database and 285 

so on. Targeted surveys or elicitation of citizen science efforts in specific, under-sampled areas 286 

is required to strategically fill sampling gaps. Note that expert derived range estimates always 287 

remain an important part of the process because ENMs only describe habitat suitability but 288 

cannot account for other reasons that affect species niche occupation, such as presence of 289 

competitor species or inability to reach disjunct patches of suitable habitat. Furthermore, ENMs 290 

performance requires validation using expert derived range estimates to account for 291 

information that is not available as spatial predictor layers.292 
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3. Human-wildlife conflict meets epidemiology 293 

Historically, human-wildlife conflict has been an important issue (Anand and Radhakrishna, 294 

2017; Lamarque et al., 2009; Nyhus, 2016; Treves et al., 2006). The modification of natural 295 

habitat for human uses such as farming has led to a myriad of conflicts between humans and 296 

wildlife, such as predation of stock by wild predators (Beattie et al., 2020; Hill, 2015; Manral 297 

et al., 2016; Messmer, 2000; Western et al.), destruction of crops by herbivores (Kiffner et al., 298 

2021; Mamo et al., 2021; Priston and Underdown, 2009; Siljander et al., 2020), attacks on 299 

humans (Jhala et al., 2021; Tarrant et al., 2020; Western et al.), and introduction of zoonotic 300 

diseases (Jacob et al., 2020; Jhala et al., 2021; Jones et al., 2013; Tarrant et al., 2020). 301 

Spatial analyses have long been used to study human-wildlife conflict (Carter et al., 2020; 302 

Goswami et al., 2015; Kretser et al., 2008; Laliberte and Ripple, 2003; Siljander et al., 2020). 303 

For example, Siljander et al. 2020 combined a georeferenced dataset of interviews with 304 

statistical geographic analyses over land use maps to understand the geographic patterns of 305 

crop raiding by non-human primates in Kenya, enabling appropriate preventative measures by 306 

identifying the most vulnerable locations. Similarly, Goswani et al. 2015 used mechanistic 307 

modeling to understand the patterns of crop raiding by elephants in India to make management 308 

recommendations.  309 

Epidemiology has also frequently used spatial analyses to estimate the spread of diseases 310 

(Peterson, 2014; Santos-Vega et al., 2016). Spatial Epidemiology has blossomed with the 311 

advent of big data, geostatistical methods and increased computing power, resulting in a 312 

movement termed precision public health (the combination of high-resolution health data with 313 

environmental and socioeconomic predictors to produce fine-scale estimates of disease risk; 314 

Desmond-Hellmann, 2016). For diseases spread directly amongst primary hosts, without the 315 

need of a vector or reservoir, simple mathematical models describing host interaction 316 
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frequencies and disease transmission rates are usually sufficient to estimate disease spread 317 

(Grassly and Fraser, 2008). However, it has recently been emphasized that disease transmission 318 

risk has an important but often neglected ecological component dependent on the distribution, 319 

habitat requirement, and ‘population’ dynamics of both the pathogen and host species 320 

(Peterson, 2014).  321 

In the special case of zoonotic diseases, epidemiological studies have the added challenge of 322 

mapping several biotic components of the disease transmission: these include wildlife that 323 

functions as disease reservoirs and, in some cases, disease vectors that spread the infectious 324 

agent between reservoirs and primary hosts (for example mosquitos). As such, zoonotic and 325 

vector borne diseases present an intersection between human-wildlife conflict and traditional 326 

epidemiology (Reisen, 2010). In cases where data on disease itself is sparse, as is common for 327 

NTDs and emerging infectious diseases, vector and host distribution often serve as a useful 328 

metric of risk to guide preventative measures (Campbell et al., 2015; Ferro et al., 2015; Mylne 329 

et al., 2015; Peterson, 2014) as the pathogens spread depends greatly on the population 330 

dynamics and abundance of vector and host (Lloyd-Smith et al., 2005). Similarly, the 331 

pathogen’s habitat requirements are determined by the internal conditions of the vector and 332 

host, therefore, areas of disease risk can be seen as the intersection of vector, host, and pathogen 333 

distributions (Reisen, 2010) or species richness resulting from distribution overlap (Ferro et 334 

al., 2015). There is a multitude of studies that illustrate how spatial analyses can disentangle 335 

relevant epidemiological patterns in zoonotic diseases and NTDs (Hamm et al., 2015; Luz et 336 

al., 2010; Marshall, 1991), often by interpolation of important spatial features of disease 337 

dynamics from limited source data to unsampled locations.  338 

While snakebite is similar to zoonotic diseases in some respects, such as the involvement of 339 

both a human victim and a wildlife agent inflicting the disease, it has unique attributes 340 
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compared to such diseases. In many ways, snakebite has more in common with traditional 341 

human-wildlife conflicts that involve physical harm inflicted on humans, not least because it 342 

involves conservation concerns of the ‘agent’ (Pandey et al., 2016). However, while not caused 343 

by a pathogen, snakebite envenoming is more analogous to a disease than a physical injury 344 

because it involves complicated and prolonged physiological and immunological effects and 345 

treatments (Gutiérrez et al., 2011; Ogawa et al., 1996; Russell, 1988) and, consequently, has 346 

rightfully been elevated to NTD status (WHO, 2017). Snakebite risk can also be viewed as the 347 

result of overlaps in snake and human distributions, modified by patterns in their abundance, 348 

activity, and population dynamics, similar to vector borne diseases. Consequently, the same 349 

tools that have been used to disentangle spatial patterns in human-wildlife conflicts and vector 350 

borne diseases can be applied to snakebite research. This path has begun to receive attention, 351 

but progress is currently limited by sparse data on snake distributions, spatial ecology, general 352 

biology, and snakebite incidence (see following sections).  353 
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4. Spatial patterns in diversity, abundance, activity, and population dynamics of snakes 354 

How humans interact with snakes depends on snake distributions, and how humans and snakes 355 

overlap in their use of space and time within those distributions (Goldstein et al., 2021). This, 356 

in turn, depends on snake abundance, activity patterns, and population dynamics. 357 

Unfortunately, all three of these attributes of snake biology are understudied. 358 

The abundance of any species varies across their distribution (Brown, 1984), depending on 359 

how it uses the available space (i.e. behavioral requirements such as preferred foraging habitats; 360 

Blouin‐ Demers and Weatherhead, 2001) and how favorable different habitats are to 361 

population growth (i.e. physiological requirements, such as temperature regime; Medina-362 

Barrios et al., 2019). Studies quantifying the variation in abundance of snakes across their 363 

distribution are sparse (Bravo-Vega et al., 2019), costly, and time consuming. ENMs aim to 364 

estimate species’ realized ecological niche (as opposed to the ‘occupied niche’ which 365 

represents the subset of conditions that are historically and geographically accessible; Sillero, 366 

2011) and, therefore, provide estimates of habitat suitability. Theoretically, higher habitat 367 

suitability should coincide with higher abundance, as long as all relevant environmental 368 

features that influence a species’ behavioral and physiological requirements are included as 369 

predictors (Ehrlén and Morris, 2015; Jiménez‐ Valverde et al., 2021; VanDerWal et al., 2009; 370 

Weber et al., 2017), although this trend is contentious (Dallas et al., 2017; Dallas and Hastings, 371 

2018). Consequently, habitat suitability derived from ENMs is often used as a proxy for 372 

abundance, or at least of upper limits of potential abundance, since unknown factors that are 373 

not included in models (e.g. presence of predators, competitors or unknown environmental 374 

variables) may further limit abundance (Braz et al., 2020; Jiménez‐ Valverde et al., 2021; 375 

Muñoz et al., 2015; VanDerWal et al., 2009; Weber et al., 2017). Additionally, the observed 376 

relationship between habitat suitability and abundance may not be linear but asymptotical 377 
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(VanDerWal et al., 2009) as abundance approaches carrying capacity and may be weakened 378 

due to dispersal amongst neighboring cells with different suitability, especially when 379 

resolutions are high compared to dispersal ability (Macartney et al., 1988). Nevertheless, 380 

correlations of ENM derived habitat suitability with upper limits of abundance have been 381 

observed (Braz et al., 2020; Jiménez‐ Valverde et al., 2021; VanDerWal et al., 2009; Weber et 382 

al., 2017). In fact, snakes’ habitat suitability or metrics based on it (such as distance from the 383 

‘niche centroid’; Yañez-Arenas et al., 2016) have been used as proxies of snake abundance and 384 

snakebite risk and have even been shown to correlate with snakebite incidence (Yañez-Arenas 385 

et al., 2016). As such, we encourage studies that further test the ability of ENMs to accurately 386 

predict abundance across different species and identify how ENMs predictive ability of 387 

abundance can be improved. 388 

Even in areas of high snake abundance, humans are only exposed to snakebite risk if snakes 389 

are actually active at the same time as people, and there is overlap within the same geographic 390 

space (Goldstein et al., 2021). Reptile activity and microhabitat selection varies with season 391 

(Ediriweera et al., 2018; Lindström et al., 2015; Madsen and Shine, 1996) time of day (Ealy et 392 

al., 2004), and ambient abiotic conditions (Pintor et al., 2011), as do human activity patterns 393 

