Supporting Information for

Enantioselective Synthesis and Profiling of Potent, Non-linear Analogues of Antimalarial Tetraoxanes E209 and N205

Christopher M. Woodley ${ }^{1}$, Gemma L. Nixon ${ }^{1}$, Nicoletta Basilico ${ }^{2,7}$, Silvia Parapini ${ }^{3,7}$, Weiqian David Hong ${ }^{1}$, Stephen A. Ward ${ }^{4}$, Giancarlo A. Biagini ${ }^{4}$, Suet C. Leung ${ }^{1}$ Donatella Taramelli ${ }^{5,7}$, Keiko Onuma ${ }^{6}$, Takashi $H^{\prime}{ }^{6}{ }^{6}$ and ${ }^{*}$ Paul M. O’Neill ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
${ }^{2}$ Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.
${ }^{3}$ Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.
${ }^{4}$ Centre for Drugs and Diagnostics. Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
${ }^{5}$ Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.
${ }^{6}$ Eisai Co.,Ltd. Tsukuba Research Laboratories, 5-1-3 Tokodai, Tsukubashi, Ibaraki, JAPAN 300-2635
${ }^{7}$ Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano

Author for correspondence:

Professor Paul M. O’Neill

Department of Chemistry

The Robert Robinson Laboratories

The University of Liverpool
Liverpool L69 3BX

United Kingdom
Telephone: 01517943553

E-mail: pmoneill@liverpool.ac.uk
Table of Contents

1. Computational Details 3
2. Antimalarial Data 4
3. FaSSIF Solubility Data 5
4. Pharmacokinetic Properties Assays 5
5. Experimental Procedures 10
6. HPLC Traces 30
7. References 41

1. Computational Details

All calculations were carried out at ground state in the gas phase using density functional theory as implemented in Gaussian16. All geometry optimisations were performed with the M062X functional and using the 6-31G* basis set for C, H, O and P atoms, and LANL2DZ for Rh atoms. Vibrational frequencies were calculated at the same level to ensure each transition states possessed only one negative frequency.

	TS	G (au)	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$
	Favoured	-3026.738580	-4.4797
	Disfavoured	-3026.731441	

Table S1: Table summarising transition state energies for favoured and disfavoured transition states (TS) of Rhodium (I) catalysed conjugate addition of phenylboronic acid with 2-cyclohexen-1-one

Figure S1: Transition states for favoured and disfavoured products

Compounds	$\begin{gathered} D 10 \\ \mathrm{IC}_{50}(\underline{\mathrm{nM}}) \end{gathered}$	$\begin{gathered} W 2 \\ \mathrm{IC}_{50}(\underline{\mathrm{nM}}) \end{gathered}$
9a	17.46 ± 4.86	19.20 ± 5.70
9 b	20.77 ± 7.66	22.46 ± 8.45
9c	12.92 ± 4.43	12.80 ± 3.55
10a	17.38 ± 0.49	15.98 ± 5.34
10b	15.96 ± 5.50	15.82 ± 6.16
10c	16.39 ± 4.15	17.68 ± 7.13
14a	12.49 ± 4.64	11.25 ± 1.15
14b	15.22 ± 3.34	15.20 ± 5.53
14c	58.79 ± 17.27	53.59 ± 14.19
15a	10.58 ± 4.54	10.28 ± 2.42
15b	16.46 ± 4.17	14.88 ± 3.05
15c	15.68 ± 5.39	14.44 ± 2.15
CQ	31.92 ± 2.77	462.02 ± 97.57
DHA	2.59 ± 0.67	1.02 ± 0.28

Table S2: IC50 of nonlinear tetraoxane containing antimalarials, chloroquine (CQ) and dihydroartemisinin (DHA) against P. falciparum strains, D10 (CQ sensitive) and W2 (CQ resistant)
P. falciparum cultures were prepared according to Trager and Jensen with slight modifications. ${ }^{1}$ For the chemosensitivity assays, compounds were dissolved in DMSO and serial dilutions made with complete medium constituted by RPMI 1640 (EuroClone, Celbio) with the addition of 1\% AlbuMax (Invitrogen, Milan, Italy), 0.01% hypoxanthine, 20 mM Hepes, and 2 mM glutamine. Asynchronous cultures with parasitaemia of 1-1.5 $\%$ and final hematocrit of 1% were added and the plates were incubated for 72 h at $37{ }^{\circ} \mathrm{C}$. Parasite growth was determined spectrophotometrically by measuring pLDH activity according to Makler with modifications. ${ }^{2,3} 50$ $\%$ inhibitory $\left(\mathrm{IC}_{50}\right)$ values are expressed as mean \pm standard deviation (SD) of three different experiments, each performed in duplicate.

3. FaSSIF Solubility Data

Approximately 5 mg of each sample was weighed into a glass test tube which was subsequently charged with 3 mL of FaSSIF media or 0.1 N HCl as well as a FaSSIF blank. Samples were mixed at 50 rpm by a rotator (Intilli Mixer RM-2M) at $37^{\circ} \mathrm{C}$ for 1 hour. Mixtures were filtered using 13 mm disk filter (Millipore Millex-HEMF PES $0.45 \mu \mathrm{~m}$, Merck Millipore) and the filtrate analysed by HPLC. Final pH values were measured using a pH meter (F-53, HORIBA)

4. Pharmacokinetic Properties Assays

The DMPK data showed in the Table 3 were assessed through a high through-put platform kindly provided by AstraZeneca U.K. The methods of the three assays, including aqueous solubility in pH 7.4 PBS buffer, microsome and hepatocyte clearance measurements have been reported previously. ${ }^{4}$

The in vivo PK data showed in the Table 6 were obtained in PK studies carried out by a CRO (ChemPartner, Shanghai, China) on behalf of the project team through outsourcing. All in vivo PK studies conformed to AAALAC International and NIH guidelines as reported in the Guide for the Care and Use of Laboratory Animals, National Research Council (2011); People's Republic of China, Ministry of Science \& Technology, "Regulations for the Administration of Affairs Concerning Experimental Animals," 1988. Full data is included in Tables S3-S6.

Table S3 Individual and mean plasma concentration-time data of TDD-N205 after an IV dose of $\mathbf{2} \mathbf{~ m g} / \mathrm{kg}$ in male SD
rats ${ }^{1}$

Dose	Dose	Sampling	Concentration			Mean	SD	CV(\%)
(mg/kg)	route	time	($\mathrm{ng} / \mathrm{mL}$)			($\mathrm{ng} / \mathrm{mL}$)		
		(hr)	Rat\#1	Rat\#2	Rat\#3			
2	IV	0.083	397	441	407	415	23.1	5.56
		0.25	136	211	216	188	44.8	23.9
		0.5	102	149	132	128	23.8	18.6
		1	53.3	76.5	68.1	66.0	11.7	17.8
		2	26.7	27.7	23.1	25.8	2.42	9.37
		4	7.68	12.5	6.68	8.95	3.11	34.8
		6	1.89	2.88	2.33	2.37	0.496	21.0
		8	1.65	3.32	2.94	2.64	0.875	33.2
		12	0.905	1.01	1.14	1.02	0.118	11.6
		24	0.408	BQL ${ }^{2}$	BQL	0.408	NA	NA
PK par	eters ${ }^{3}$	Unit	Rat\#1	Rat\#2	Rat\#3	Mean	SD	CV(\%)
		L/hr/kg	7.60	6.09	6.85	6.85	0.756	11.0
		L/kg	17.3	9.52	11.8	12.9	4.00	31.1
AU		hr*ng/mL	258	323	283	288	32.7	11.4
AU		hr*ng/mL	263	328	292	294	32.7	11.1
Termi	$\mathrm{t}_{1 / 2}$	hr	8.40	3.61	5.10	5.70	2.45	43.0
Regressi	points	hr	8,12,24	6,8,12	6,8,12	NA	NA	NA
MR		hr	2.27	1.56	1.72	1.85	0.374	20.2

1) No abnormal clinical symptom was observed
2) $\mathrm{BQL}=$ Below quantifiable limit of $1.00 \mathrm{ng} / \mathrm{mL}$ for IV and PO group in male SD rat plasma.
3) PK parameters were estimated by non-compartmental model using WinNonlin 8.2

