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Abstract 

Background: The use of accurate prediction tools and early intervention are important for 

addressing severe coronavirus disease 2019 (COVID-19). However, the prediction models for 

severe COVID-19 available to date are subject to various biases. This study aimed to 

construct a nomogram to provide accurate, personalized predictions of the risk of severe 

COVID-19. 

Methods: This study was based on a large, multicenter retrospective derivation cohort and a 

validation cohort. The derivation cohort consisted of 496 patients from Jiangsu Province, 

China, between January 10, 2020, and March 15, 2020, and the validation cohort contained 

105 patients from Huangshi, Hunan Province, China, between January 21, 2020, and 

February 29, 2020. A nomogram was developed with the selected predictors of severe 

COVID-19, which were identified by univariate and multivariate logistic regression analyses. 

We evaluated the discrimination of the nomogram with the area under the receiver operating 

characteristic curve (AUC) and the calibration of the nomogram with calibration plots and 

Hosmer-Lemeshow tests. 

Results: Three predictors, namely, age, lymphocyte count, and pulmonary opacity score, 

were selected to develop the nomogram. The nomogram exhibited good discrimination (AUC 

0.93, 95% confidence interval [CI] 0.90–0.96 in the derivation cohort; AUC 0.85, 95% CI 

0.76–0.93 in the validation cohort) and satisfactory agreement. 

Conclusions: The nomogram was a reliable tool for assessing the probability of severe 

COVID-19 and may facilitate clinicians stratifying patients and providing early and optimal 

therapies. 

 



1. Introduction 1 

Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by the novel 2 

coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with 3 

COVID-19 may be asymptomatic, have mild to moderate symptoms (such as cough, fever, 4 

dyspnea, and pneumonia), be in severe or critically ill condition, or even die. The COVID-19 5 

pandemic has placed an unprecedented burden on the world economy and health care [1]. 6 

Delayed treatment for severe COVID-19 in particular can lead to a prolonged hospitalization 7 

duration, increased mortality and a heavier financial burden [2, 3]. Risk factors for severe 8 

COVID-19 are currently considered to be age, comorbidities, dyspnea, chest pain, cough, 9 

expectoration, lower lymphocyte and higher leukocyte counts, blood urea nitrogen/creatinine 10 

ratios and serum ferritin, pulmonary opacity, and so on [4-9]. As there are many related risk 11 

factors, the use of accurate prediction tools and early intervention are important in addressing 12 

severe COVID-19. 13 

However, the prediction models of severe COVID-19 available to date are subject to 14 

various biases related to data quality (the presence and handling of missing data), flaws in the 15 

statistical analysis (lack of internal and external validation and categorization of continuous 16 

predictors and hence loss of information and weak assessment of model calibration and 17 

discrimination) and poor reporting (no mention of missing data) [9-18]. 18 

A nomogram is a two-dimensional graphical representation of a scoring model 19 

consisting of multiple scale axes designed to quickly, visually calculate the probability of 20 

having an outcome with acceptable accuracy. The axis on the top is the point scale, which is 21 

followed by scale axes for the selected predictors, the total point scale, and then the 22 

probability scale. Each value on a predictor axis corresponds vertically to a point on the point 23 

scale. After determining the points for all the predictors from the point scale and adding them 24 

to obtain the total number of points, we can find a corresponding probability on the 25 



probability scale. Compared with other risk estimates and decision-making aid tools (risk 26 

groupings, artificial neural networks, probability tables, classification and regression tree 27 

analyses), nomograms provide a user-friendly interface (no computer software is required for 28 

interpretation and prediction) with consistent, highly accurate risk estimates [19]. 29 

Therefore, this study aimed to construct a nomogram based on a large number of 30 

COVID-19 patients to provide accurate, personalized predictions of severe COVID-19. 31 

 32 

2. Methods 33 

2.1 Study design and subjects 34 

This study was based on a large, multicenter retrospective derivation cohort and a 35 

validation cohort. Patients were included if they fulfilled the diagnostic criteria of the 36 

“Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)” 37 

released by the National Health Commission & National Administration of Traditional 38 

Chinese Medicine of China [20]. Patients without medical records or computed tomography 39 

(CT) information were excluded. The derivation cohort consisted of 496 patients from 40 