(Goldstein et al., 2021). These temporal patterns in activity are usually a direct result of (i) 394 

patterns in abiotic conditions (higher activity at warmer temperatures or after rain; Angarita-395 

Gerlein et al., 2017; Karabuva et al., 2016) and (ii) biological factors, such as breeding seasons 396 

or increases in prey abundance (Ediriweera et al., 2018). The latter, in turn, are triggered by 397 

changes in abiotic conditions (Licht, 1972). Because most changes in activity patterns are 398 

ultimately influenced by abiotic conditions, they can be modelled using average monthly 399 

conditions (climate oscillations; for determining typical seasonal patterns) and daily historic 400 

weather data (weather anomalies; for determining weather related deviations from seasonal 401 

averages; (Ediriweera et al., 2018). Fine-scale spatio-temporal climate and weather data has 402 
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become available for variables such as temperature and precipitation (Fick and Hijmans, 2017; 403 

Funk et al., 2015), but also for resulting changes in habitat attributes (e.g. 10-daily 300m 404 

resolution layers of global fraction photosynthetic active radiation; Fuster et al., 2020). 405 

Historical weather data has already been used to model spatio-temporal variation in habitat use 406 

by nomadic animals (Reside et al., 2010) and to disentangle the effects of seasonal climate 407 

patterns versus weather anomalies on temporal variation in snakebite incidence in Sri Lanka 408 

(Ediriweera et al., 2018). Dynamic models of how snake activity and abundance vary across 409 

time and space could prove useful as forecasting tools to predict when people may experience 410 

elevated risk of encountering snakes and which species are encountered more at different times 411 

of year. Such forecasts could allow health centers to prepare for increased numbers of snakebite 412 

patients or to warn the public to take additional precautions to avoid snakebite. Together with 413 

information on circadian rhythms of snakes, very fine-scale (i.e. 10m × 10m) spatio-temporal 414 

models of snakebite risk could be created (Goldstein et al., 2021). 415 

Spatio-temporal patterns in snake presence, abundance and activity lead to complex patterns in 416 

snake diversity, which also affect snakebite risk. Although some snakes are more prone to bite 417 

than others because they enter human dwellings, are harder to see, or are more aggressive 418 

(Goldstein et al., 2021), the overall degree of human exposure results from the cumulative 419 

exposure to all species present in an area. Consequently, patterns in snake diversity are a crucial 420 

aspect of variation in snakebite risk. It has been proposed that snakebite risk can be estimated 421 

using the cumulative snake species richness weighted by each species’ propensity to inflict 422 

bites (e.g. the known fraction of bites caused by each species in a country or district; Yañez-423 

Arenas et al., 2016; Zacarias and Loyola, 2019) but further research needs to establish how 424 

different species’ presence, habitat suitability, and biting propensity interact to lead to 425 

differences in overall snakebite risk.  426 
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It is also noteworthy that cumulative weighted snake species richness is a measure of snakebite 427 

risk, i.e. the product of the likelihood of exposure to a snake (snake presence and 428 

abundance=exposure to the hazard) and the likelihood of an encounter leading to a bite (e.g. 429 

snake’s propensity to bite= potential consequence of exposure to the hazard; Fig. 3). The terms 430 

‘snakebite risk’ and ‘snakebite incidence’ are often used interchangeably and often also applied 431 

to mere snake exposure (WHO, 2010b; Yañez-Arenas et al., 2018). We suggest that snakebite 432 

risk is henceforth used to describe the theoretical probability of encountering, and being bitten 433 

by a snake, while incidence is the realized, observed or modelled snakebite frequency and 434 

depends on additional factors such as human activities, demography, population density, and 435 

protective equipment, amongst others, i.e. how often snakebite risk is realized (Fig. 3). In lay 436 

terms, snakebite risk is the likelihood that one could encounter a snake and be bitten by it in a 437 

given area at a given time. Snakebite incidence is the frequency at which these encounters lead 438 

to actual bites based on how many people are in the area, their activity patterns, their awareness 439 

of the risk, and how they manage the encounter. Snakebite risk is unlikely to change if snakes 440 

are conserved successfully because it relates to features intrinsic to snakes present in the area, 441 

while snakebite incidence can be reduced with adequate education and management 442 

(Ediriweera et al., 2018). Following this, snakebite envenoming, snakebite related morbidity 443 

and mortality are influenced by snakebite incidence. The former depends on protective 444 

equipment, the snake’s agitation, and its behavioral propensity to inflict wet bites. The latter 445 

two depend on how well snakebite is managed from a medical perspective. 446 

Note that modification of human activities can alleviate snakebite risk. Some may, therefore, 447 

choose to include them in the risk definition. However, determining the effect human activities 448 

in an area on risk usually requires knowledge of actual snakebite numbers and is, consequently, 449 

hard to separate from observed incidence. In the literature, human activities are almost always 450 

included in analyses of observed incidence, not theoretical risk (which can be mapped without 451 
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knowledge of actual snakebite numbers). In theory, however, the expected rather than observed 452 

effect of different activities on snakebite risk could be mapped and, in such cases, it may be 453 

considered as a modifying factor of risk, rather than of incidence (e.g. the theoretical risk of 454 

snakebite for a farmer using machinery versus manual labor). 455 

Several recent studies have estimated geographic variation in snakebite risk using modelled 456 

snake diversity (i.e. cumulative presence-absence maps) or some measure of cumulative habitat 457 

suitability (as a proxy for cumulative abundance; Yañez-Arenas et al., 2018 [Ecuador]; Yousefi 458 

et al., 2020 [Iran]; Zacarias and Loyola, 2019 [Mozambique]). Some have even confirmed a 459 

correlation between snakebite risk and snakebite incidence (Yañez-Arenas et al., 2016 460 

[Americas]; Yañez-Arenas et al., 2014 [Mexico]). It would be useful to expand snakebite risk 461 

maps globally, to estimate spatial variation and seasonal and weather based fluctuations in 462 

snakebite risk, and to perform rigorous ground-truthing of these modelling approaches’ ability 463 

to estimate spatio-temporal variation in snake activity, abundance, and diversity.  464 

Jo
urn

al 
Pre-

pro
of



22 
 

5. The missing link: how do humans & snakes interact to create spatio-temporal patterns 465 

in snakebite incidence 466 

Similar to how the frequency and type of human-snake interactions depend on snake 467 

abundance, activity, and population dynamics, they also depend on human population density, 468 

lifestyle, and demographics. Many studies worldwide have documented demographic patterns 469 

with respect to snakebite epidemiology (Ediriweera et al., 2016). Across most countries, young 470 

males in rural communities, agricultural workers, and members of lower socio-economic and 471 

less well-educated groups are disproportionately affected (Dehghani et al., 2014; Harrison and 472 

Gutiérrez, 2016; Harrison et al., 2009; Suraweera et al., 2020). Patterns of spatial variation in 473 

snakebite incidence usually follow these general epidemiological patterns: at a global scale, 474 

snakebite incidence varies greatly, with hotspots in regions with rural subsistence farming such 475 

as South Asia, tropical sub-Saharan Africa and Latin America (Kasturiratne et al., 2008). At 476 

intermediate scales, snakebite incidence or mortality has been documented nationally for 477 

countries in Africa, Europe, the Americas, and South Asia (Chippaux, 2011, 2012, 2017; 478 

Chippaux, 1998; Halilu et al., 2019; Suraweera et al., 2020). At a fine scale, for much of the 479 

Americas, and some of South Asia and Africa, some data exists at district or municipality level 480 

(Bravo-Vega et al., 2019; Chaves et al., 2015; Chippaux, 2017; Ediriweera et al., 2016; 481 

Hansson et al., 2010; Hansson et al., 2013; León-Núñez et al., 2020; Mohapatra et al., 2011; 482 

Molesworth et al., 2003; Yañez-Arenas et al., 2014; Yañez-Arenas et al., 2016).  483 

Potential drivers of spatial snakebite variation at intermediate scales have been quantified to 484 

some extent, using anything from simple statistics such as t-tests (Chippaux, 2017; León-Núñez 485 

et al., 2020) to more elaborate statistical models such as generalized additive models (GAM; 486 

Ediriweera et al., 2016), geostatistical binomial logistic models (Ediriweera et al., 2018), 487 

spatial Poisson models (Suraweera et al., 2020) or bottom-up agent-based models (Goldstein 488 
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et al., 2021); Table 2). Again, hotspots tend to occur in rural, agricultural, and poor areas 489 

(Chaves et al., 2015; Ediriweera et al., 2016; Hansson et al., 2010; Hansson et al., 2013; 490 

Leynaud and Reati, 2009; Schneider et al., 2021; Suraweera et al., 2020), and more bites occur 491 

in young to middle aged males or in regions with a higher male population percentage 492 

(Chippaux, 2017; Ediriweera et al., 2016; Hansson et al., 2010; León-Núñez et al., 2020; 493 