Table S4 Individu	and mean p	$\begin{aligned} & \text { ma conce } \\ & 10 \mathrm{mg} / \mathrm{kg} \end{aligned}$	$\begin{aligned} & \text { tration-ti } \\ & \text { n male } \mathrm{S} \end{aligned}$	data rats ${ }^{1}$	$\overline{\text { TDD-N20 }}$	after	dose of
Dose 2 Dose $(\mathrm{mg} / \mathrm{kg})$ route	Sampling time		($\mathrm{ng} / \mathrm{mL}$)		$\begin{gathered} \text { Mean } \\ (\mathrm{ng} / \mathrm{mL}) \end{gathered}$	SD	CV(\%)
	(hr)	Rat\#4	Rat\#5	Rat\#6			
10 PO	0.5	28.5	14.7	26.2	23.1	7.39	32.0
	1	24.2	23.1	34.5	27.3	6.29	23.1
	2	27.1	16.4	50.8	31.4	17.6	56.0
	3	97.6	27.6	68.3	64.5	35.2	54.5
	4	89.5	45.7	91.0	75.4	25.7	34.1
	5	75.3	183	127	128	53.9	41.9
	6	47.4	102	49.5	66.3	30.9	46.7
	7	24.8	37.2	33.1	31.7	6.32	19.9
	12	8.71	16.7	9.90	11.8	4.31	36.6
	24	1.61	1.25	0.917	1.26	0.347	27.5
PK parameters	Unit	Rat\#4	Rat\#5	Rat\#6	Mean	SD	CV(\%)
$\mathrm{T}_{\text {max }}$	hr	3.00	5.00	5.00	4.33	1.15	26.6
$\mathrm{C}_{\text {max }}$	$\mathrm{ng} / \mathrm{mL}$	97.6	183	127	136	43.4	31.9
$\mathrm{AUC}_{\text {last }}$	$\mathrm{hr}{ }^{\text {ngg/mL }}$	527	660	615	601	67.6	11.2
$\mathrm{AUC}_{\text {INF }}$	$\mathrm{hr} * \mathrm{ng} / \mathrm{mL}$	538	667	619	608	65.2	10.7
Terminal $\mathrm{t}_{1 / 2}$	hr	4.41	3.42	3.32	3.72	0.602	16.2
Regression points	hr	7,12,24	7,12,24	7,12,24	NA ${ }^{4}$	NA	NA
F^{5}	\%	36.5	45.3	42.0	41.3	4.43	10.7

1. No abnormal clinical symptom was observed during entire in-life study.
2. The IV dosing solution was prepared in $10 \% \mathrm{DMSO}$ and $90 \% 5 \%$ Tween 80 in 20 mM phosphate buffer (pH 3.0). The PO dosing solution was prepared in 52 mM citric acid.
3. Concentrations within $75 \%-100 \%$ of the LLOQ were considered within LC/MS-MS normal instrumental variation and included in data presentation and PK parameter estimation.
4. NA: Not available.
5. F value was determined by the following equation:

If AUClast/AUCINF $>80 \%$: $\mathrm{F}=($ AUCINF-EX \times DOSEIV)/(AUCINF-IV \times DOSEEX) $* 100 \%$
If AUClast/AUCINF < 80\%: F=(AUClast-EX \times DOSEIV)/(AUClast-IV \times DOSEEX) $* 100 \%$

Table S5 Individual and mean plasma concentration-time data of 14a after an IV dose at 2 $\mathbf{m g} / \mathbf{k g}$ in SD rats ${ }^{1}$							
Dose Dose	Sampling	Concentration				SD	CV(\%)
(mg/kg) route	time	($\mathrm{ng} / \mathrm{mL}$)			($\mathrm{ng} / \mathrm{mL}$)		
	(hr)	Rat \#1	Rat \#2	Rat \#3			
2 IV	0.083	788	568	447	601	173	28.8
	0.25	360	314	279	318	40.6	12.8
	0.5	180	168	192	180	12.0	6.67
	1	110	96.6	113	107	8.73	8.20
	2	30.1	26.2	31.1	29.1	2.59	8.89
	4	2.35	2.07	3.44	2.62	0.724	27.6
	6	1.66	1.88	2.26	1.93	0.304	15.7
	8	BQL ${ }^{2}$	BQL	BQL	BQL	NA	NA
	24	BQL	BQL	BQL	BQL	NA	NA
PK parameters ${ }^{3}$	Unit	Rat \#1	Rat \#2	Rat \#3	Mean	SD	CV(\%)
CLV_{ss}Regression timeTerminal $\mathrm{T}_{1 / 2}$$\mathrm{AUC}_{\text {last }}$$\mathrm{AUC}_{\mathrm{INF}}$$\mathrm{MRT}_{\mathrm{INF}}$	L/hr/kg	4.71	5.70	5.67	5.36	0.567	10.6
	L/kg	3.04	4.00	4.69	3.91	0.832	21.3
	hr	0.25~6	0.083~6	0.083~6	NA	NA	NA
	hr	0.714	0.696	0.748	0.719	0.0264	0.0261
	hr*ng/mL	423	349	350	374	42.7	11.4
	$\mathrm{hr*}$ ng/mL	425	351	352	376	42.4	11.3
	hr	0.645	0.701	0.827	0.724	0.0932	12.9

1) No abnormal clinical symptom was observed
2) $\mathrm{BQL}=$ Below quantifiable limit of $1.00 \mathrm{ng} / \mathrm{mL}$ for IV and PO group in male SD rat plasma.
3) PK parameters were estimated by non-compartmental model using WinNonlin 8.2

Table S6 Individual and mean plasma concentration-time data of 14 a after a PO dose at $10 \mathrm{mg} / \mathrm{kg}$ in SD rats ${ }^{1}$

Dose ${ }^{2}$	$\begin{aligned} & \hline \text { Dose } \\ & \hline \text { route } \end{aligned}$	Sampling time (hr)	Concentration			Mean	SD	CV(\%)
(mg/kg)			($\mathrm{ng} / \mathrm{mL}$)			($\mathrm{ng} / \mathrm{mL}$)		
			Rat \#4	Rat \#5	Rat \#6			
10	PO	0.083	9.40	14.6	3.32	9.11	5.65	62.0
		0.25	78.0	76.0	35.0	63.0	24.3	38.5
		0.5	241	202	110	184	67.3	36.5
		1	364	296	260	307	52.8	17.2
		2	406	426	397	410	14.8	3.62
		4	221	146	74.7	147	73.2	49.7
		6	60.3	53.4	17.9	43.9	22.8	51.9
		8	18.8	14.9	6.83	13.5	6.10	45.2
		24	2.56	1.73	BQL	2.15	NA	NA
PK para	eters ${ }^{3}$	Unit	Rat \#4	Rat \#5	Rat \#6	Mean	SD	CV(\%)
T_{n}		hr	2.00	2.00	2.00	2.00	0.00	0.00
C_{n}		$\mathrm{ng} / \mathrm{mL}$	406	426	397	410	14.8	3.62
Regress	time	hr	6~24	6~24	4~8	NA	NA	NA
Termin	$\mathrm{T}_{1 / 2}$	hr	4.44	4.10	1.16	3.23	1.81	55.8
AUC		$\mathrm{hr} * \mathrm{ng} / \mathrm{mL}$	1742	1501	1031	1425	361	25.4
AUC		$\mathrm{hr} * \mathrm{ng} / \mathrm{mL}$	1759	1511	1043	1438	363	25.3
F		\%	93.5	80.4	55.5	76.4	19.3	25.3

1) No abnormal clinical symptom was observed
2) The IV and PO dosing solution was prepared in $10 \% \mathrm{DMSO}+90 \%(5 \%$ Tween 80 in 20 mM phosphate buffer (pH 3.0)).
3) PK parameters were estimated by non-compartmental model using WinNonlin 8.2
4) The bioavailability ($\mathrm{F} \%$) was calculated as following:

AUClast-PO/AUCINF-PO > 80\%: F=(AUCINF-PO*DoseIV)/(mean AUCINF-IV*DosePO)
AUClast-PO/AUCINF-PO $\leq 80 \%$ or AUCINF was not available: $\mathrm{F}=(\mathrm{AUClast-PO*DoseIV)/(mean} \mathrm{AUClast-}$ IV*DosePO)"

5. Experimental Procedures

Unless stated, all materials were purchased from commercial sources (Sigma Aldrich, Fluorochem, STREM, Alfa Aesar or Apollo) and used without any further treatment. Flash column chromatography (FCC) was performed using silica gel (Aldrich 40-63 $\mu \mathrm{m}, 230-400$ mesh). Thin layer chromatography (TLC) was performed using aluminium backed 60F254 silica plates. Visualization was achieved by UV fluorescence, KMnO_{4} solution and heat, 4 wt . \% ninhydrin solution in ethanol and heat, or p-anisaldehyde solution in ethanol and heat. Proton nuclear magnetic resonance spectra (NMR) were recorded at 400 MHz or 500 MHz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 125 MHz . Chemical shifts (δ) are given in parts per million (ppm) and are listed downfield with tetramethylsilane as a reference. Peaks are described as singlets (s), doublets (d), triplets (t , quartets (q), quintets (quint) multiplets (m) and broad (br.). Coupling constants (J) are quoted to the nearest 0.1 Hz . All assignments of NMR spectra were based on 1D NMR data.

Mass spectra were recorded on Agilent QTOF 7200 and Micromass LCT mass spectrometers. For chemical and electrospray ionisation modes ammonia or methanol were used as solvent systems respectively. Microanalyses $(\% \mathrm{C}, \% \mathrm{H}, \% \mathrm{~N})$ were carried out in the University of Liverpool Microanalysis laboratory. Melting points were determined on a Gallenkamp melting point apparatus in degrees Celsius. Chiral HPLC was performed on an Agilent Technologies 1200 series with chiral columns (Chiralpak AD-H, OD, OD-H columns $4.6 \times 250 \mathrm{~mm}$, (Daicel Chemical Ind., Ltd.)).