Jiangsu Province, China, between January 10, 2020 and March 15, 2020, and the validation 41 

cohort contained 105 patients from Huangshi, Hunan Province, China, between January 21, 42 

2020, and February 29, 2020. 43 

 44 

2.2 Variables measured 45 

The primary outcome was severe or critical illness within the follow-up period. 46 

According to disease severity, patients were categorized into two groups: (1) the 47 

asymptomatic/mild/moderate group and (2) the severely or critically ill group [20]. 48 

Asymptomatic disease was defined as the absence of clinical symptoms and a positive 49 



nucleic acid test (real-time reverse transcriptase–polymerase chain reaction assay (RT-PCR) 50 

for SARS-CoV-2). Mild disease was defined as the presence of mild clinical symptoms 51 

without respiratory distress and the absence of imaging manifestations of pneumonia. 52 

Moderate disease was the presence of fever with respiratory symptoms and imaging 53 

manifestations of pneumonia. Severe disease was the presence of at least one of the three 54 

following conditions: respiratory distress, a respiratory rate ≥30 breaths/min; oxygen 55 

saturation (SpO2) ≤93%; or arterial blood oxygen partial pressure (PaO2)/fraction of inspired 56 

oxygen (FiO2) ≤300 mmHg (1 mmHg = 0.133 kPa). Critical illness was having respiratory 57 

failure requiring mechanical ventilation, shock or combined organ failure requiring intensive 58 

care unit (ICU) monitoring and treatment. 59 

Disease severity was assessed at days 1, 2, 3, 4, 5, 6, 7 and 14 after admission (except 60 

for those who were discharged before day 14), the highest degree of severity was selected for 61 

analysis, and patients were followed up to discharge. Data were collected using medical 62 

records. Predictive baseline variables included sex, age, time from illness onset to admission 63 

(days), fever, cough, dyspnea, Charlson comorbidity index (CCI, a weighted index 64 

considering comorbidities associated with mortality [21]), white blood cell count, lymphocyte 65 

count, platelet count, creatinine level, C-reactive protein (CRP) level, procalcitonin level, D-66 

dimer level, radiologic quadrant score and pulmonary opacity score. 67 

Imaging grading was performed by two independent radiologists with more than 5 years 68 

of experience in pulmonary imaging. Axial chest CT sections were divided into quadrants 69 

(left, right, anterior, and posterior) by drawing horizontal and vertical lines through the center 70 

of the chest. Quadrant scores were estimated as the sum of quadrants with pulmonary 71 

opacities extending from the proximal to the distal end of the chest and ranged from 0 to 4. 72 

The pulmonary opacity score was visually assessed as the percentage of bilateral lung area 73 

with pulmonary opacity rounded to the nearest 5%. 74 



 75 

2.3 Statistical analysis 76 

Baseline characteristics of the derivation and validation cohorts are summarized as the 77 

median (interquartile range [IQR]) or frequency (percentage) and were compared using the 78 

Mann–Whitney U test for continuous variables and the χ2 test or Fisher exact test for 79 

categorical variables. 80 

Univariate binary logistic regression analysis was performed to select potential 81 

predictors of severe COVID-19. In addition to considering the clinical significance, 82 

collinearity analysis was conducted to exclude variables with slight collinearity (Spearman's 83 

rank correlation coefficient >0.2) before univariate analysis. To determine the optimal 84 

combination of baseline characteristics for predicting severe COVID-19, a multivariate 85 

logistic regression model with variables selected via a backward stepwise process based on 86 

the smallest Akaike information criterion was established. Odds ratios (ORs) and 95% 87 

confidence intervals (95% CIs) were used to evaluate associations between predictors and 88 

severe COVID-19. No categorical data were missing, and missing continuous data were 89 

imputed with medians. A nomogram for the prediction of severe COVID-19 was established 90 

with the determined predictors.  91 

The nomogram was internally validated on the derivation cohort using the bootstrap 92 

method and further externally validated on a separate independent validation cohort from 93 