Mohapatra et al., 2011; Suraweera et al., 2020). Relationships between spatial snakebite 494 

variation and human population density are more complex: usually snakebites increase with 495 

human population density in rural areas but drop off at higher densities associated with 496 

urbanization (Chippaux, 2017; Ediriweera et al., 2016). As expected, snakebite incidence also 497 

correlates with measures of presence, activity, abundance, or diversity of snakes (Bravo-Vega 498 

et al., 2019; Goldstein et al., 2021; Hansson et al., 2013; León-Núñez et al., 2020; Schneider et 499 

al., 2021; Suraweera et al., 2020; Yañez-Arenas et al., 2014; Yañez-Arenas et al., 2016) or with 500 

variables that affect snake activity. Often snakebite incidence increases during certain seasons 501 

when snakes and farmers are both more active such as in rainy or harvest seasons (Chippaux, 502 

2017; Ediriweera et al., 2018; Goldstein et al., 2021; Hansson et al., 2010; Mohapatra et al., 503 

2011; Molesworth et al., 2003; Patiño-Barbosa et al., 2019; Suraweera et al., 2020), during 504 

flooding events (Ochoa et al., 2020), or at higher temperatures, lower altitudes, and higher 505 

precipitation (Angarita-Gerlein et al., 2017; Chaves et al., 2015; Chippaux, 2017; Ediriweera 506 

et al., 2018; Ediriweera et al., 2016; Goldstein et al., 2021; Hansson et al., 2013; Schneider et 507 

al., 2021; Suraweera et al., 2020; Table 2). 508 

While all these studies have made tremendous contributions to our understanding of spatial 509 

snakebite variation, most have not analysed it at spatial resolutions sufficient for on-ground 510 

management. The first generation of studies on spatial snakebite variation mostly focused on 511 

broad patterns and identified global hotspot regions or inter-country variation (Chippaux, 1998; 512 

Kasturiratne et al., 2008; Swaroop and Grab, 1954). Such studies enable estimates of snakebite 513 
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numbers from incomplete reporting data and help identify areas where intervention or further 514 

research is needed. The next suite of studies incorporated simple tests of variables that explain 515 

spatial snakebite variation at country, district, or municipality level in combination with 516 

epidemiological data on individual risk and temporal patterns (Chippaux, 2017; León-Núñez 517 

et al., 2020; Leynaud and Reati, 2009). Most of these made use of the increasingly fine-scale 518 

data on snakebite numbers that became available across much of the Americas, India and Sri 519 

Lanka relatively recently due to changes in reporting requirements or costly efforts in one-time 520 

surveys (Chippaux, 2017; Ediriweera et al., 2016) or novel health surveys (Ediriweera et al., 521 

2016; Mohapatra et al., 2011). These advances led to more complex models within these 522 

countries utilizing sophisticated methods such as generalized linear models (GLM), 523 

generalized additive models (GAM) and a variety of other frequentist and Bayesian 524 

geostatistical regression approaches, incorporating an ever-increasing suite of gridded spatial 525 

data on demography, natural environment, climate, weather, and topography (Table 2). Several 526 

have also included measures of snake distributions and abundance as predictors of spatial 527 

snakebite variation for the first time (Hansson et al., 2013; Yañez-Arenas et al., 2016). 528 

However, such studies are currently restricted to areas with better snake or snakebite data, such 529 

as the Americas, India and Sri Lanka. Furthermore, models of spatial snakebite variation at 530 

sufficiently fine-scale resolutions for on-ground management and redistribution of health care 531 

resources (i.e. a resolution of ~5km or lower) are still sparse. The few notable exceptions are 532 

recent work in Sri Lanka (Ediriweera et al., 2018; Ediriweera et al., 2019; Ediriweera et al., 533 

2016; Goldstein et al., 2021) and Costa Rica (Bravo-Vega et al., 2019). Ediriweera et al. 2016 534 

predicted patterns in spatial snakebite variation at 1km resolution, along with describing health 535 

seeking behaviour patterns (Fig. 4), as well as temporal (Ediriweera et al., 2018) and individual 536 

level snakebite incidence variation (Ediriweera et al., 2019;). Goldstein et al. 2021 further 537 

investigated how annual and daily activity patterns of farmers and snakes overlap to cause 538 
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spatio-temporal fluctuations in snakebite using a bottom-up, agent-based modelling approach 539 

at 10 m resolution. These approaches will likely lead to improvements in local snakebite 540 

management in Sri Lanka, where snakebite burden is amongst the highest in the World, and 541 

region specific antivenoms are lacking (Kasturiratne et al., 2017; Kasturiratne et al., 2008; 542 

Keyler et al., 2013). In Costa Rica, Bravo-Vega et al. 2019 used a mathematical approach to 543 

describe the likelihood of snakebite based on the encounter frequency of humans with the most 544 

dangerous snake species in the area and predicted spatial snakebite variation at a 1km 545 

resolution. This approach is more akin to traditional epidemiology, where infection rates 546 

depend on transmission rates and on host-vector interaction frequencies (Peterson, 2014). This 547 

research adds to previous studies describing spatial snakebite variation in Costa Rica using the 548 

same district level source data but notably downscaled predictions to a finer resolution, and is 549 

a promising example for many other countries for which district-level data also exist 550 

(Chippaux, 2017; Hansson et al., 2013). It also highlights snakebite as an intersection between 551 

epidemiology, ecology, and conservation, and the need to consider transdisciplinary 552 

approaches. Lastly, promising models of other human-wildlife conflicts have been created 553 

using machine learning algorithms at fine spatial scales (Sharma et al., 2020). Broader 554 

application of these existing, successful approaches or integration of benefits from each of them 555 

into a more complex human-snake conflict framework requires exploration. 556 

In general, effective on-ground management of snakebite requires relatively fine-scale spatio-557 

temporal models of spatial snakebite variation, along with identification of demographic 558 

groups that are at particular risk in any given area (i.e. vulnerable human populations). Model 559 

resolution needs to be appropriate to the problem in hand, appropriate under consideration of 560 

computational limitations, and reasonable considering currently available baseline data 561 

(Williams et al., 2012). If the resolution is too coarse (e.g. 50km), the model cannot accurately 562 

inform management actions at a relevant scale. If it is too fine, it increases computational 563 
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demand without adding any useful additional information. For example, both snakes and 564 

humans can easily travel a few kilometres per day and patterns at resolutions finer than this 565 

will be diluted by frequent dispersal from neighboring cells. For country-wide snakebite 566 

management, a 1km resolution is likely sufficient to accurately describe relevant landscape and 567 

population features that influence human and snake population dynamics and movement. 568 

However, some purposes, such as targeted provision of personal protective equipment amongst 569 

different farmers in a village might benefit from extremely fine scale predictions (a few meters) 570 

of risk and incidence. The scale of analyses needs to be finely tuned to match the planned 571 

application. At the appropriate resolution, incidence maps could be used to establish snakebite 572 

management centres, direct antivenom to necessary health centers, plan targeted community 573 

education, distribute protective equipment to at-risk groups (Ediriweera et al., 2016), estimate 574 

snakebite numbers in any given area, inform manufacturers of antivenom demands, and 575 

determine which snake species or populations should be catered for during antivenom 576 

production for that area. However, fine-scale models are often difficult to construct due to the 577 

limited resolution of source data, which is often recorded at second or third administrative 578 

country subnational level.  The amount of work required to make the fitting of fine-scale  579 

models possible varies regionally and nationally but generally demands better, standardized, 580 

spatially referenced reporting systems for snakebite.  581 

For example, snakebite is a reportable disease across much of Latin America as of 2000 582 

(Chippaux, 2017); however, enforcement is difficult and many victims still seek traditional 583 

healers instead of health centers (Ediriweera et al., 2016). The situation in Africa is much 584 

worse: few countries have official reporting systems (e.g. the Kenyan Wildlife Service) or 585 

representative household surveys (Cameroon; (Alcoba et al., 2021) and a very large proportion 586 

of victims attend traditional healers instead of health centers (Newman et al., 1997). Across 587 

South and South-East Asia, India and Sri Lanka have high quality data collected either once-588 
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off or even consistently across years, and at a useful spatial scale through standardized 589 

household surveys (Ediriweera et al., 2016; Mohapatra et al., 2011). Similarly, Nepal has 590 

recently begun representative surveys (Alcoba et al., 2021). However, such surveys are effort-591 

intensive and costly - most countries in the region have limited information and research relies 592 

on individual hospital records to fill knowledge gaps (Kasturiratne et al., 2008). The latter 593 

usually only cover a small proportion of hospitals and victims (Fox et al., 2006) and are not 594 

spatially representative (Kasturiratne et al., 2008). Recently, progress has been made to develop 595 

appropriate survey methodologies to assess country-wide spatial snakebite variation, and these 596 

methodologies have already been used across two countries in South Asia (Nepal) and Africa 597 

(Cameroon; Alcoba et al., 2021). Funding and infrastructure to carry out such surveys is limited 598 

in many developing countries (Kasturiratne et al., 2008). Ideally, data from surveys, hospital 599 

admissions and health authority reporting systems would directly feed into a central global 600 

database managed by WHO; however, until better reporting systems are established, several 601 

other region-specific steps could improve our understanding of spatial snakebite variation. 602 

Across the Americas, existing information on snakebite at district or municipality level could 603 

be combined with finer-scale spatial data to downscale predictions. In a nutshell, spatial 604 

snakebite variation could first be predicted at a district scale using variables that are also 605 

available at a finer scale (e.g. temperature averaged per district vs. temperature per 1km grid 606 

cell). Observed relationships could then be ground-truthed in selected areas where finer-scale 607 

spatial snakebite variation data exists and, if broad scale relationships hold true at finer scales, 608 

predictions could be applied more broadly to high-resolution gridded landscapes. 609 