General Procedure A: Rhodium catalysed 1,4-conjugate addition of a boronic acid or ester into cyclohexanone

A round bottomed flask charged with Acetylacetonatobis(ethylene)rhodium(I) and dioxane (0.2 M) was degassed and flushed with nitrogen. BINAP (0.1 eq.), $\mathrm{KOH}_{(\mathrm{aq})}(1: 10$ ratio to dioxane, 0.1 M) and boronic acid were added sequentially before degassing with sonication under vacuum. The cloudy orange mixture was stirred under nitrogen for 10 minutes before adding cyclohexanone (1 eq. .). The mixture was degassed and flushed with nitrogen for a final time before heating overnight at $100^{\circ} \mathrm{C}$. Upon completion, the dark red mixture was filtered through a plug of silica (eluent $\mathrm{Et}_{2} \mathrm{O}$) and concentrated in vacuo to yield the crude product as a dark brown oil.

General Procedure B: Benzyl Deprotection by Palladium Catalysed Hydrogenation

To a colourless solution of benzyl protected phenol in ethyl acetate (0.06 M) was added Pd/C ($10 \% \mathrm{w} / \mathrm{w}, 5$ $\mathrm{mol} \% \mathrm{Pd})$. The atmosphere was immediately replaced with hydrogen and allowed to stir at room temperature. Upon completion, as determined by TLC, the reaction mixture was filtered through celite and concentrated in vacuo, affording the product as a white solid.

General Procedure C: Acetylation of a Phenol with Acetic Anhydride

To a solution of phenol in $\mathrm{DCM}(0.5 \mathrm{M})$ was added triethylamine (2 eq.) before the mixture was cooled to $0^{\circ} \mathrm{C}$. Acetic anhydride (3 eq.) was added dropwise over 5 minutes. The mixture was allowed to reach room temperature and stirred for 45 minutes before completion was determined by TLC. The mixture was washed with distilled water ($3 \times 30 \mathrm{ml}$), saturated sodium bicarbonate ($2 \times 30 \mathrm{ml}$) and brine (30 ml). The organic phase was dried over anhydrous MgSO_{4} and concentrated in vacuo to yield the product as a white solid.

General Procedure D: Rhenium catalysed tetraoxane formation with a cyclohexanone and adamantanone

To a clear solution of cyclohexanone (1 eq .) in $\mathrm{MeCN}(0.8 \mathrm{M}$) and formic acid (0.8 M) was added 50% hydrogen peroxide solution $(0.8 \mathrm{M})$ dropwise at $0^{\circ} \mathrm{C}$ and allowed to reach room temperature. The mixture was stirred at room temperature for 30 minutes before being diluted with distilled water (10 ml) and extracted with DCM (3 x 30 ml). The combined organic extracts were dried over anhydrous MgSO 4 and concentrated in vacuo to a volume of approximately 10 ml . The solution of crude dihydroperoxide was diluted with anhydrous DCM (10 ml). To the mixture 2-adamantanone (1.2 eq.) was added and the mixture was cooled to $0^{\circ} \mathrm{C}^{2} \cdot \mathrm{Re}_{2} \mathrm{O}_{7}(0.02$ eq.) was added and the mixture was allowed to reach room temperature. The pale-yellow solution was stirred
overnight at room temperature before being filtered through a plug of silica (eluent DCM). The mixture was concentrated in vacuo to yield the crude product as a pale-yellow oil.

General Procedure E: Hydrolysis of an Acetyl Group with LiOH

To a solution of phenyl acetate in THF and water (5:2 ratio) was added LiOH (3 eq). The mixture was stirred at room temperature for 2 hours then neutralised with dilute HCl . The THF was removed under reduced pressure and the aqueous phase was extracted with DCM ($2 \times 20 \mathrm{ml}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo to yield the product as a white solid

General Procedure F : $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ of an alcohol into an alkyl chloride containing hydrochloride salt

To a clear solution of alcohol (1 eq.) in MeCN was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq.). The mixture was stirred for 1 hour before the addition of alkyl chloride hydrochloride salt (1.1 eq .). The turbid solution was stirred under reflux for 24 hours. The mixture was filtered and concentrated in vacuo to yield the crude product.

General Procedure G: Reduction of an Ester with LiAlH_{4}

A solution of LiAlH_{4} in THF ($2 \mathrm{eq}, 1 \mathrm{M}$) was added dropwise to a solution of ester (1eq) in THF (0.5 M) at $0^{\circ} \mathrm{C}$ and allowed to stir. Reaction was monitored for completion by TLC and upon completion, approximately 30 minutes, was quenched with HCl solution (1 M) and extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo to yield the product as a white foam.

General Procedure H: Benzyl Mesylate formation from a Benzyl Alcohol and SN2 of an amine or amine hydrochloride

To a solution of benzyl alcohol (1 eq) and triethylamine (2 eq) in DCM (50 ml) was added methane sulfonyl chloride (2 eq) at $0^{\circ} \mathrm{C}$ and under N_{2}. The mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 1 hour before washing with 5% aqueous sodium bicarbonate (50 ml) and water (50 ml). The organic phase was dried over MgSO_{4} and concentrated in vacuo to yield the crude product as a white foam used without further purification. Crude product was divided for use in multiple reactions. Amine or amine hydrochloride (2 eq) was added to a solution of benzyl mesylate (1 eq) and triethylamine ($2-4 \mathrm{eq}$) in anhydrous DCM (0.05 M) under N_{2} atmosphere and allowed to stir for 12 hours at room temperature. Upon completion determined by TLC the mixture was diluted with $\operatorname{DCM}(50 \mathrm{ml})$ and washed with distilled water ($2 \times 20 \mathrm{ml}$) and brine (20 ml). The organic phase was dried over MgSO_{4} and concentrated in vacuo to yield the crude product as a clear oil.

Preparation of (R)-3-(4-benzyloxyphenyl)cyclohexan-1-one (3a)

General procedure A was implemented with acetylacetonatobis(ethylene)rhodium(I) (4 mol $\% \mathrm{Rh}$), R-BINAP ($389 \mathrm{mg}, 0.624 \mathrm{mmol}$), 4-benzyloxyphenylboronic acid ($8.90 \mathrm{~g}, 39.0 \mathrm{mmol}$) and 2-cyclohexenone ($1 \mathrm{~g}, 10.4$ mmol) affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($1.65 \mathrm{~g}, 57 \%)$: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.51-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.04-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ 1.73 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 210.78,157.63,137.18,136.96,128.58,127.93,127.53,127.43$, $115.10,70.17,49.17,43.97,41.15,33.02,25.44$. HRMS: [ESI+] Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$: 281.1536. Found $[\mathrm{M}+\mathrm{H}]+: 281.1530$ Diff: 1.05 ppm ; The ee of the R-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak OD-H, n -hexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}($ major $)=15.603 \mathrm{~min}]$.

Preparation of (S)-3-(4-benzyloxyphenyl)cyclohexan-1-one (3b)

General procedure A was implemented with Acetylacetonatobis(ethylene)rhodium(I) (7 mol\% Rh), S-BINAP $(647 \mathrm{mg}, 1.04 \mathrm{mmol})$, 4-benzyloxyphenylboronic acid ($8.89 \mathrm{~g}, 39.0 \mathrm{mmol}$) and 2-cyclohexenone ($1 \mathrm{~g}, 10.4$ mmol) affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($1.51 \mathrm{~g}, 52 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl} 3\right), \delta 7.47-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.19-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.68(\mathrm{~m}$, 2H). 13C NMR (101 MHz, CDCl3) $\delta 211.16,157.56,137.08,136.90,128.62,127.99,127.56,127.49,115.00$, 70.09, 49.24, 44.01, 41.21, 33.02, 25.51. HRMS: [CI+] Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}$: 298.1802. Found [M+NH4]+: 298.1805 Diff: 1.01 ppm ; The ee of the S-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak OD-H, n-hexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=17.526 \mathrm{~min}]$.

Preparation of 3-(4-benzyloxyphenyl)cyclohexan-1-one (3c)

General procedure A was implemented with Acetylacetonatobis(ethylene)rhodium(I) ($8 \mathrm{~mol} \% \mathrm{Rh}$), rac-BINAP (0.12 eq.), 4-benzyloxyphenylboronic acid (4 eq) and 2-cyclohexenone (1 eq) affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid (49-59 \%): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.04$ $-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.69(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $211.21,157.54,137.06,136.88,128.62,128.00,127.56,127.50,114.97,70.08,49.25,44.01,41.21,33.01$, 25.51.; HRMS: [ESI+] Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$: 281.1536. Found [M+H]+: 281.1538 Diff: -0.84 ppm .

Preparation of Methyl (R)-4-(3-oxocyclohexyl)benzoate (4a)

General procedure A was implemented with Acetylacetonatobis(ethylene)rhodium(I) (7 mol \% Rh), R-BINAP ($648 \mathrm{mg}, 0.73 \mathrm{mmol}$), (4-(methoxycarbonyl)phenyl)boronic acid ($7.02 \mathrm{~g}, 39.0 \mathrm{mmol}$) and 2-cyclohexenone $(1 \mathrm{~g}, 10.4 \mathrm{mmol})$ affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid $(2.21 \mathrm{~g}, 91 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{tt}, \mathrm{J}=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.72(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl3}$) $\delta 209.93,166.77,149.43,130.04,128.77,126.61,51.94,48.40,44.61,41.04$, 32.46, 25.36. HRMS: [ESI+] Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$: 233.1172. Found [M+H]+: 233.1170 Diff: -0.37 ppm; The ee of the R-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak AD-H, nhexane/isopropanol $=97: 3, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{R})=15.619 \mathrm{~min}]$.