Huangshi. Discrimination ability and calibration were used to assess the performance of the 94 

nomogram. The area under the receiver operating characteristic curve (AUC) and its 95% CI 95 

were used to evaluate model discrimination (0.5–1.0, the higher the better). Calibration plots 96 

were presented using the bootstrap resampling method (1000 resamples). Calibration plots 97 

are a good way to visually compare the accordance (agreement) between the predicted and 98 

actual absolute risk. The ideal calibration curve is located on the 45-degree diagonal, which 99 



reflects perfect consistency. Hosmer-Lemeshow tests were also conducted (P ≥ 0.05 indicates 100 

that the model fits the data well [well-calibrated]). 101 

The 2-tailed P < 0.05 was set as the significance level. Statistical analyses were 102 

performed using R software (version 3.6.0, http://www.R-project.org). The “rms” package 103 

was used to derive a user-friendly nomogram. 104 

 105 

3. Results 106 

A total of 601 patients were included in the study, with 496 patients in the derivation 107 

cohort and 105 patients in the external validation cohort. During the 14-day hospitalization 108 

period, in the derivation and validation cohorts, 58 (11.7%) and 27 (25.7%) patients had 109 

severe COVID-19, and 438 (88.3%) and 78 (74.3%) patients had nonsevere COVID-19, 110 

respectively (P < 0.001). The patients’ median age was 49 years (IQR, 35–60), and 53.9% 111 

were male (Table 1). Most of the baseline characteristics were significantly different between 112 

the two cohorts, including age, time from illness onset to admission, dyspnea, CCI, 113 

lymphocyte count, platelet count, CRP level, procalcitonin level, D-dimer level, radiologic 114 

quadrant score and pulmonary opacity score (all P < 0.05). 115 

Considering the clinical significance and collinearity shown in supplementary Figure S1, 116 

the radiologic quadrant score was excluded in the univariate logistic regression analysis due 117 

to the high correlation with pulmonary opacity score. The univariate analysis revealed that 118 

age, time from illness onset to admission, fever, cough, dyspnea, CCI, lymphocyte count, 119 

platelet count, CRP, D-dimer and pulmonary opacity score were statistically significant risk 120 

factors for severe COVID-19 (Table 2, all P < 0.05). 121 

Subsequent multivariate analyses identified significant independent predictors of severe 122 

COVID-19, including age, lymphocyte count, and pulmonary opacity score (Table 3). Since 123 

http://www.r-project.org/


the variance inflation factor value of predictors in the final model was less than 10, the 124 

multicollinearity was considered acceptable. 125 

A nomogram was established based on the above three variables, which could predict 126 

the probability of severe COVID-19 in an individual patient (Figure 1). Lymphocyte count 127 

had the largest regression coefficient absolute value and was used as a reference, and its 128 

range (3.5–0) corresponded vertically to the point range (0–100) of the point scale. According 129 

to the absolute value of the regression coefficient, each value of the remaining predictors (age 130 

and pulmonary opacity score) also corresponds to a point on the point scale vertically. The 131 

probability of severe COVID-19 in an individual patient can be determined on the probability 132 

scale, which corresponds vertically to the total point scale. 133 

The proposed nomogram showed good discrimination for predicting severe COVID-19 134 

(Figure. 2; AUC 0.93, 95% CI 0.90–0.96 in the derivation cohort; AUC 0.85, 95% CI 0.76–135 

0.93 in the validation cohort). Furthermore, calibration plots and Hosmer-Lemeshow tests (P 136 

= 0.66 in the derivation cohort; P = 0.59 in the validation cohort) revealed that the nomogram 137 

was well calibrated and that the actual risks of severe COVID-19 were in good agreement 138 

with the predicted risks of severe COVID-19 in both the derivation and validation cohorts 139 

(Figure 3). 140 

An online tool for automatically calculating prediction probabilities (http://www.China-141 

critcare.com/covid/calculate_en.html) (Figure. 4) was created to make the prediction model 142 

easier to use. 143 

 144 

4. Discussion 145 

By employing a large, multicenter retrospective cohort, we constructed a practical 146 

nomogram comprised of a few readily available baseline demographic, clinical and CT 147 

features (age, lymphocyte count and pulmonary opacity score) to predict severe COVID-19. 148 