In South Asia, some countries have used analyses of representative household clusters to create 610 

predictions of spatial snakebite variation (Ediriweera et al., 2016; Suraweera et al., 2020). Since 611 

other countries in South Asia are already starting to implement similar multi-cluster random 612 
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survey designs (Nepal; Alcoba et al., 2021), efforts could be further expanded to surrounding 613 

countries and incidence mapping methods from India and Sri Lanka could be applied to create 614 

a uniform methodology across the region. More complete data needs to be collected for most 615 

of South-East Asian spatial snakebite variation to facilitate this approach. 616 

Similarly, in Africa new modelling protocols could be developed in countries with existing 617 

reporting systems. Results could then be extrapolated to surrounding countries with a similar 618 

range of cultural, demographic, and environmental conditions and similar snake species 619 

composition. For example, Kenya has a comprehensive country-wide dataset on snakebite 620 

incidence from a human-wildlife conflict compensation scheme (Long et al., 2020), which 621 

could be used to model spatial snakebite variation and apply results preliminarily to the rest of 622 

Eastern sub-Saharan Africa. Nevertheless, sub-Saharan Africa is culturally diverse and overall 623 

particularly data-poor in this respect despite being a hotspot for snakebite. There is an urgent 624 

need for further data collection in poorly surveyed regions with high snake diversity and 625 

political instability, such as throughout the notoriously data poor Congo Basin. 626 

The lack of data on snakebite numbers stands in stark contrast to the enormous amount of other 627 

spatial information that is becoming available at finer and finer scales. Much of the 628 

demographic, climatic, topographic, and land cover data needed for spatial snakebite variation 629 

models exists at an extremely fine-scale across most of the globe, sometimes at resolutions 630 

down to 10m (Goldstein et al., 2021). WorldPop (Tatem, 2017; WorldPop, 2021) has 100m 631 

resolution data on human population density, births, age and sex structures, pregnancies, and 632 

many other demographic factors for most countries. Global climate data exists at 1km 633 

resolution (Fick and Hijmans, 2017; WorldClim, 2021). The European Space Agency has 634 

global data on land cover classes and vegetation characteristics at 300m resolution (ESA, 2017; 635 

Fuster et al., 2020). The list of high-quality spatial datasets is long. Considering that 1km would 636 
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likely be an effective resolution for spatial snakebite variation models, research on the topic 637 

lags behind current GIS and computing capacities. Improved data collection on spatial 638 

snakebite variation is the single most urgent step that would allow us to catch up on this lag, 639 

followed by snake occurrences and abundance data. 640 

We have come a long way in understanding spatial snakebite variation around the world and 641 

within countries but need to make substantial improvements in data collection, model 642 

resolution, global consistency of modelling approaches and synchronization of data streams 643 

and methodologies.  644 

Jo
urn

al 
Pre-

pro
of



30 
 

6. Vulnerable human populations and access to life-saving treatments 645 

Envenomation by a snakebite is a medical emergency that requires rapid access to life-saving 646 

treatments (antivenom, respiratory support). Delay to treatment has been shown to increase 647 

likelihood of complications and death (e.g. da Silva Souza et al., 2018; Iliyasu et al., 2015). 648 

While the causes of these delays can be numerous (see Potet et al, this issue; Harrison et al, 649 

this issue) the time taken to reach the treatment facility from the patient household (or biting 650 

site) is critical and has been shown to greatly impact health outcomes (Habib and Abubakar, 651 

2011). Unfortunately, health care access is particularly poor in developing countries, where 652 

snakebite is most common, and varies substantially across and within countries and amongst 653 

social classes. Identifying vulnerable populations from both a demographic and spatial 654 

perspective is an essential basis for adequate distribution of resources. It has been long 655 

recognized that modelling physical accessibility to healthcare can be instrumental for 656 

understanding the population coverage of a given health service, identifying vulnerable 657 

populations, and optimizing health resource allocation. Ways of modelling access to healthcare 658 

are numerous and can differ greatly in terms of the required spatio-temporal data (Delamater 659 

et al., 2012; Neutens, 2015; Paez et al., 2019). In low- and middle-income countries where 660 

patients must often use a combination of types of transport, and often walk to reach care, 661 

modelling approaches based on least-cost path are particularly well suited (Ray and Ebener, 662 

2008). These approaches typically make use of local travelling constraints (e.g., terrain, rivers, 663 

barriers to movement) and infrastructures (e.g. road network), associated with the care-seeking 664 

behavior (modes and speeds of transport) of the target population, to output a raster of travel 665 

time to the nearest health service. Applications of least-cost methods have been done notably 666 

to optimize access to emergency obstetric and neonatal care (Chen et al., 2017; Ebener et al., 667 

2019; Kim et al., 2020), to optimize deployment of community health workers (Oliphant et al, 668 

Jo
urn

al 
Pre-

pro
of



31 
 

pre-print), to assess access to vaccination centres (Joseph et al., 2020) and intensive care units 669 

(Barasa et al., 2020), and to model access to emergency services (Ahmed et al., 2019). 670 

Once a travel time model is available, its overlay with the spatial distribution of the target 671 

population can inform about population coverage and the location of populations distant from 672 

the needed treatments. Combining travel time with additional spatial criteria (e.g. health system 673 

metrics, socio-economic characteristics of the population, disease burden) can enable the 674 

modelling of vulnerable populations. To model hotspots of population vulnerable to snakebite 675 

envenoming at global scale, Longbottom et al (2018) combined range maps for medically 676 

important venomous snake species, travel time to urban centres (as a proxy for geographic 677 

access to care), health care quality index (as a proxy metric for severe snakebite-related 678 

outcomes), and antivenom availability. However, improving access to snakebite treatment at 679 

national or sub-national scale through micro-planning usually requires higher-resolution spatial 680 

data. A small-area mapping approach to snakebite has been pioneered in Costa Rica by 681 

Hansson et al (2013) who modelled realistic travel time to health facilities and ambulance 682 

stations, together with habitat suitability maps for Bothrops asper, to identify populations with 683 

need of improved treatment access. A similar approach is currently being applied in Cameroon 684 

and Nepal to model vulnerable populations and optimize access to antivenom (Alcoba et al., 685 

2021). In particularly difficult terrain such as the Amazons, understanding the extent to which 686 

the population is unable to rapidly access adequate care after a snakebite can trigger radically 687 

different solutions, such as antivenom delivery by drones (Meier and Bergelund, 2017). 688 

As discussed earlier, models of spatial snakebite variation can be adequately tackled at 1km or 689 

coarser resolution for some purposes, but accessibility modelling typically requires working at 690 

100m or even 30m (e.g. Hierink et al., 2020) resolution. A finer raster resolution allows one to 691 

capture more realistically the landscape characteristics and infrastructures that can influence 692 
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the movements of care-seeking patients. The recent availability of high-resolution datasets 693 

needed to model accessibility (openly accessible for most countries from sites such as 694 

Humanitarian Data Exchange, https://data.humdata.org/) has enabled a big push towards the 695 

application of geospatial accessibility models. However, a notable difficulty in many countries 696 

is to access a complete data set on the locations of health facilities. Recent projects have 697 

facilitated access and update of health facilities data (Maina et al., 2019; South et al., 2020), 698 

but knowing which facilities are effectively treating snakebite and have antivenom availability 699 

remains a challenge in most countries (see Potet et al, this issue). Notably, WHO is currently 700 

compiling data on health care facilities in several countries in Eastern and Western sub-Saharan 701 

Africa to provide a baseline for a targeted antivenom stockpiling project that, if successful 702 

could be expanded across this and other regions. 703 

The nascent use of high-resolution accessibility modelling to better understand the population 704 

at risk of snakebite envenoming holds great promises. When data on spatial snakebite variation, 705 

spatial distributions of venomous snakes, and antivenom availability are more widely available, 706 

the modelling of vulnerable population coupled to accessibility modelling can be a game 707 

changer for planning and optimizing SBE-related care in affected countries. This also fits the 708 

scope of the "precision global health" (Flahault et al., 2020; Sheath et al., 2020) agenda that 709 

seeks, notably, to enhance effective resource allocation through use of high-resolution spatio-710 

temporal data and innovative digital tools.  711 
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7. A changing world: the effect of land use change and climate change on human-snake 712 

interactions 713 

Just as snakebite risk and incidence change with season, weather and time of day depending on 714 

human and snake activity patterns, they also show long-term temporal trends based on changes 715 

in climate, weather anomalies (Ediriweera et al., 2018) and human land use. Notably, this is 716 

not only of medical relevance, but also poses important challenges to conservation (Lara-717 

Galván et al., 2020). As with other human-wildlife conflicts, the general public usually 718 

perceives snakes as a threat, but is less aware that they themselves also pose a threat to wildlife 719 

(Nyhus, 2016). Many snakes are International Union for Conservation of Nature (IUCN) listed 720 