Preparation of Methyl (S)-4-(3-oxocyclohexyl)benzoate (4b)

General procedure A was implemented with Acetylacetonatobis(ethylene)rhodium(I) (4 mol\% Rh), R-BINAP ($194 \mathrm{mg}, 0.31 \mathrm{mmol}$), (4-(methoxycarbonyl)phenyl)boronic acid ($3.51 \mathrm{~g}, 19.5 \mathrm{mmol}$) and 2-cyclohexenone ($500 \mathrm{mg}, 4.2 \mathrm{mmol}$) affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($450 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{tt}, \mathrm{J}=11.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 210.25,166.83,149.45,130.05,128.69,126.66,52.06$, 48.45, 44.65, 41.10, 32.46, 25.42; HRMS: [ESI+] Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1172$. Found [M+H]+: 233.1172 Diff: 0.28 ppm ; The ee of the S-enantiomer was determined to be 98% [determined by HPLC, Chiralpak ADH, n-hexane/isopropanol $=97: 3, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=19.527 \mathrm{~min}, \mathrm{t}(\mathrm{R})=15.834 \mathrm{~min}]$.

Preparation of Methyl 4-(3-oxocyclohexyl)benzoate (4c)

General procedure A was implemented with Acetylacetonatobis(ethylene)rhodium(I) (7 mol\% Rh), R-BINAP ($648 \mathrm{mg}, 1.04 \mathrm{mmol}$), (4-(methoxycarbonyl)phenyl)boronic acid ($7.49 \mathrm{~g}, 41.6 \mathrm{mmol}$) and 2-cyclohexenone $(1 \mathrm{~g}, 10.4 \mathrm{mmol})$ affording the crude product as a dark red oil. The crude product was purified by FCC eluting in 10% EtOAc in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid (70-88\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{tt}, \mathrm{J}=11.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.71(\mathrm{~m}$, $2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 210.28,166.85,149.43,130.07,128.71,126.66,52.07,48.47,44.66$, 41.12, 32.47, 25.43.; HRMS: [ESI+] Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$: 233.1172. Found [M+H]+: 233.1179 Diff: -4.35 ppm

Preparation of (R)-3-(4-hydroxyphenyl)cyclohexan-1-one (5a)

General procedure B was implemented with (R)-3-(4-benzyloxyphenyl)cyclohexan-1-one) (1.4 g, 4.99 mmol) affording the product as a white solid (quantitative). ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.85$ $-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{tt}, \mathrm{J}=11.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ 1.73 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 211.79,154.34,136.56,127.68,115.47,49.24,43.99,41.18$, 32.98, 25.47. HRMS: [ESI-] Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}$: 189.0921. Found [M-H]-: 189.0921 Diff: 0.21 ppm .

Preparation of (S)-3-(4-hydroxyphenyl)cyclohexan-1-one (5b)

General procedure B was implemented with (S)-3-(4-benzyloxyphenyl)cyclohexan-1-one) (1.29 g, 4.60 mmol) affording the product as a white solid (quantitative). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.06(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{tt}, \mathrm{J}=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.67$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 212.84,154.64,136.21,127.65,115.56,49.23,44.01,41.17,32.94$, 25.47. HRMS: [ESI+] Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$: 191.1067. Found $[\mathrm{M}+\mathrm{H}]+: 191.1071$ Diff: -2.1 ppm .

Preparation of 3-(4-hydroxyphenyl)cyclohexan-1-one (5c)

General procedure B was implemented with 3-(4-benzyloxyphenyl)cyclohexan-1-one) affording the product as a white solid (quantitative). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 3.07-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.84-1.50(\mathrm{~m}, 8 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.60,154.59,136.29$, 127.66, 115.54, 49.24, 44.01, 41.18, 32.95, 25.48.; HRMS: [ESI+] Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$: 191.1067. Found [M+H]+: 191.1071 Diff: -2.43 ppm.

Preparation of (R)-3-(4-acetoxyphenyl)cyclohexan-1-one (6a)

General procedure C was implemented with (R)-3-(4-hydroxyphenyl)cyclohexan-1-one (940 mg, 4.99 mmol) affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.09$ $-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{tt}, \mathrm{J}=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ 1.73 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 210.71,169.58,149.27,141.86,127.57,121.72,48.95,44.17$, 41.15, 32.79, 25.45, 21.12. HRMS: [ESI+] Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}: 255.0992$. Found [M+Na]+: 255.0989 Diff: 0.95 ppm .

Preparation of (S)-3-(4-acetoxyphenyl)cyclohexan-1-one (6b)

General procedure C was implemented with (S)-3-(4-hydroxyphenyl)cyclohexan-1-one ($875 \mathrm{mg}, 4.6 \mathrm{mmol}$) affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.22(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 210.69,169.55,149.26,141.85,127.55,121.70,48.93,44.16$, 41.13, 32.78, 25.44, 21.10. HRMS: [CI+] Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}: 250.1438$. Found $\left[\mathrm{M}+\mathrm{NH}_{4}\right]+: 250.1439$ Diff: -0.52 ppm.

Preparation of 3-(4-acetoxyphenyl)cyclohexan-1-one (6c)

General procedure C was implemented with 3-(4-hydroxyphenyl)cyclohexan-1-one affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ $(\mathrm{tt}, \mathrm{J}=11.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR

Preparation of 4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5] tetraoxane-6',1"-cyclohexan]-3'-yl)phenyl acetate (7a)

General procedure D was implemented with (R)-3-(4-acetoxyphenyl)cyclohexan-1-one (1.18 g, 5.1 mmol), $\mathrm{MeCN}(6 \mathrm{ml}), \mathrm{HCO}_{2} \mathrm{H}(6 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(6 \mathrm{ml})$ then 2-adamantanone $(913 \mathrm{mg}, 6.1 \mathrm{mmol})$ and $\mathrm{Re}_{2} \mathrm{O}_{7}(50 \mathrm{mg}$, 0.1 mmol) affording the crude product as a yellow oil. Product was purified by FCC eluting in 5% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid (484 mg, 23%): ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl3}) \delta 7.26(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.14-1.37(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 169.60,149.05,149.01,127.83,121.47$, $110.51,108.26,39.38$ (br), $36.97,33.74$ (br), $33.19,33.16,33.11,30.22$ (br), 27.07, 21.78 (br), 21.12; HRMS: [ESI+] Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}: 437.1935$. Found [M+Na]+: 437.1940 Diff: 1.14 ppm .

Preparation of 4-((1R,3R,3'S,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5] tetraoxane-6',1"-cyclohexan]-3'-yl)phenyl acetate (7b)

General procedure D was implemented with (S)-3-(4-acetoxyphenyl)cyclohexan-1-one ($0.96 \mathrm{~g}, 4.1 \mathrm{mmol}$), $\mathrm{MeCN}(5 \mathrm{ml}), \mathrm{HCO}_{2} \mathrm{H}(5 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{ml})$ then 2-adamantanone ($726 \mathrm{mg}, 4.8 \mathrm{mmol}$) and $\mathrm{Re}_{2} \mathrm{O}_{7}(39 \mathrm{mg}$, 0.08 mmol) affording the crude product as a yellow oil. Product was purified by FCC eluting in 5% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($500 \mathrm{mg}, 29 \%$) : ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.26(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}$, $\mathrm{br}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.03(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.63,127.86$ (br), 121.47, 110.53, 108.27,
39.43 (br), $36.97,33.77$ (br), $33.19,33.17,33.12,30.10$ (br), 27.07 (br), 21.81 (br), 21.13; HRMS: [ESI+] Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}$: 437.1935. Found [M+Na]+: 437.1935 Diff: -1.92 ppm.

Preparation of 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenyl acetate (7c)

General procedure D was implemented with 3-(4-acetoxyphenyl)cyclohexan-1-one ($1 \mathrm{~g}, 4.3 \mathrm{mmol}$), MeCN (5 $\mathrm{ml}), \mathrm{HCO}_{2} \mathrm{H}(5 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{ml})$ then 2-adamantanone ($779 \mathrm{mg}, 5.2 \mathrm{mmol}$) and $\mathrm{Re}_{2} \mathrm{O}_{7}(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ affording the crude product as a yellow oil. Product was purified by FCC eluting in 5% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid (637 mg, 36%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.11-1.34(\mathrm{~m}, 22 \mathrm{H})$.; 13C NMR (126 MHz, CDCl3) $\delta 169.50,135.46,127.78$ (br), 121.45, 110.44, $108.21,39.33$ (br), $36.94,33.71$ (br), $33.15,33.13,33.08,30.15$ (br), 27.07, 21.79 (br), 21.08; HRMS: [ESI+] Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}: 437.1935$. Found [M+Na]+: 437.1947 Diff: -2.79 ppm.

Preparation of 4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5] tetraoxane-6',1'-cyclohexan]-3'-yl)phenol (8a)

General procedure E was implemented with 4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl acetate ($484 \mathrm{mg}, 1.17 \mathrm{mmol}$) and $\mathrm{LiOH}(84 \mathrm{mg}, 3.50 \mathrm{mmol}$) in THF and water (7 ml) affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ $7.12(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.18-1.11(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.99,127.94$ (br), 115.27, 110.53, 108.45, 38.76 (br), 36.97, 33.94 (br), 33.19, 33.17, 33.12, 30.18 (br), 27.07 (br), 21.79 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}_{5}$: 395.1829. Found [M+Na]+: 395.1825 Diff: 0.91 ppm .