The model quantifies the individual probability of having severe COVID-19 with good 149 

discrimination and agreement, which enables physicians to identify patients with high risk 150 

early and correctly and take proactive measures accordingly. 151 

The incidences of severe COVID-19 among our derivation and validation cohorts were 152 

significantly different (11.7% vs. 25.7%). Most of the baseline characteristics were also 153 

significantly different between the two cohorts, which may be due to the difference in the 154 

incidence of severe COVID-19. A meta-analysis showed that compared with patients with 155 

nonsevere COVID-19, patients with severe COVID-19 had elevated levels of procalcitonin, 156 

CRP, and D-dimer but lower albumin levels [22]. External validation partially identified the 157 

general applicability of our nomogram. 158 

In the current prediction model, age was one of the predictors of severe COVID-19. Two 159 

previously developed nomograms also incorporated older age in early risk estimations for 160 

severe COVID-19 [13, 23]. The relationship between age and severe disease may be related 161 

to angiotensin converting enzyme-2 (ACE2). A study showed that ACE2 has an important 162 

salutary function: ACE2 limits several detrimental effects, including vasoconstriction and 163 

enhanced inflammation and thrombosis, but it is markedly downregulated by the entry of 164 

SARS-CoV-2 into cells, which may be especially detrimental in elderly individuals with age-165 

related baseline ACE2 deficiency [24]. In addition, compared with younger COVID-19 166 

patient groups, the elderly (≥65 years) patient population had the highest risk of severe or 167 

critical illness, intensive care use, and respiratory failure and the longest hospital stay, which 168 

may be partly due to their higher incidence of comorbidities (such as dementia and 169 

Parkinson’s disease) and age-related degeneration of the immune system (known as 170 

immunosenescence) and hence impaired immunity to SARS-CoV-2 [25-27]. 171 

This study showed that a prolonged time from illness onset to admission may increase 172 

the risk of severe COVID-19, which is likely attributed to the delay of treatment. This is 173 



consistent with previous research [28, 29]. Having symptoms (fever, cough and dyspnea) and 174 

a greater CCI (a weighted index considering comorbidities) on admission may also increase 175 

the risk of severe COVID-19. Previous studies have largely reported the association between 176 

comorbidities and COVID-19 severity [5, 6, 8]. 177 

Laboratory parameters, including lymphocyte count, platelet count, CRP level and D-178 

dimer level, were found to be associated with severe COVID-19 in the univariate logistic 179 

regression analysis of this study, which is in accordance with previous research [4, 5, 8, 9]. 180 

Among these laboratory parameters, only lymphocyte count was identified as an independent 181 

predictor of severe COVID-19. Two previously developed clinical risk scoring systems also 182 

included lymphocyte count in the prediction of COVID-19 severity [13, 30]. A previous 183 

study proposed four potential mechanisms for reduced lymphocyte levels in COVID-19: 184 

lymphocytes are a direct target of viruses because they express the coronavirus receptor 185 

ACE2, lymphatic organs are destroyed by SARS-CoV-2, lymphocyte deficiency is induced 186 

by pro-inflammatory cytokines, and lymphocyte inhibition results from metabolic disorders 187 

[31]. A study showed that the antiviral protein interferon-inducible transmembrane protein 3 188 

(IFITM3) is low in immune cells (including lymphocytes), indicating that SARS-CoV-2 may 189 

attack lymphocytes and induce cytokine release syndrome [32]. 190 

In terms of radiologic features, the pulmonary opacity score was identified as a predictor 191 

of severe COVID-19 in this study. A deep learning-based model also demonstrated that CT 192 

imaging can accurately predict the severity of COVID-19 [14]. The mechanism of COVID-193 

19-induced organ damage may be related to ACE2. ACE2 is widely expressed in the lungs 194 

(particularly in type 2 pneumocytes and macrophages) [24]. SARS-CoV-2 enters its host cell 195 

through the receptor ACE2 and causes diseases [33]. In the lungs, after viral invasion via 196 