(IUCN, 2020): out of those listed by WHO, three are considered critically endangered, nine 721 

endangered, 19 vulnerable, seven near threatened, 11 data deficient, and 85 have not been 722 

assessed. This does not yet include any species only listed under groupings such as ‘Micrurus 723 

species’, which have been suggested to be particularly vulnerable to climate change (Terribile 724 

et al., 2018) and achieving conservation goals can be difficult for organisms involved in 725 

human-wildlife conflicts (Madden, 2004). 726 

Anthropogenic climate change will affect snake distributions and abundance, just as it affects 727 

many other organisms. Many animals, including snakes, are predicted to shift their ranges into 728 

higher latitudes as the climate warms, and correspondingly, contract their ranges at low 729 

latitudes (Behrooz et al., 2015; Hickling et al., 2006; Nori et al., 2014). For wide ranging 730 

species, which tend to have broader environmental tolerances (Pintor et al., 2015), this trend 731 

may not be of conservation concern, especially if the overall size of suitable area remains 732 

similar. However, from a human-snake interaction perspective, increases in snakebite risk can 733 

occur if snake ranges shift towards more densely populated areas or previously less exposed 734 

populations (Nori et al., 2014). Snake range shifts will also require changes in antivenom 735 
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supply logistics as affected human populations shift with them. Such shifts will likely coincide 736 

with shifts in many vector-borne diseases (Campbell et al., 2015), resulting in a substantial 737 

challenge for global disease management (Lafferty, 2009). For range-restricted species and 738 

those associated with very specific habitats (e.g. mountain tops or specific vegetation; Behrooz 739 

et al., 2015; Freeman et al., 2018), climate change may pose a higher risk because limited 740 

dispersal ability and habitat fragmentations may hinder shifts in response to these changes 741 

(Terribile et al., 2018; Vasudev et al., 2015; Yousefi et al., 2015). Considering the 742 

concentration of range-restricted species within many taxa in the tropics (Pintor et al., 2015; 743 

Stevens, 1989), the threat of climate change to snake species and the threat of snakes to humans 744 

coincide in similar areas, i.e. in tropical developing countries. Understanding how snake ranges 745 

will change is crucial to future-proof snakebite management tactics.  746 

Climate change may also affect snake abundance and activity patterns at a more local scale, 747 

thereby increasing snakebite risk. However, as we barely understand current patterns in snake 748 

abundance and activity, further research is urgently needed to assess how patterns will change 749 

in the future. For example, snake abundance and activity may increase locally because of longer 750 

warm or rainy seasons (DeGregorio et al., 2015; Ediriweera et al., 2018; Moreno-Rueda et al., 751 

2009), breeding seasons could shift or reproductive output could change (Brown and Shine, 752 

2007; Halupka and Halupka, 2017; Henle et al., 2008; Najmanová and Adamík, 2009), warmer 753 

temperatures could make snakes more active and likely to bite (Ediriweera et al., 2018; 754 

Schieffelin and de Queiroz, 1991) or snakes could change their daily activity patterns to make 755 

best use of favorable temperatures (Gordon et al., 2010; Levy et al., 2019). This could lead to 756 

increased human exposure, exposure at different times of day, or in different seasons. Climate 757 

change is also predicted to lead to more extreme weather anomalies (Mirza, 2003; Seneviratne 758 

et al., 2012; Stott, 2016). Weather anomalies (e.g. in maximum relative humidity) have been 759 

shown to coincide with changes in snakebite prevalence (Ediriweera et al., 2018). 760 
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Another dynamic aspect of human-snake interactions is human land use and how it changes in 761 

response to population growth, infrastructure development, changes in resource exploitation, 762 

or expansion of farming systems (Lamarque et al., 2009; Nyhus, 2016). For example, snakebite 763 

is usually rarer in densely populated urban areas (Ediriweera et al., 2016) and urbanization 764 

could lead to local decreases in snakebite prevalence. On the other hand, snakebite incidence 765 

in rural farming systems is high (Hansson et al., 2010; Hansson et al., 2013; León-Núñez et al., 766 

2020; Suraweera et al., 2020) and varies amongst different crops (Goldstein et al., 2021). 767 

Certain crop expansion and changes in farming practices could lead to increased snakebite 768 

prevalence, while mechanization of farming practices could, conversely, reduce exposure to 769 

snakes. Human-wildlife conflict also often increases with deforestation (Lamarque et al., 2009; 770 

Schneider et al., 2021) and in border-country to remnant forests and protected areas (Hansson 771 

et al., 2013; Sharma et al., 2020) because animals are forced to leave their natural habitat and 772 

use anthropogenic landscapes. For species that are incapable of using anthropogenic 773 

landscapes, this might lead to decreases in suitable habitat and short term increases in human 774 

encounters as they search for new suitable habitat (Acharya et al., 2017; Distefano, 2005). For 775 

species that profit from human landscapes or adapt easily to modified landscapes, it likely leads 776 

to increases in population numbers and long term increases in human exposure (Arias-777 

Rodríguez and Gutiérrez, 2020; Löwenborg et al., 2010; Urbina-Cardona et al., 2008). 778 

Consequences for snakebite management are likely complex and depend on the species 779 

composition of any given landscape as well as the type and spatial patterns in land use change 780 

(e.g. broad scale conversion of natural habitats versus changes in patchiness in mosaic 781 

landscapes, proximity to protected areas, etc.; Acharya et al., 2017). Land use change itself is 782 

difficult to predict because it is based on complex drivers such as human decision-making 783 

processes and government policies (Hurtt et al., 2020; Li et al., 2017; Veldkamp and Lambin, 784 

2001; Xie et al., 2014). However, there is a wide suite of literature and methods on land use 785 
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change that could be integrated into efforts to manage snakebite into the future (Veldkamp and 786 

Lambin, 2001).  787 

A complete review of the literature on land use change is out of the scope of this article, 788 

however, some examples are worth discussing. For example, (Amici et al., 2017) used 789 

machine-learning algorithms to estimate the likelihood of land cover change based on 790 

previously observed conversion patterns. This approach is comparably low-effort because it 791 

uses existing satellite imagery, land use classifications and freely available spatial predictors 792 

in combination with well-established machine learning approaches. At the other end of the 793 

effort-scale are methods that document detailed decision-making patterns by individual 794 

landowners and governments  to predict land conversion probabilities, often in combination 795 

with a land suitability analysis (Hurtt et al., 2020; Li et al., 2017; Veldkamp and Lambin, 2001; 796 

Xie et al., 2014).  Similarly complex models have recently been developed at global scales, for 797 

example land use change for 2050 and 2100 for land types such as forests, grasslands, 798 

croplands, urban, and bare areas at 1km resolution (Li et al., 2017), or historic and future land 799 

use classification from 850-2100 at 25km (Hurtt et al., 2020). Existing predictions of land use 800 

change could be used to describe aspects relevant to human-snake interactions. For example, 801 

areas that have a high potential for smallholder-irrigated agriculture or are predicted to be 802 

changed to cropland have a higher chance of being converted to cropping systems that may 803 

increase human-snake interactions. However, for many regions, models of land use changes 804 

specifically relevant to human-snake interactions do not yet exist or not at suitable scales. 805 

Creation of new land use change probability maps that estimate change in specific parameters 806 

that might affect spatial snakebite variation would be highly beneficial. This is a major task but 807 

could feed into many other humanitarian aid efforts and even guide land use change planning 808 

and protected area management to help avoid worst-case scenarios for humans as well as for 809 

biodiversity. Ultimately, such land use change models, snake ENMs, snakebite incidence 810 
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models, and analyses of healthcare accessibility could all feed into ‘multiple objective 811 

planning’ research, which aims to find best compromises for biodiversity, cultural, health, and 812 

economic objectives during land development planning (Álvarez-Romero et al., 2021).  813 
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8. Increasing the spatial resolution of venom variation to inform antivenom production 814 

and use 815 

Snake venoms are sophisticated and complex mixtures of proteins that play important roles in 816 

prey acquisition and, to a lesser degree, self-defense (Daltry et al., 1996; Kazandjian et al., 817 

2021). For many snakes, venoms are the primary mode of securing prey and hence have 818 

undergone strong selection pressures to function optimally depending on prey type and habitat 819 

(Healy et al., 2019; Sunagar and Moran, 2015), and to fulfill the specific function required (e.g. 820 

prey paralysis, digestion; (Fry, 2015; Fry et al., 2012; Kardong, 1982). Prey type, availability, 821 

and snake habitat varies geographically, especially for wide-ranging snakes (Daltry et al., 822 

1996): consequently, different snake populations often evolve to have different arsenals of 823 

venom proteins between different geographic locations to optimize prey acquisition (Strickland 824 

et al., 2018). For example, pooled venom samples of Bitis arietans, a medically important, 825 

wide-ranging species in Africa with substantial phylogeographic differentiation (Barlow et al., 826 

2013), vary in their protein profile, antibody cross-reactivity, and enzyme activity between 827 

Saudi Arabia, Nigeria, Ghana, Malawi, Tanzania, and Zimbabwe (Currier et al., 2010). 828 

Venoms of additional category 1 species Calloselasma rhodostoma, Bothrops asper, Bothrops 829 

atrox, and Crotalus scutulatus, vary substantially across their observed ranges (Alape-Girón et 830 

al., 2008; Daltry et al., 1996; Sousa et al., 2018; Strickland et al., 2018; Zancolli et al., 2019). 831 