Preparation of 4-((1S,3S,3''S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3'-yl)phenol (8b)

General procedure E was implemented with 4-((1S,3S,3"S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl acetate ($500 \mathrm{mg}, 1.21 \mathrm{mmol}$) and $\mathrm{LiOH}(87 \mathrm{mg}, 3.62 \mathrm{mmol})$ in THF and water $(7 \mathrm{ml})$ affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.12(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 6.79$ $(\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.16-1.17(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 154.01$, 127.93 (br), 115.26, 110.52, 108.44, 38.89 (br), 36.98, 33.96 (br), 33.19, 33.17, 33.12, 30.17 (br), 27.07 (br), 21.89 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NaO}_{5}: 395.1829$. Found [M+Na]+: 395.1829 Diff: 0.12 ppm .

Preparation of 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', $\mathbf{1}^{\prime \prime}$ -cyclohexan]-3'-yl)phenol (8c)

General procedure E was implemented with 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl acetate ($600 \mathrm{mg}, 1.45 \mathrm{mmol}$) and $\mathrm{LiOH}(104 \mathrm{mg}, 4.35 \mathrm{mmol})$ in THF and water (7 $\mathrm{ml})$ affording the product as a white solid (quantitative): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.19-1.19(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.00,127.94$ (br), 115.25, 110.50, 108.42, 38.92 (br), 36.30, 33.92 (br), 33.19, 33.17, 33.12, 30.19 (br), 27.06 (br), 21.99 (br); HRMS: [ESI+] Calculated for C22H28NaO5: 395.1829. Found [M+Na]+: 395.1825 Diff: 1.07 ppm .

Preparation of 1-(2-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)-4-fluoropiperidine (9a)

General procedure F was implemented with $4-((1 R, 3 R, 3 " R, 5 R, 7 R)$-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol ($98 \mathrm{mg}, 0.26 \mathrm{mmol}$), MeCN (10 ml), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($145 \mathrm{mg}, 1.05$ mmol) and 1-(2-chloroethyl)-4-fluoropiperidine hydrochloride ($48 \mathrm{mg}, 0.29 \mathrm{mmol}$) to yield the crude product as a yellow oil. The crude product was purified by FCC eluting in 15% ethyl acetate in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a light-yellow foam. (81 mg , 62%): mp $68-71^{\circ} \mathrm{C}$; 1 H NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.16$ ($\left.\mathrm{s}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.87(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{dm}$, $\mathrm{J}=48.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.12$ - 1.19 (m, 26H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.22,127.74$ (br), 114.56, 110.48, 108.41, 88.28 (d, J = 168.8 Hz), $66.02,57.15,49.97$ (d, J = 5.9 Hz), 38.82 (br), 36.98, 33.94 (br), 33.19, 33.17, 33.12, 31.41 (d, J = 19.5 Hz), 29.71 (br), 27.08 (br), 21.89 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{FNO}_{5}$: 502.2963. Found $[\mathrm{M}+\mathrm{H}]+: 502.2966$ Diff -0.47 ppm . The ee of the R-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol $=99: 1, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{R})=29.118 \mathrm{~min}]$; purity 98.25% (UV225 nm).

Preparation of 1-(2-(4-((1S,3S,3'S,5S,7S)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3''-yl)phenoxy)ethyl)-4-fluoropiperidine

 (9b)

General procedure F was implemented with 4 -((1S,3S,3"S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol ($118 \mathrm{mg}, 0.32 \mathrm{mmol}$), $\mathrm{MeCN}(10 \mathrm{ml}), \mathrm{K}_{2} \mathrm{CO}_{3}(175 \mathrm{mg}, 1.27 \mathrm{mmol})$ and 1-(2-chloroethyl)-4-fluoropiperidine hydrochloride ($70 \mathrm{mg}, 0.35 \mathrm{mmol}$) to yield the crude product as a yellow oil. The crude product was purified by FCC eluting in 20% ethyl acetate in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a light-yellow foam. ($49 \mathrm{mg}, 31 \%$): $\mathrm{mp} 65-69^{\circ} \mathrm{C}$; Elemental Analysis: Found: C, 69.1; H, 8.2; N,2.7. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{6}$ requires C, $69.25 ; \mathrm{H}, 8.09 ; \mathrm{N}, 2.88 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{dm}, \mathrm{J}=48.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.90-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.18(\mathrm{~m}, 26 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz,

CDC13) $\delta 157.24,127.73(\mathrm{br}), 114.57,108.41,88.33(\mathrm{~d}, \mathrm{~J}=168.5 \mathrm{~Hz}), 66.07,57.17,50.00(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz})$, 38.79 (br), $36.98,33.92$ (br), 33.19, $33.17,33.12,31.46$ (d, J = 19.5 Hz), 30.11 (br), 27.08 (br), 21.82 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{FNO}_{5}: 502.2963$. Found $[\mathrm{M}+\mathrm{H}]+: 502.2973$ Diff -1.9 ppm . The ee of the S-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak AD-H, n-hexane/isopropanol $=$ $99: 1, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=25.205 \mathrm{~min}] ;$ purity 98.78% (UV225 nm).

Preparation of 1-(2-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1''-cyclohexan]-3'-yl)phenoxy)ethyl)-4-fluoropiperidine (9c)

General procedure F was implemented with 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol ($288 \mathrm{mg}, 0.77 \mathrm{mmol}$), $\mathrm{MeCN}(20 \mathrm{ml}), \mathrm{K}_{2} \mathrm{CO}_{3}(321 \mathrm{mg}, 2.32 \mathrm{mmol})$ and 1-(2-chloroethyl)-4-fluoropiperidine hydrochloride ($50 \mathrm{mg}, 0.85 \mathrm{mmol}$) to yield the crude product as a yellow oil. The crude product was purified by FCC eluting in 15% ethyl acetate in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a light yellow foam. ($227 \mathrm{mg}, 59 \%$): mp 58-61 ${ }^{\circ} \mathrm{C}$; Elemental Analysis: Found: C, 69.1; H, 8.2; N,2.7. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{6}$ requires C, C, 69.25; H, 8.09; N,2.88\%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.17(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{dm}, \mathrm{J}=48.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.92-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.19(\mathrm{~m}, 26 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 157.26,127.75$ (br), 114.57, 110.44, 108.39, $88.31(\mathrm{~d}, \mathrm{~J}=170.5 \mathrm{~Hz}$), $66.08,57.17,50.02(\mathrm{~d}, \mathrm{~J}$ $=5.6 \mathrm{~Hz}$), 38.79 (br), 36.98 (b), 33.95 (br), 33.18, 33.17, 33.12, 31.50 (d, J = 19.4 Hz), 30.14 (br), 27.09 (br), 21.86 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{FNO}_{5}$: 502.2963. Found [M+H]+: 502.2971 Diff -1.53 ppm; purity 98.75% (UV225 nm).

Preparation of 4-(2-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)morpholine (10a)

General procedure F was implemented with 4-((1R,3R,3"R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol ($125 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{MeCN}\left(10 \mathrm{ml}\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}(186 \mathrm{mg}, 1.34$ mmol) and 4-(2-chloroethyl)-morpholine hydrochloride ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) to yield the crude product as a clear oil. The crude product was purified by FCC eluting in $40 \% \mathrm{EtOAc}$ in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a white foam. ($88 \mathrm{mg}, 54 \%$): mp 61$65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-$ $3.71(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.21-1.04(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ $157.20,127.78,114.57,110.47,108.39,66.94,65.81,57.69,54.09,38.77$ (br), 36.97, 33.97 (br), 33.19, 33.17, 33.12, 30.16 (br), 27.07 (br), 21.86 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{6}$: 486.2850. Found [M+H]+: 486.2857 Diff -1.38 ppm. The ee of the R-enantiomer was determined to be 98.91% [determined by HPLC, Chiralpak OD, n-hexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{R})=11.879 \mathrm{~min}, \mathrm{t}(\mathrm{S})=14.851 \mathrm{~min}]$; purity 98.87% (UV225 nm).

Preparation of 4-(2-(4-((1R,3R,3'S,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'"-cyclohexan]-3"-yl)phenoxy)ethyl)morpholine (10b)

General procedure F was implemented with 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol (118 mg, 0.0.32 mmol), $\mathrm{MeCN}(10 \mathrm{ml}), \mathrm{K}_{2} \mathrm{CO}_{3}(175 \mathrm{mg}, 1.27 \mathrm{mmol})$ and 4-(2-chloroethyl)-morpholine hydrochloride $(52.14,0.35 \mathrm{mmol})$ to yield the crude product as a clear oil. The crude product was purified by FCC eluting in 40% EtOAc in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a white foam. ($90 \mathrm{mg}, 60 \%$): mp $56-62^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.71(\mathrm{~m}$, $3 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.18-1.18(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.19,127.75$ (br), 114.56, $110.47,108.39,66.92,65.78,57.68,54.08,38.90$ (br), 36.97, 33.92 (br), 33.18, 33.16, 33.11, 30.15 (br), 27.07 (br), 21.94 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{6}$: 486.2850. Found [M+H]+: 486.2862 Diff -2.43 ppm. The ee of the S-enantiomer was determined to be 97.89% [determined by HPLC, Chiralpak OD, nhexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=14.357 \mathrm{~min}, \mathrm{t}(\mathrm{R})=12.447 \mathrm{~min}]$; purity 98.25% (UV225 nm).