ACE2, the dysregulation resulting from ACE2 deficiency promotes inflammation and 197 

thrombosis triggered by local angiotensin II hyperactivity, leading to cell death and lung 198 



damage [24]. In patients infected with SARS-CoV-2, angiotensin II levels were positively 199 

linearly correlated with viral load and lung injury [34]. A mouse model demonstrated that 200 

severe acute respiratory syndrome coronavirus (SARS-CoV) replicated more efficiently and 201 

that pulmonary lesions were more severe in the lungs of transgenic mice with the human gene 202 

for ACE2 than in those of wild-type mice [35]. Another mouse model showed that pathologic 203 

alterations in the lungs were reduced in ACE2 knockout mice with SARS-CoV compared to 204 

wild-type mice with SARS-CoV [36]. Several possible treatment options related to ACE2 205 

have been proposed [37-39]. On the other hand, the expression of the antiviral protein 206 

IFITM3 in the lung is much lower than that in other tissues, which may be associated with 207 

severe lung symptoms in COVID-19 [32]. 208 

The current nomogram was built based on a relatively large, representative dataset from 209 

24 centers, was externally and independently validated and had good prediction accuracy. 210 

Although most of the baseline characteristics were significantly different between the 211 

derivation and validation cohorts, the nomogram had decent generalizability for the data 212 

obtained outside of Jiangsu Province where the nomogram was established. All patients in 213 

this study were discharged from the hospital at the end of the study, so the severity data did 214 

not change and were correct. In addition, collinearity analysis was conducted to select 215 

variables to avoid having too many candidate variables for the multivariate logistic regression 216 

analysis. 217 

This study has several limitations. First, the model needs to be verified by larger studies 218 

and international studies. Second, the derivation cohort, on which the nomogram was based, 219 

was composed only of those from Jiangsu Province who had CT information available. 220 

Nevertheless, this nomogram performed well in predicting severe COVID-19 in both the 221 

derivation and validation cohorts. Third, due to the nature of retrospective research, other 222 

potential factors (such as lactate dehydrogenase and erythrocyte sedimentation rate) were 223 



unavailable for analysis. Fourth, the pulmonary opacity score was visually estimated and 224 

hence was a subjective measurement. However, the scores were estimated by two radiologists 225 

with rich experience in pulmonary imaging, and agreement was reached through consultation 226 

if discrepancies in pulmonary opacity score occurred, which may have reduced the 227 

measurement bias. Finally, the study used CCI ≥1 as a measurement of comorbidities, rather 228 

than information on specific comorbidities, and thus some information may be lost. 229 

 230 

5. Conclusion 231 

We established a nomogram with age, lymphocyte count, and pulmonary opacity score 232 

for predicting severe COVID-19 during a 14-day hospitalization. When externally verified, 233 

the nomogram performed well in discrimination ability and calibration, but it still needs to be 234 

verified by larger studies and international studies. The nomogram enables clinicians to 235 

accurately estimate the probability of developing severe COVID-19 and conduct beneficial 236 

preventive management for individual patients. 237 

 238 

 239 
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Table 1 Patient baseline characteristics for the derivation and validation cohorts* 396 

Characteristics 
Overall cohort 

(N=601) 

Derivation cohort 

(N=496) 

Validation cohort 

(N=105) 
P value 

Sex    0.650 

    Female 277 (46.1%) 226 (45.6%) 51 (48.6%)  

    Male 324 (53.9%) 270 (54.4%) 54 (51.4%)  

Age (years) 49.0 (35.0–60.0) 47.0 (32.5–57.0) 60.0 (50.0–69.0) <0.001 

Time from onset to admission (days) 5.0 (2.5–8.0) 5.00 (2.0–8.0) 6.0 (5.0–9.0) <0.001 

Fever    0.124 

    No 199 (33.1%) 157 (31.7%) 42 (40.0%)  

    Yes 402 (66.9%) 339 (68.3%) 63 (60.0%)  

Cough    0.094 

    No 253 (42.1%) 217 (43.8%) 36 (34.3%)  

    Yes 348 (57.9%) 279 (56.2%) 69 (65.7%)  

Dyspnea    <0.001 

    No 566 (94.2%) 493 (99.4%) 73 (69.5%)  

    Yes 35 (5.8%) 3 (0.6%) 32 (30.5%)  

CCI    <0.001 

    0 511 (85.0%) 440 (88.7%) 71 (67.6%)  

    ≥1 90 (15.0%) 56 (11.3%) 34 (32.4%)  