Similarly, geographic variation in venom composition and immunology varies geographically 832 

in all ‘Big Four’ snake species of India (Echis carinatus, Naja naja, Daboia russelii, and 833 

Bungarus caeruleus which has the highest snakebite mortality in the World (Kalita et al., 2018; 834 

Kasturiratne et al., 2008; Mukherjee, 2020; Oh et al., 2017; Patra and Mukherjee, 2020; Pla et 835 

al., 2019; Senji Laxme et al., 2021a; Senji Laxme et al., 2021b; Fig. 5). Such geographic 836 

variation, along with ontogenetic, intra-population, and other forms of venom variation, has 837 

important consequences for snakebite management: antivenom efficacy can vary amongst 838 
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localities depending on which populations were originally used for antivenom production and 839 

differences in enzyme activity can cause different clinical manifestations of envenomation 840 

(Casewell et al., 2014; Chippaux et al., 1991; Warrell, 1997). 841 

Antivenoms are produced using pooled venoms from individuals of each species whose 842 

venoms they are designed to neutralize. It is, therefore, paramount that venoms used in 843 

antivenom production adequately represent the natural variation found across the geographic 844 

region where the antivenom will be used, to ensure their specificity and generality (Chippaux 845 

et al., 1991). In reality, however, this is rarely the case. Venom for antivenom production often 846 

comes from captive snake populations rather than being collected in the field (WHO, 2010a). 847 

In either case, the origin of these populations is usually of an opportunistic rather than planned 848 

nature. Furthermore, many snakes have no specific antivenom produced against them at all 849 

(Longbottom et al., 2018) and their bites are treated with antivenoms developed against related 850 

species, which is problematic since intra-genus venom variation can be substantial and is often 851 

as poorly understood as intraspecific variation (Queiroz et al., 2008). Part of the reason for 852 

these shortcomings is that it is difficult and expensive to obtain representative venom samples 853 

from all species and populations across large geographic regions. The other reason is that we 854 

simply do not have a good understanding of how venom composition varies geographically 855 

within most species (and sometimes amongst different species) and, therefore, cannot chose 856 

representative venom collection localities objectively. A resulting known unknown is that we 857 

can rarely say where an antivenom is effective or ineffective because of limited efficacy testing 858 

(Keyler et al., 2013; WHO, 2010a). 859 

WHO’s ‘guidelines for the production and validation of antivenoms’ outline solutions to the 860 

issue of poorly tested antivenoms with poorly documented production methodologies (WHO, 861 

2010a, 2018): recommendations include the creation of region-specific polyvalent antivenoms, 862 
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the careful consideration of appropriate venoms used in antivenom production, pre-clinical 863 

tests of neutralization efficiency of relevant region-specific venoms, and traceability of venom 864 

batches as well as consistency amongst batches. Despite ongoing efforts from WHO to test the 865 

quality of available antivenoms, poor quality antivenoms still dominate the current market. To 866 

put WHO’s guidelines into broader practice, we require detailed studies of geographic venom 867 

variation, especially for snakes with large geographic ranges. As mentioned above, geographic 868 

venom variation has been studied in some snakes but mostly at a relatively coarse resolution. 869 

Venom is usually compared between different populations from extreme corners of a snake’s 870 

distribution or from a subset of countries or states the species occupies (Chang et al., 2013; 871 

Currier et al., 2010; Mukherjee, 2020; Oh et al., 2017; Pla et al., 2019; Sousa et al., 2018). Few 872 

studies have comprehensively assessed venom variation at a fine-scale across the whole range 873 

of a species (Daltry et al., 1996; Strickland et al., 2018). Overall, our understanding of fine-874 

scale geographic venom variation is limited. For example, the venom of a hypothetical species 875 

may be different between three populations P1, P2, and P3 (Fig. 6). These populations may 876 

represent three distinct clades that each cover a third of the species’ distribution. Alternatively, 877 

venom composition may change gradually between the populations and be slightly different at 878 

any given location. Another possibility is that some population are restricted to small areas 879 

delineated by geographic boundaries to gene flow or that each have a distinct habitat type, 880 

while others are wide-ranging. There may even be additional distinct venom lineages (e.g. 881 

isolated island lineages) that have not yet been discovered and whose venom is not neutralized 882 

by antivenom based on the three known lineages. Lastly, different venom lineages can occur 883 

throughout a snake’s distribution based on fine-scale environmental patterns (Strickland et al., 884 

2018; Zancolli et al., 2019) or diversity of venom expression within a population (Pintor et al., 885 

2011) instead of occupying distinct parts of the distribution. 886 
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A good understanding of geographic venom variation can benefit snakebite management in a 887 

multitude of ways (Chippaux et al., 1991; Fry et al., 2003; Senji Laxme et al., 2021b). Firstly, 888 

it allows us to determine where current antivenoms are likely to work based on the origin of 889 

venom used for their production (Senji Laxme et al., 2021b). Potential gaps in efficacy can be 890 

identified and used to target additional venom collection for efficacy assessments or new 891 

antivenom development where necessary. Secondly, new antivenom regions could be defined 892 

based on the boundaries of known venom lineages and region-specific antivenoms produced 893 

to maximize efficacy and minimize required volumes (Keyler et al., 2013). Thirdly, studies on 894 

taxonomy and on drivers of venom evolution could profit from the observed patterns and use 895 

them to predict likely patterns in variation for snakes that have not yet been studied. This last 896 

point is particularly important considering the high cost, effort, and risk involved in surveying 897 

snake populations across vast, remote, and often politically unstable regions.  898 

Distribution estimates based on predictive models could function as a basis for venom sampling 899 

efforts. For example, venom lineages may be similar across continuous patches of suitable 900 

habitat, while low suitability could function as a geographic barrier separating distinct lineages. 901 

Individual sampling locations from each suitable habitat patch (at appropriate scales) could be 902 

prioritized for venom collection, followed by more fine-scale collection efforts if resources 903 

allow (Fig. 7). Recent studies have used ENMs to estimate the distribution of individual genetic 904 

lineages within a clade based on cost-distance from known locations (Rosauer et al., 2016; 905 

Rosauer et al., 2015) and a similar approach could be used to estimate the distribution of venom 906 

lineages. In crisis scenarios where a new representative antivenom needs to be produced 907 

quickly or resources are limited, distinct suitable habitat patches could even be used as a proxy 908 

for potential venom lineages needed for representative venom collection and verified later (Fig. 909 

7). Alternatively, distinct venom lineages can be modelled separately to study environmental 910 

drivers of venom variation (Strickland et al., 2018). Care must be taken to not confuse genetic 911 
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lineages with venom lineages, as geographically distinct venom lineages have been shown to 912 

occur even within distinct genetic subpopulations (Strickland et al., 2018; Zancolli et al., 2019). 913 

Note that there are many more challenges involved in the improvement of antivenoms that are 914 

out of the scope of this article. Only the spatial components have been discussed here.  915 
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9. Conclusion 916 

Successful snakebite mitigation and management requires a fine-scale understanding of spatial 917 

patterns in snake distributions, snakebite incidence, human population vulnerability, and 918 

medical infrastructure globally. Considerable efforts must be taken to collect additional data 919 

within these categories and to streamline data integration and collaboration between 920 

governmental bodies, the scientific community and the general public. Only then can 921 

sophisticated spatio-temporal analysis methods be applied to accurately predict spatio-922 

temporal variation, which will inform successful on-ground management and resource 923 

allocation. Until such systems are implemented, interim solutions can function as preliminary 924 

means to guide actions. Existing data collection and model methods in example countries can 925 

be expanded to surrounding regions. Research on snake biology and human-snake interactions 926 

can add value to existing models. Citizen science projects can test-run targeted elicitation of 927 

data collection in under-sampled areas using novel vetting protocols, possibly including image 928 

recognition. Lastly, snake conservation, education, and land use management can mitigate 929 

potential future increases in human-snake conflict. 930 

We have outlined knowledge gaps and approaches to reduce them for a wide variety of spatial 931 

components of the global snakebite crisis. The key steps needed for progress are summarized 932 

from a practical, as well as academic perspective, in Text Box 1. However, successful 933 

snakebite management and prevention is influenced by many other, non-spatial factors that are 934 

discussed elsewhere in this special issue. These include topics such as antivenom production 935 

and quality control, community engagement strategies, mobilization of financial resources, 936 

improvements in snakebite first aid, medical personnel training, and medical protocols, 937 

amongst others.  938 
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We hope that this review will motivate future research on the topic, promoting additional 939 

transdisciplinary collaboration and innovation to expand the information and methods 940 

suggested here. The gap between traditional epidemiology, ecology, conservation biology, and 941 

information technology is worth narrowing to unite strengths against snakebite. 942 

  943 

Text Box 1. Recommended priorities for spatial snakebite research and 

management: 

 Streamline collection of data on snake occurrences & snakebite incidence 

 Set up pipelines for data vetting, data integration, and expert collaboration 

 Create globally consistent models of current and future snake distributions, 

snakebite risk, and snakebite incidence, under consideration of climate change, land 

use change, and seasonal variability 

 Study patterns in venomous snake abundance, activity, and population dynamics 

 Set up spatially optimized land use strategies and protected area networks that 

minimize human-snake conflict 

 Establish spatial database of health care infrastructure and vulnerable populations  

 Set up spatially optimized antivenom distribution networks 

 Determine fine-scale patterns in and evolutionary drivers of spatial venom variation 
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Tables 1746 

Table 1 Summary of example studies using ENMs to estimate snake species distributions for a variety of purposes, including 

epidemiology of snakebite, snakebite risk, and snakebite incidence 

 ENM 

Method^ 

Time Resolution Species Geographic Area Purpose 

Brito et al. 2008 Maxent current ~1km Vipera latastei 

Vipera monticola 

Southern Europe 

Northern Africa 

Phylogeography 

Di Cola & 

Chiaraviglio 2011 

GARP current ~10km Bothrops alternatus 

Bothrops ammodytoides 

Bothrops diporus 

Argentina Biogeography 

Lawing & Polly, 2011 Bioclim 

GLM 

2100 

-6000 

-21000 

2.5 arc-

minutes 

11 rattlesnakes in the genus 

Crotalus 

North America Biogeography 

Conservation 

Yanez-Arenas et al. 