Preparation of 4-(2-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)morpholine (10c)

General procedure F was implemented with 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenol ($90 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{MeCN}(10 \mathrm{ml}), \mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.72 \mathrm{mmol})$ and 4-(2-chloroethyl)-morpholine hydrochloride ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) to yield the crude product as a clear oil. The crude product was purified by FCC eluting in $40 \% \mathrm{EtOAc}$ in hexane. The product containing fractions were combined and concentrated in vacuo to yield product as a white foam. ($65 \mathrm{mg}, 56 \%$): mp $56-58^{\circ} \mathrm{C}$; Elemental Analysis: Found: C, 69.5; H, 7.8; N,2.8. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{6}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}, 8.1 ; \mathrm{N}, 2.9 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15$ (br, s, 2H), 6.87 (d, J = 7.4 Hz, 2H), $4.12(t, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.60$ (br, t, J = 4.4 Hz, 4H), 2.13-1.21 (m, 22H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 157.21,127.79,127.73,114.57$, $110.49,108.40,66.95,65.82,57.70,54.10,38.95$ (br), 36.97, 33.95 (br), 33.19, 33.17, 33.12, 30.19 (br), 27.08 (br), 22.27 (br) ; HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{6}$: 486.2850. Found [M+H]+: 486.2852 Diff -0.38 ppm; purity 99.62% (UV225 nm).

Preparation of 4-((1r,3r,3"S,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzoate (11b)

General procedure D was implemented with methyl S-4-(3-oxocyclohexyl)benzoate ($940 \mathrm{mg}, 4.03 \mathrm{mmol}$), $\mathrm{MeCN}(5 \mathrm{ml}), \mathrm{HCO}_{2} \mathrm{H}(5 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{ml})$ affording the crude product as a yellow oil. Product was purified by FCC eluting in 5% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($657 \mathrm{mg}, 39 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.41(\mathrm{~m}, 22 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.90,150.73,129.85,128.43,126.88,110.52,108.07,51.87,39.92$ (br), 36.99, 33.40 (br), 33.19, 33.17, 33.12, 30.33 (br), 27.11 (br), 21.93 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}: 437.1935$. Found [M+Na]+: 437.1943 Diff: -1.93 ppm.

Preparation of 4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzoate (11c)

General procedure D was implemented with methyl 4-(3-oxocyclohexyl)benzoate ($1.5 \mathrm{~g}, 6.5 \mathrm{mmol}$), MeCN (7 $\mathrm{ml}), \mathrm{HCO}_{2} \mathrm{H}(7 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(7 \mathrm{ml})$ affording the crude product as a yellow oil. Product was purified by FCC eluting in 5% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo affording the product as a white solid ($937 \mathrm{mg}, 35 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, \mathrm{~J}=24.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.40(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 167.03,150.79,129.89,126.95,110.61,108.13,52.02,39.84$ (br), 36.96, 33.43 (br), 33.19, 33.17, 33.12, 30.14 (br), 27.07 (br), 21.79 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}$: 437.1935. Found [M+Na]+: 437.1953 Diff: -4.15 ppm.

Preparation of (4-((1S,3S,3'S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]

 tetraoxane-6',1'-cyclohexan]-3'-yl)phenyl)methanol (12a)

General procedure G was implemented with $1 \mathrm{M} \mathrm{LiAlH}_{4}$ in THF (2.1 ml) and methyl $4-((1 \mathrm{R}, 3 \mathrm{R}, 3$ " $\mathrm{R}, 5 \mathrm{R}, 7 \mathrm{R})$ -dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', $1^{\prime \prime}$-cyclohexan]-3"-yl)benzoate (435 mg, 1.05 mmol). (quantitative): 1H NMR (500 MHz, CDCl3) $\delta 7.33(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.10-1.37(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.96,128.60,127.13$ (br), 110.50, 108.27, 66.15, 39.73 (br), 36.96, 33.67 (br), 33.19, 33.16, 33.11, 30.22 (br), 27.07 (br), 21.82 (br); HRMS: [ESI+] Calculated for C23H30NaO5: 409.1985. Found [M+Na]+: 409.1987. Diff: 0.49 ppm .

Preparation of (4-((1S,3S,3'S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]

 tetraoxane-6',1"-cyclohexan]-3'-yl)phenyl)methanol (12b)

General procedure G was implemented with $1 \mathrm{M} \mathrm{LiAlH}_{4}$ in THF (3.2 ml) and methyl (4-((1S,3S,3"S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($656 \mathrm{mg}, 1.58 \mathrm{mmol}$). (quantitative): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}), 2.98-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.36(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.72,127.28,127.09$ (br), $110.52,108.34,65.09,39.73$ (br), 36.97, 33.73(br), 33.19, 33.18, 33.12, 30.19(br), 27.08(br), 21.85 (br).; HRMS: [ESI+] Calculated for C23H30NaO5: 409.1985. Found [M+Na]+: 409.1982. Diff: 0.85 ppm .

Preparation of (4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenyl)methanol (12c)

General procedure G was implemented with $1 \mathrm{M} \mathrm{LiAlH}_{4}$ in THF (4.5 ml) and methyl $4-((1 \mathrm{r}, 3 \mathrm{r}, 5 \mathrm{r}, 7 \mathrm{r})-$ dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', 1"-cyclohexan]-3"-yl)benzoate ($920 \mathrm{mg}, 2.22 \mathrm{mmol}$). (841 mg , 98%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.15(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.21$ (s, $1 \mathrm{H}), 2.97-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.36(\mathrm{~m}, 22 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.98,127.30,127.10,110.53$, 65.21, 39.49 (br), 36.97, 33.74 (br), 33.19, 33.17, 33.12, 30.20 (br), 27.08 (br), 21.94 (br); Calculated for C23H30NaO5: 409.1985. Found [M+Na]+: 409.1986 Diff: 0.24 ppm.

Preparation of $4-(4-((1 r, 3 r, 3 " R, 5 r, 7 r)$-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine (14a)

General procedure H was implemented with (4-((1R,3R,3"R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($720 \mathrm{mg}, 1.86 \mathrm{mmol}$), triethylamine (0.52 ml , $3.72 \mathrm{mmol})$ and methane sulfonyl chloride $(0.29 \mathrm{ml}, 3.72 \mathrm{mmol})$ then $4-((1 \mathrm{R}, 3 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{R})-$ dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)benzyl methanesulfonate (13a, 257 mg , $0.55 \mathrm{mmol})$, triethylamine $(0.15 \mathrm{ml}, 1.1 \mathrm{mmol})$ and morpholine $(0.10 \mathrm{ml}, 1.11 \mathrm{mmol})$. Crude product was
purified by FCC eluting in 40% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo to yield the product as a white foam ($181 \mathrm{mg}, 72 \%$): Mp $93-95^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.96-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{br}, \mathrm{s}$, $4 \mathrm{H}), 2.23-1.18(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.75,129.36,126.77,110.50,108.37,67.04,63.16$, 53.62, 39.61, 36.97, 33.71, 33.19, 33.17, 33.12, 30.12, 27.07, 22.09.;HRMS: [ESI+] Calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{5}$: 456.2744. Found $[\mathrm{M}+\mathrm{H}]+: 456.2749$. Diff: -1.06 ppm . The ee of the R-enantiomer was determined to be 97.50% [determined by HPLC, Chiralpak OD, n -hexane/isopropanol $=90: 10, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{R})=5.353 \mathrm{~min}, \mathrm{t}(\mathrm{S})=$ 6.183 min]; purity 97.81% (UV225 nm).

Preparation of 4-(4-((1r,3r,3"S,5r,7r)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine (14b)

General procedure H was implemented with (4-((1S,3S,3"S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', 1"-cyclohexan]-3"-yl)phenyl)methanol ($612 \mathrm{mg}, 1.58 \mathrm{mmol}$), triethylamine (0.44 ml , $3.17 \mathrm{mmol})$ and methane sulfonyl chloride $(0.26 \mathrm{ml}, 3.17 \mathrm{mmol})$ then $4-((1 \mathrm{~S}, 3 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S})-$ dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', $1^{\prime \prime}$-cyclohexan]-3"-yl)benzyl methanesulfonate (13b, 238 mg , $0.51 \mathrm{mmol})$, triethylamine $(0.14 \mathrm{ml}, 1.02 \mathrm{mmol})$ and morpholine $(0.09 \mathrm{ml}, 1.02 \mathrm{mmol})$. Crude product was purified by FCC eluting in 40% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo to yield the product as a white foam (27 mg, 31%): $\mathrm{Mp} 93-95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.25(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 3.78-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.92-2.73(\mathrm{~m}, 1 \mathrm{H})$, 2.43 (br, s, 4H), 2.11 - 1.32 (m, 22H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.70,129.36,126.76$ (br), 110.50, $108.36,67.02,63.15,53.61,39.65$ (br), $36.97,33.73$ (br), $33.18,33.16,33.11,30.12$ (br), 27.06, 21.93 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{5}: 456.2744$. Found $[\mathrm{M}+\mathrm{H}]+: 456.2747$ Diff: -0.59 ppm . The ee of the S-enantiomer was determined to be 98.51% [determined by HPLC, Chiralpak OD, n-hexane/isopropanol $=$ $90: 10, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=6.037 \mathrm{~min}, \mathrm{t}(\mathrm{R})=5.423 \mathrm{~min}]$; purity 97.94% (UV225 nm).