WBC (109/L) 4.84 (3.88–6.01) 4.84 (3.88–5.96) 4.95 (3.92–6.23) 0.473 

Lymphocyte count (109/L) 1.20 (0.79–1.63) 1.28 (0.90–1.72) 0.95 (0.62–1.33) <0.001 

Platelet count (109/L) 165 (130–208) 182 (149–218) 127 (120–136) <0.001 

Creatinine (μmol/L) 63.0 (51.0–78.0) 64.0 (51.0–78.2) 60.5 (50.4–74.1) 0.325 

C-reactive protein (mg/L) 11.1 (4.67–34.4) 10.0 (4.04–25.2) 30.8 (13.5–68.7) <0.001 

Procalcitonin (ng/mL) 0.06 (0.02–0.20) 0.04 (0.02–0.20) 0.10 (0.07–0.15) <0.001 

D-dimer (mg/L) 0.25 (0.13–0.41) 0.26 (0.16–0.42) 0.11 (0.04–0.35) <0.001 

Quadrant score (0–4) 3.00 (1.00–4.00) 2.00 (1.00–4.00) 4.00 (4.00–4.00) <0.001 



Pulmonary opacity score (%) 20.0 (5.00–40.0) 20.0 (5.00–40.0) 25.0 (10.0–45.0) 0.030 

* Descriptive statistics: frequency (percentage), median (interquartile range). 397 

Abbreviations: CCI, Charlson comorbidity index; WBC, white blood cell. 398 

  399 



Table 2 Factors associated with severe COVID-19 in the derivation cohort (univariate logistic regression) 400 

 Characteristics OR (95% CI) P value 

Sex, Male vs. Female 1.42 (0.81–2.54) 0.218 

Age (years) 1.07 (1.05–1.09) <0.001 

Time from onset to admission (days) 1.07 (1.01–1.13) 0.031 

Fever, Yes vs. No 2.11 (1.10–4.42) 0.024 

Cough, Yes vs. No 2.01 (1.13–3.75) 0.018 

Dyspnea, Yes vs. No 14.52 (1.16–460.18) 0.039 

CCI, ≥1 vs. 0 2.95 (1.53–5.51) 0.002 

WBC (109/L) 0.96 (0.82–1.12) 0.595 

Lymphocyte count (109/L) 0.04 (0.02–0.10) <0.001 

Platelet count (109/L) 0.99 (0.99–1.00) 0.001 

Creatinine (umol/L) 1.01 (1.00–1.02) 0.165 

C-reactive protein (mg/L) 1.02 (1.01–1.03) <0.001 

Procalcitonin (ng/mL) 1.03 (0.98–1.07) 0.244 

D-dimer (mg/L) 1.33 (1.11–1.59) 0.002 

Pulmonary opacity score (%) 1.07 (1.05–1.08) <0.001 

Abbreviations: OR, odds ratio; CCI, Charlson comorbidity index; WBC, white blood cell. 401 
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Table 3 The final multivariate logistic regression model on which the nomogram was based* 405 

Variable Coefficient OR 95% CI P value 

Age (years) 0.059 1.061 1.028–1.095 <0.001 

Lymphocyte count (109/L) -2.567 0.077 0.023–0.257 <0.001 

Pulmonary opacity score (%) 0.053 1.055 1.035–1.075 <0.001 

*AUC: 0.93 (95% CI, 0.90–0.96) in the derivation cohort; 0.85 (95% CI, 0.76–0.93) in the validation cohort. 406 

Abbreviations: OR, odds ratio; CI, confidence interval; AUC, area under the receiver operating characteristic 407 

curve. 408 
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Figure 1. Predictive nomogram for the probability of severe COVID-19. 428 
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 447 

Figure 2. Receiver operating characteristic curves of the nomogram in the derivation and external validation 448 

cohorts. 449 
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 468 

Figure 3. Calibration plots of the nomogram in the derivation and external validation cohorts. The 45-degree 469 

straight line represents ideal agreement between the actual and predicted probability. The vertical bars represent 470 

the 95% confidence interval of the actual probability. 471 
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 490 

Figure 4. Screenshot of the nomogram website. 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 



 514 

Figure S1. Results of the collinearity analysis. Abbreviations: CCI, Charlson comorbidity index; WBC, white 515 

blood cell. 516 
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