2016 

Maxent current 

2050 

~20km 192 species of venomous 

snakes 

North America 

Central America 

South America 

Snakebite 

Incidence* 

Barlow et al. 2013 Maxent -21,000 2.5 arc-min  Bitis arietans Africa Phylogeography 

Lyet et al., 2013 GAM current 50 m Vipera ursinii 

 

France Ecology 

Conservation 

Yanez-Arenas et al. 

2014 

GARP current ~1km 21 species of venomous 

snakes 

Veracruz, Mexico Snakebite 

Incidence* 

Nori et al. 2014 Ensemble: 

Maxent  

GARP 

SVM 

 

current  

2030 

2080 

~5km Bothrops alternatus 

Bothrops ammodytoides 

Bothrops diporus 

Crotalus durissus terrificus 

Micrurus pyrrhocryptus 

Argentina Snakebite Risk* 

Burbrink & Guiher 

2014 

Maxent current ~1km Agkistrodon piscivorus 

Agkistrodon contortrix 

Agkistrodon conanti 

Agkistrodon laticinctus 

North America Phylogeography 

Yousefi et al. 2015 Maxent -21,000 

current 

2070 

~1km Montivipera raddei species 

complex 

Iran 

Turkey 

Armenia 

Ecology, 

Conservation 

Gül 2015 Maxent current ~1km Vipera barani Turkey Conservation 

Mizsei et al. 2016 Maxent current ~1km Vipera ursinii Albania Conservation 

Schield et al. 2018 Maxent -21000 2.5-min Crotalus scutulatus  Biogeography 

Terribile et al., 2018 Bioclim 

ENFA 

Euclidian 

Distance  

FDA 

GAM 

GLM 

Gower 

Distance  

Mahalanobis 

Distance  

MARS 

Maxent 

ANN 

RF 

current 

2080–

2100 

0.5° 

resolution 

Micrurus lemniscatus 

species complex 

South America Conservation 

Yanez-Arenas et al. 

2018 

Maxent current ~1km 39 species of venomous 

snakes 

Ecuador Snakebite Risk* 
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Strickland et al. 2018 Maxent current ~1km Crotalus scutulatus  Venom study 

Longbottom et al. 

2018 

BIOCLIM current ~5km 278 species of venomous 

snakes 

Global Snakebite Risk* 

Asadi et al. 2019 Ensemble: 

Maxent 

GLM 

GBM 

RF 

current ~1km Gloydius caucasicus Iran Phylogeography 

Conservation 

Zacarias et al. 2019 Maxent current 

2080 

~5km Atractaspis bibronii 

Bitis arietans 

Bitis gabonica 

Causus rhombeatus 

Dendroaspis angusticeps 

Dendroaspis polylepis 

Dispholidus typus 

Naja annulifera 

Naja melanoleuca 

Maja mossambica 

Naja nigricollis 

Thelotornis capensis 

Thelotornis usambarics 

Mozambique Snakebite Risk* 

Conservation 

Bravo-Vega et al. 

2019 

Maxent current ~1km Bothrops asper Costa Rica Snakebite 

Incidence* 

Lourenço-de-Moraes 

et al. 2019 

Bioclim, 

Maxent, 

ENFA 

2080 0.05° 144 species of snakes 

including 24 venomous 

snakes 

Brazil, Conservation 

Mizsei et al. 2020 Ensemble 

GLM 

GAM 

ANN 

RF 

Maxent 

current 

2020 

2040 

2060 

2080 

 Vipera graeca Greece and 

Albania 

Ecology 

Conservation 

Lara-Galván et al. 

2020 

BIOCLIMBI

OCLIM.DIS

MO 

BRT 

CART  

FDA 

GAM GLM 

GLMNET 

MARS 

MAXENTMA

XLIKE MDF 

RF 

RPART SVM 

current ~1km Crotalus aquilus 

Crotalus atrox 

Crotalus basiliscus 

Crotalus Lepidus 

Crotalus molossus 

Crotalus polystictus 

Crotalus pricei 

Crotalus scutulatus 

Crotalus willardi. 

Mexico Ecology 

Conservation 

Yousefi et al. 2020 Ensemble: 

Maxent 

GBM 

GAM 

GLM 

RF 

current ~1km Macrovipera lebetina 

Echis carinatus 

Pseudocerastes persicus 

Naja oxiana 

Iran Snakebite Risk* 

^Maxent: maximum entropy models; GLM: generalized linear models; GBM: generalized boosting models; GAM: generalized additive models; 

RF: random forest models; GARP: Genetic Algorithm for Rule-set Production; SVM: Support Vector Machine 

*Exposure here refers to how likely human populations are to be exposed to a venomous animal based on its distribution and habitat suitability, 

while risk involves the exposure and its potential consequence, and incidence is the correlation of predictors with explicitly measured numbers of 

snakebite 
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Table. 2 Summary of key studies on spatial variation in snakebite incidence or mortality, ranging from simple 

descriptive studies to fine-scale predictions. 
 Type Measure Area Resolution Method Important Predictors 

Studies describing broad scale spatial patterns and hotspots in snakebite incidence  

Swaroop 1954 Spatial* 

Temporal* 

 

Mortality Global Source data: 

Country 

Predictions: 

NA 

NA NA 

Chippaux 1998 Spatial incidence Global Source data: 

Country 

Predictions: 

Snakebite 

Regions 

NA NA 

Kasturiratne et al. 2008 Spatial Incidence 

Mortality 

Global Source data: 

Countries 

Predictions: 

global 

burden 

region 

NA NA 

Studies using simple statistics, epidemiology, and coarse scale spatial predictors to describe spatial variation in snakebite incidence 

Molesworth 2003 Spatial 

Temporal 

Incidence West 

Africa 

(Ghana & 

Nigeria) 

Source data: 

29 health 

facilities 

Predictions: 

~15km grid 

LogR NDVI↑ 

Season (Rainy season) 

Leynaud and Reati 2009 Spatial Incidence Cordoba, 

Argentina 

Source data: 

Department 

Predictions: 

department 

Spatial 

smoothing 

model 

Location in departments with high 

percentage of persistence farming 

Species identity 

Mohapatra et al. 2011 Spatial 

Temporal 

Individual 

Mortality India Source data: 

~7,000 

small areas 

Predictions: 

states 

LogR Male/ Female 

Religion (Hindu↑) 

Occupation (Agricultural 

worker↑) 

Season (Monsoon↑) 

State (high prevalence states↑) 

Age(15-29↑) 

Chippaux 2017** Spatial 

Temporal 

Individual 

Incidence 

mortality 

Americas Source 

Data: 

Province 

Predictions: 

Province 

t-test, 

Pearson 

Correlation, 

Chi 

Squared, 

Mann-

Whitney 

Test 

Altitude↓ 

Male/Female 

Age (young to middle aged↑) 

Climate Zone 

Season (Rainy or Summer↑) 

Population density↑↓ 

Year↑↓ 

Angarita-Gerlein et al. 