Preparation of 4-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine (14c)

General procedure H was implemented with (4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($820 \mathrm{mg}, 2.12 \mathrm{mmol}$), triethylamine ($0.6 \mathrm{ml}, 4.25 \mathrm{mmol}$) and methane sulfonyl chloride ($0.35 \mathrm{ml}, 4.25 \mathrm{mmol}$) then 4 -(($1 \mathrm{r}, 3 \mathrm{r}, 5 \mathrm{r}, 7 \mathrm{r}$)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', $1^{\prime \prime}$ -cyclohexan]-3"-yl)benzyl methanesulfonate ($\mathbf{1 3 c}, 500 \mathrm{mg}, 1.08 \mathrm{mmol}$), triethylamine ($0.3 \mathrm{ml}, 2.15 \mathrm{mmol}$) and morpholine ($0.18 \mathrm{ml}, 2.15 \mathrm{mmol}$.) Crude product was purified by FCC eluting in 40% ethyl acetate in hexane. Product containing fractions were combined and concentrated in vacuo to yield the product as a white foam (399 mg, 81%): Mp 73-75² C ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.25$ (d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (br, s, 2H), $3.77-$ $3.63(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.92-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.11-1.19(\mathrm{~m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.74,129.35,126.75$ (br), $110.49,108.36,67.03,63.16,53.62,39.58$ (br), 36.97, 33.72 (br), 33.19, 33.16, 33.11, 30.17 (br), 27.06 (br), 21.95 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{5}$: 456.2744. Found $[\mathrm{M}+\mathrm{H}]+: 456.2751$. Diff: -1.48 ppm ; purity 99.81% (UV225 nm).

Preparation of 1-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine (15a)

General procedure H was implemented with (4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($720 \mathrm{mg}, 1.86 \mathrm{mmol}$), triethylamine (0.52 ml , $3.72 \mathrm{mmol})$ and methane sulfonyl chloride $(0.29 \mathrm{ml}, 3.72 \mathrm{mmol})$ then $4-((1 \mathrm{R}, 3 \mathrm{R}, 3 \mathrm{R}, \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{R})-$ dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', $1^{\prime \prime}$-cyclohexan]-3"-yl)benzyl methanesulfonate (13a, 244 mg , $0.53 \mathrm{mmol})$, triethylamine $(0.29 \mathrm{ml}, 2.1 \mathrm{mmol})$ and 4-fluoropiperidine hydrochloride ($146 \mathrm{mg}, 1.05 \mathrm{mmol}$). Crude product was purified by FCC eluting in 5% methanol in DCM. Product containing fractions were combined and concentrated in vacuo to afford the product as a faintly yellow foam ($158 \mathrm{mg}, 64 \%$): mp 89 $92^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 7.28-7.07(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dm}, \mathrm{J}=48.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.78$ (s, br, 1H), $2.60(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.09-1.40(\mathrm{~m}, 26 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.40,129.20$ (br), 126.73, 110.50, 108.38, $88.82(\mathrm{~d}, \mathrm{~J}=171.6 \mathrm{~Hz}), 62.66,49.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 39.34$ (br), 36.98, 33.75 (br),
33.19, $33.17,33.12,31.56(\mathrm{~d}, \mathrm{~J}=19.5 \mathrm{~Hz}$), 30.22 (br), 27.07 (br), 21.82 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{FNO}_{4}: 472.2858$. Found $[\mathrm{M}+\mathrm{H}]+: 472.2862$ Diff: -0.95 ppm . The ee of the R-enantiomer was determined to be $>99 \%$ [determined by HPLC, Chiralpak OD, n-hexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{R})=8.320 \mathrm{~min}$]; purity 98.42% (UV225 nm).

Preparation of 1-(4-((1R,3R,3'S,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine (15c)

General procedure H was implemented with (4-((1S,3S,3"S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($612 \mathrm{mg}, 1.58 \mathrm{mmol}$), triethylamine (0.44 ml , $3.17 \mathrm{mmol})$ and methane sulfonyl chloride $(0.26 \mathrm{ml}, 3.17 \mathrm{mmol})$ then $4-((1 \mathrm{~S}, 3 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S})-$ dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6', 1"-cyclohexan]-3"-yl)benzyl methanesulfonate (13b, 210 mg , $0.45 \mathrm{mmol})$, triethylamine $(0.25 \mathrm{ml}, 1.8 \mathrm{mmol})$ and 4-fluoropiperidine hydrochloride ($126 \mathrm{mg}, 0.90 \mathrm{mmol}$). Crude product was purified by FCC eluting in 5% methanol in DCM. Product containing fractions were combined and concentrated in vacuo to afford the product as a faintly yellow foam ($142 \mathrm{mg}, 67 \%$): mp 83$86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.28-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=48.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.13-1.36(\mathrm{~m}, 26 \mathrm{H}) . ; 13 \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 144.32,129.21,126.74$, $110.50,108.42,108.39,80.92,62.67,49.56,49.52,49.51,36.97,33.19,33.17,33.12,31.63,31.47,27.08$, 27.07.; HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{FNO}_{4}$: 472.2858. Found [M+H]+: 472.2857 Diff: 0.16 ppm . The ee of the S-enantiomer was determined to be 98% [determined by HPLC, Chiralpak OD, n-hexane/isopropanol $=95: 5, \lambda=225 \mathrm{~nm}, \mathrm{t}(\mathrm{S})=9.764 \mathrm{~min}, \mathrm{t}(\mathrm{R})=8.043 \mathrm{~min}]$; purity $97.53 \%(\mathrm{UV} 225 \mathrm{~nm})$.

Preparation of 13c-1-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine

General procedure H was implemented with (4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)phenyl)methanol ($820 \mathrm{mg}, 2.12 \mathrm{mmol}$), triethylamine ($0.6 \mathrm{ml}, 4.25 \mathrm{mmol}$) and methane sulfonyl chloride $(0.35 \mathrm{ml}, 4.25 \mathrm{mmol})$ then $4-((1 \mathrm{r}, 3 \mathrm{r}, 5 \mathrm{r}, 7 \mathrm{r})$-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3"-yl)benzyl methanesulfonate ($\mathbf{1 3 c}, 200 \mathrm{mg}, 0.43 \mathrm{mmol}$), triethylamine $(0.24 \mathrm{ml}, 1.72 \mathrm{mmol})$ and 4-fluoropiperidine hydrochloride ($120 \mathrm{mg}, 0.86 \mathrm{mmol}$). Crude product was purified by FCC eluting in 5% methanol in DCM. Product containing fractions were combined and concentrated in vacuo to afford the product as a faintly yellow foam ($77 \mathrm{mg}, 37 \%$): mp $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 4.69(\mathrm{dm}, \mathrm{J}=48.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.38(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.15-$ $1.38(\mathrm{~m}, 26 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 136.39,129.22,126.72$ (br), 110.50, 108.38, $88.80(\mathrm{~d}, \mathrm{~J}=168.9$ Hz), $62.65,49.50(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}), 39.58$ (br), 36.98, 33.76 (br), $33.19,33.17,33.12,31.54(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}), 30.19$ (br), 27.07 (br), 21.88 (br); HRMS: [ESI+] Calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{FNO}_{4}: 472.2858$. Found [M+H]+: 472.2861 Diff: -0.69 ppm; purity 98.42% (UV225 nm).

Preparation of 1-(2-chloroethyl)-4-fluoropiperidine hydrochloride

To a solution of 4-fluoropiperidine hydrochloride ($500 \mathrm{mg}, 3.58 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.48 \mathrm{~g}, 17.9 \mathrm{mmol}$) in $\operatorname{MeCN}(25 \mathrm{ml})$ was added 2-bromoethanol $(0.5 \mathrm{ml}, 7.16 \mathrm{mmol}$. The mixture was stirred under reflux for 2 h before. The solution was filtered and concentrated in vacuo to yield crude 2-(4-fluoropiperidin-1-yl)ethan-1-ol as a yellow oil; this was carried through to the next step without further purification. The residue was dissolved in DCE (5 ml) and thionyl chloride ($1.6 \mathrm{ml}, 21.4 \mathrm{mmol}$) was added. The cloudy yellow mixture was stirred under reflux overnight and was allowed to cool to room temperature. Diethyl ether was added resulting in a white precipitate forming, this was collected by suction filtration and washed with diethyl ether affording the product as a yellow-white solid ($557 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 3.45(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.64(\mathrm{~m}, 4 \mathrm{H}), 0.82-0.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $86.87(\mathrm{~d}, \mathrm{~J}=171.0 \mathrm{~Hz}), 61.52,40.81,40.33,31.39(\mathrm{~d}, \mathrm{~J}=21.0 \mathrm{~Hz})$. Characterisation data consistent with literature. ${ }^{5}$

6. HPLC Traces

Compound 3a - (R)-3-(4-benzyloxyphenyl)cyclohexan-1-one

Signal 1: DAD1 A, Sig=225,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.077	BB	0.0914	85.50282	13.23137	0.4723
2	5.679	BB	0.1028	8.00371	1.18454	0.0442
3	15.603	BB	0.4755	1.80094 e 4	547.80420	99.4835
Total	s :			1.81029 e 4	562.22011	

Compound 3b - (S)-3-(4-benzyloxyphenyl)cyclohexan-1-one

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	3.069		0.2368	409.25650	21.43253	3.6658
2	4.007		0.1446	15.70401	1.44686	0.1407
3	5.573		0.1484	13.86686	1.27991	0.1242
4	5.906		0.2252	41.70144	2.46708	0.3735
5	6.251		0.1557	19.72846	1.86140	0.1767
6	14.321		0.3067	178.85628	8.96721	1.6021
7	17.526		0.5138	1.04849 e 4	298.53259	93.9170
Total	s :			1.11640 e 4	335.98758	

Compound 4a - Methyl (R)-4-(3-oxocyclohexyl)benzoate

Signal 1: DAD1 A, Sig=225,4 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	3.083		0.1093	21.15536	2.82716	0.2553
2	4.166		0.0908	7.06406	1.16351	0.0853
3	15.619		0.4306	8257.12695	293.20563	99.6594
Total	s :			8285.34637	297.19629	

Compound 4b - Methyl (S)-4-(3-oxocyclohexyl)benzoate

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	3.086		0.1076	19.34566	2.69911	0.1801
2	4.171		0.0966	7.56454	1.15190	0.0704
3	15.834		0.3638	88.81503	3.62568	0.8268
4	19.527	BBA	0.8031	1.06266 e 4	198.95992	98.9227

Totals :

Compound 9a 1-(2-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)-4-fluoropiperidine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area \%
1	3.092		0.1222	20.60752	2.35202	0.5070
2	4.901		0.3540	50.48227	1.87585	1.2420
3	29.118	BBA	1.9634	3993.60693	26.78693	98.2510
Total	s :			4064.69673	31.01480	

Compound 9b 1-(2-(4-((1S,3S,3'S,5S,7S)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)-4-fluoropiperidine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	3.088		0.0950	12.37847	1.92474	0.2298
2	4.665		0.1355	18.01052	1.78816	0.3343
3	4.929		0.2446	35.09722	2.02125	0.6515
4	25.205		1.3792	5321.58301	55.47506	98.7844
Totals	s :			5387.06922	61.20921	

Compound 9c 1-(2-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)-4-fluoropiperidine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	3.080		0.2407	48.69857	2.69672	0.5572
2	4.409		0.3830	60.45036	2.32752	0.6917
3	24.465		1.0778	4345.43750	61.69215	49.7240
4	27.598		1.3855	4284.52930	46.65203	49.0270
Total	s :			8739.11573	113.36843	

Compound 10a 4-(2-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)morpholine

Signal 1: DAD1 A, Sig=225, 4 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	3.089		0.1874	81.23083	5.59430	0.3973
2	3.934		0.0781	5.04836	1.01294	0.0247
3	4.573		0.1182	9.30519	1.17727	0.0455
4	5.231		0.1196	24.99027	3.18364	0.1222
5	11.879		0.7858	2.02131 e 4	386.70657	98.8688
6	14.851	BB	0.4848	110.68507	3.37365	0.5414

Compound 10b 4-(2-(4-((1R,3R,3'S,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)phenoxy)ethyl)morpholine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	3.092	BB	0.1278	27.88906	2.96420	0.3081
2	12.447	BB	0.4258	95.14904	3.24793	1.0513
3	14.357		0.6958	8927.99805	192.24339	98.6406
Total	s :			9051.03615	198.45553	

Compound 10c 4-(2-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-3'-yl)phenoxy)ethyl)morpholine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.101		0.1081	40.91174	5.29786	0.3840
2	12.161		0.5873	5309.85107	136.65213	49.8338
3	14.518		0.6438	5304.35449	123.33230	49.7822
Totals	s :			1.06551 e 4	265.28229	

Compound 14a 4-(4-((1r,3r,3"R,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.090	BB	0.1133	22.57137	2.76186	0.2511
2	4.143		0.1476	20.68187	2.01689	0.2301
3	4.851		0.1379	42.61554	4.69594	0.4741
4	5.353		0.2522	8792.20898	581.06396	97.8075
5	6.183	MM	0.2563	111.22433	7.23367	1.2373

Compound 14b 4-(4-((1r,3r,3"S,5r,7r)-dispiro[adamantane-2,3'-

[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	3.092		0.1217	31.15272	3.50460	0.3636
2	3.615		0.0812	5.87583	1.08455	0.0686
3	4.740		0.1738	57.04065	4.75878	0.6658
4	5.043		0.1529	19.17785	1.91338	0.2238
5	5.423		0.1609	63.08707	5.99050	0.7364
6	6.037		0.2464	8391.08496	508.74527	97.9418
Total	S :			8567.41907	525.99708	

Compound 14c-4-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)morpholine
\square DAD1 A, Sig=225,4 Ref=360,100 (CHRISWOODLEYCW007-6.D)

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	[min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	3.093		0.0811	14.42586	2.66719	0.1934
2	5.357		0.1989	3474.94434	255.08147	46.5819
3	6.100	VB	0.2555	3970.49634	225.39986	53.2248

Compound 15a - 1-(4-((1R,3R,3'R,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1''-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.091	BV	0.1182	26.17813	2.98761	0.3650
2	3.259	VV	0.1265	8.78937	1.08528	0.1226
3	3.402	VB	0.0802	5.75543	1.04581	0.0803
4	6.693	BB	0.2195	25.86897	1.76001	0.3607
5	7.637	BV	0.3752	46.48867	1.68861	0.6482
6	8.320	VB	0.8416	7058.65088	122.25112	98.4232
Total				7171.73145	130.81845	

Compound 15b - 1-(4-((1R,3R,3'S,5R,7R)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine

Signal 1: DAD1 A, Sig=225,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.916		0.0697	21.92353	4.76170	0.1466
2	3.018		0.0663	34.26775	7.36749	0.2291
3	3.093		0.0837	50.83634	8.76217	0.3399
4	3.237		0.0946	21.06533	3.29596	0.1408
5	3.646		0.1343	15.20974	1.76938	0.1017
6	3.938		0.0926	10.72343	1.72296	0.0717
7	4.573	BB	0.1473	18.25018	1.87991	0.1220
8	8.043		0.4244	119.56734	3.76655	0.7994
9	9.081		0.2552	78.06756	4.76327	0.5219
10	9.764		1.0725	1.45872 e 4	187.32912	97.5269
Total				1.49572 e 4	225.41850	

Compound 15c-1-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1'-cyclohexan]-3'-yl)benzyl)-4-fluoropiperidine


```
Signal 1: DAD1 A, Sig=225,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU} U^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 3.092 & & 0.1144 & 21.52324 & 2.60558 & 0.2804 \\
\hline 2 & 8.271 & & 0.6432 & 3453.02637 & 83.02754 & 44.9888 \\
\hline 3 & 9.451 & VB & 0.8068 & 4200.75977 & 75.30125 & 54.7308 \\
\hline
\end{tabular}
Totals :
    7675.30937 160.93438
```


7. References

(1) Trager, W.; Jensen, J. B. Human Malaria Parasites in Continuous Culture. Science 1976, 193 (4254), 673 LP - 675. https://doi.org/10.1126/science. 781840.
(2) Makler, M. T.; Ries, J. M.; Williams, J. A.; Bancroft, J. E.; Piper, R. C.; Gibbins, B. L.; Hinrichs, D. J. Parasite Lactate Dehydrogenase as an Assay for Plasmodium Falciparum Drug Sensitivity. Am. J. Trop. Med. Hyg. 1993, 48 (6), 739-741. https://doi.org/https://doi.org/10.4269/ajtmh.1993.48.739.
(3) Basilico, N.; Parapini, S.; Sparatore, A.; Romeo, S.; Misiano, P.; Vivas, L.; Yardley, V.; Croft, S.; Habluetzel, A.; Lucantoni, L.; Renia, L.; Russell, B.; Suwanarusk, R.; Nosten, F.; Dondio, G.; Bigogno, C.; Jabes, D.; Taramelli, D. In Vivo and In Vitro Activities and ADME-Tox Profile of a QuinolizidineModified 4-Aminoquinoline: A Potent Anti-P. Falciparum and Anti-P. Vivax Blood-Stage Antimalarial. Molecules 2017, 22 (12), 2102. https://doi.org/10.3390/molecules22122102.
(4) Wernevik, J.; Bergström, F.; Novén, A.; Hulthe, J.; Fredlund, L.; Addison, D.; Holmgren, J.; Strömstedt, P.-E.; Rehnström, E.; Lundbäck, T. A Fully Integrated Assay Panel for Early Drug Metabolism and Pharmacokinetics Profiling. Assay Drug Dev. Technol. 2020, 18 (4), 157-179. https://doi.org/10.1089/adt.2020.970.
(5) O’Neill, P. M.; Sabbani, S.; Nixon, G. L.; Schnaderbeck, M.; Roberts, N. L.; Shore, E. R.; Riley, C.; Murphy, B.; McGillan, P.; Ward, S. A.; Davies, J.; Amewu, R. K. Optimisation of the Synthesis of Second Generation 1,2,4,5 Tetraoxane Antimalarials. Tetrahedron 2016, 72 (40), 6118-6126. https://doi.org/10.1016/j.tet.2016.08.043.