2017 

Spatial 

Temporal 

incidence Colombia Source 

Data: 

Municipalit

y 

Predictions: 

Municipalit

y 

Cross-

correlation 

analysis 

Precipitation 

Municipality Identity 

Riascos et al. 2019 Spatial 

Temporal 

Incidence Coffee 

Triangle 

Region, 

Colombia 

Source data: 

Municipalit

y 

Predictions: 

NA 

 

NA Year 

Season 

León-Núñez et al. 2020 Spatial 

Individual 

Incidence Colombia Source data: 

Department 

Predictions: 

Department 

t-test, 

Pearson 

Correlation, 

Chi 

Squared, 

Mann-

Whitney 

Test 

Male/ Female 

Urban/ Rural 

Ethnicity (Afro-Colombian & 

Indigenous↑) 

Age (28-35↑) 

Region (Amazonia & Orinoquia↑) 

Species identity 

Year↑ 

Studies using relatively novel fine scale source data, advanced statistical models, and improved resolution 

Hansson et al. 2010 Spatial 

Temporal 

Individual 

Incidence Nicaragua Source data: 

municipality  

Predictions: 

municipality 

Poisson 

regression 

Season (Rainy Season↑) 

Environmental Region (altitude, 

precipitation, geographic clustering; 

Wet Lowlands↑) 

Rural population percentage↑ 
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Male population percentage↑ 

Young population percentage 

Underreporting index↑ 

Hansson et al. 2013 Spatial Incidence Costa Rica Source data: 

district  

Predictions: 

district 

 

Bayesian 

Poisson 

regression 

altitude↓ 

precipitation↑ 

length of dry season↓ 

rural population percentage↑ 

population percentage near large 

forests↑ 

Snake habitat suitability↑ 

Chaves et al. 2015 Spatial 

Temporal 

incidence Costa Rica Source data: 

County 

Predictions: 

County 

geographica

lly weighted 

regression 

Weather & Climate Oscillations 

Temperature↑ 

Precipitation 

Poverty Indicators (Poverty gap 

index and percentage of destitute 

housing)↑ 

Altitude↓ 

Yanez-Arenas et al. 2016 Spatial Incidence Americas Source data: 

Provinces 

Predictions: 

~20km grid 

GLM Cumulative MRS presence & 

abundance index (SRI_2) ↑ 

Yanez-Arenas et al. 2014 spatial Incidence Veracruz, 

Mexico 

Source data: 

Municipalit

y 

Predictions: 

Municipalit

y 

GAM 2 MRS species’ abundance 

estimate↑ 

Index of marginalization↑ 

Suraweera et al. 2020 Spatial 

Temporal 

Individual 

Mortality 

Incidence 

(inferred) 

India Source data: 

~7,000 

small areas 

Predictions: 

~50km grid 

Spatial 

Poisson 

model 

Age group (30-69↑) 

Male/ Female 

Season (Monsoon↑) 

Elevation to 400m↓ 

Urban/ Rural 

Poverty (rural female illiteracy)↑ 

Monthly mean temperature to 20°C↑ 

Year↓ 

Species identity 

Schneider et al. 2021 Spatial Incidence Brazil Source data: 

Municipalit

y 

Predictions: 

Municipalit

y 

 

Negative 

binomial 

regression 

model 

Major habitat type (Tropical↑) 

Temperature↑ 

Precipitation↑ 

Elevation↑ 

Urbanization percentage↓ 

Venomous snake richness 

Forest loss↑ 

GDP per capita↓ 

Studies resulting in fine scale predictions of snakebite incidence 

Ediriweera et al. 2016 

Ediriweera et al. 2018 

Ediriweera et al. 2019 

Spatial 

Temporal 

Individual 

 Sri Lanka Source 

Data: 

household 

clusters in 

smallest 

administrati

ve divisions 

Predictions: 

1km 

GLM 

GAM 

Geostatistic

al binomial 

logistic 

Log-linear 

models 

Male/Female 

Age (middle aged↑) 

Time of day (evening↑) 

Occupation (farm labourer↑) 

Education↓ 

Monthly income↓ 

Population density↓ 

Elevation 

Occupation distribution 

Climatic zone 

Season 

humidity weather abnormalities↓ 

Bravo-Vega et al. 2019 Spatial incidence Costa Rica Source 

Data: 

District 

Predictions: 

1km 

Linear 

regression 

Encounter frequency of Bothrops 

asper 

Human population density 

Goldstein et al. 2021 Spatial 

temporal 

Incidence Sri Lanka Source data: 

10m-2km 

Predictions:

2km study 

squares 

Bottom-up 

Agent based 

modelling 

Snake-famer activity overlap 

patterns based on: 

Monthly precipitation 

Number of rainy days 

Farmer type 

Land type 

Daily farmer activity time↑ 

Population percentage farmers↑ 

Snake activity season↑ 
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Circadian snake activity time↑ 

Snake aggressiveness↑ 

Snake land type association↑ 

Snake abundance estimate↑ 

GAM=generalized additive models; GLM=generalized linear models; LogR=Logistic regression; SRI=’snakebite risk index’; 

NDVI=normalized difference vegetation index 

↑=positive correlation; ↓=negative correlation; no arrow= complex correlation pattern; bold text=significant categorical predictor 

*Information given in written form such as tables but could be analysed spatially and/or temporally 

**small scale studies already summarized in this review are not listed again separately in the table 
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Figures & Captions 

  
 

  

 
 

Fig. 1 WHO (pink shaded area) and GARD (red dotted outlines) distribution estimates, and 

known occurrences (red dots) for medically relevant snake species of conservation concern 

C 

A B 

D 

E F 
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(IUCN 2020) from category 1 Echis jogeri [A; data deficient] and Bungarus slowinskii [C & E; 

vulnerable] and category 2 Pseudechis papuanus [B; data deficient] and Mixcoatlus barbouri 

[D & F; endangered], showcasing how snakes often have limited distribution data and varying 

distribution estimates. ENMs for B. slowinski (E) and M. barbouri F) improve distribution 

estimates (blue=more suitable; data for models was combined with closely related, ecologically 

similar sister species B. bungaroides and M. browni, respectively, to achieve minimum data 

requirements for models). Note that suitable habitat may be unreachable by a species or may be 

occupied by closely related or competing taxa. Background in A-D shows mean vegetation 

greenness (fraction photosynthetic active radiation; 

https://land.copernicus.eu/global/products/fapar) with greener shown as darker shades of grey. 
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Fig. 2 Proposed components of iterative strategy to improve knowledge on snake species and their 

distributions. 

  

i) List of 
Medically 

Relevant Snake 
Species

ii) Occurrence 
Record 

Database

iii) Expert 
Derived Range 

Maps

iv) 
Environmental 
Niche Models

v) Targeted 
Research
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Fig. 3 Diagram describing the dependence of snakebite mortality and morbidity on snakebite and 

envenomation incidence, and risk (the product of likelihood of exposure and consequence of exposure). 

Snakebite risk is intrinsic to the nature of the dangerous herpetofauna in an area, incidence is how often the 

risk is realized, and snakebite morbidity/ mortality further depend on snakebite management practice. 

 

 

  

Likelihood of Exposure:

the likelihood of a potentially dangerous                                         
encounter with a snake (snake = hazard; depends on snake 

presence and abundance)

Snakebite Risk:

product of likelihood of exposure to a snake (hazard) 
and likelihood of exposure leading to a bite, i.e. the 

consequence from exposure to the hazard (depends on 
snake species charcteristics) 

Snakebite Incidence: 

the observed or modelled frequency of snakebite 
(depends on how often snakebite risk is realized)

Envenomation Incidence:                                                     
the frequency of envenomation resulting                       

from a bite (depends on protective 
equpiment, snake behaviour, etc.) 

Snakebite Morbidity:

The frequency of developing health 
problems from envenomation 

(depends on  venom attributes and 
medical management of bite)

Snakebite Mortality: 

The frequency of dying from                           
envenomation (depends on venom                             

attributes and medical                                   
management of morbidity) 
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Fig. 4: Health seeking behaviour pattern versus envenoming incidence in Sri Lanka adapted from Ediriweera 

et al.2016; 2017. Individual cases are mapped on an envenoming bite incidence map of Sri Lanka. Black 

triangles show modern medical treatment seeking behaviour, blue triangles show traditional medical treatment 

seeking behaviour.  
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Fig. 5 Sample locations for studies on the geographic variation in venom composition in the ‘Big Four’ snakes 

across the Indian sub-continent: the Indian spectacled cobra (Naja naja; Mukherjee et al. 2020), the Indian 

krait (Bungarus caeruleus; Oh et al. 2017), the saw-scaled viper (Echis carinatus; Patra et al. 2020), and the 

Russell's viper (Daboia russelii; Pla et al. 2019). Background shows mean vegetation greenness (fraction 

photosynthetic active radiation; https://land.copernicus.eu/global/products/fapar) with greener areas shown as 

darker shades of grey.  
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Fig. 6 Example of how different hypothetical intraspecific venom lineages or venom expression types could 

be distributed within a species’ overall range. A: Location of the sampled lineages P1, P2, and P3;  B: Each 

venom lineage may occur throughout the species’ distribution (wide-spread diversity in expression of venom 

types); C: geographically distinct lineages could occupy similar proportions of the species’ range; D: venom 

composition could change gradually between lineages; E: some lineages could be locally restricted because 

of boundaries to gene flow (thick black lines) or different sized areas of distinct habitat types relevant to 

venom expression; F: additional unsampled lineages may be present, such as isolated island [P4] or distinct 

habitat fragment [P5] lineages.  
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Fig. 7 Example of how the species Bungarus fasciatus might be split up (thick black lines) into potential 

venom lineages based on perceived gaps in its distribution and known dispersal barriers (e.g. oceans) using 

(A) known occurrence records (red dots) and expert derived range estimates (pink shaded area) or, 

alternatively, using (B) habitat suitability estimates to detect potential distribution gaps. 
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Highlights 1 

 Many knowledge gaps remain on snake distributions and spatial snakebite variation 2 

 Targeted data collection and high resolution spatial models are needed 3 

 Maps of snake distributions, bite incidence, and vulnerable populations are needed 4 

 Area-specific antivenom delivery requires studies on spatial venom variation 5 

 Human welfare and snake conservation require spatial management of conflict 6 
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