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The tropical disease, loiasis, caused by the filarial parasite, Loa loa, has gained
prominence in global public health as a cause of excess mortality and a barrier to the
elimination of the related prioritized neglected tropical diseases (NTDs), lymphatic filariasis
and onchocerciasis, within Central Africa. There are no effective drug cures or vaccines
available to treat loiasis safely. Here we review recent advances in loiasis preclinical
platform technologies, including novel in vitro culturing systems, animal models and
innovations in experimental infections of the L. loa vector, Chrysops, that have facilitated
access to all L. loa filarial life-cycle stages. We detail applications of these new model
systems in anti-filarial drug screening, diagnostic development, immunology, and
pathophysiology research. Finally, we provide an overview of how loiasis preclinical
platforms may be further utilized in translational medicine applications to support the
development of much needed new interventions against filarial NTDs.
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INTRODUCTION

Loiasis is a tropical parasitic infection caused by the filarial nematode, Loa loa, endemic in forested
areas of Central and West Africa. Infective larvae (L3) are transmitted by diurnal bites of tabanid
deer flies of the genus, Chrysops. L3 infect subcutaneous tissues and undergo morphogenesis via two
cuticle moults to develop into immature adults, at approximately 50 days post-infection (1). From
five months post-infection, male and female adults mature and sexually reproduce, releasing first-
stage microscopic larvae, microfilariae (mf), which migrate into the bloodstream (2). Among
individuals infected with L. loa, clinically distinct sub-groups can be identified with manifestations
ersin.org November 2021 | Volume 2 | Article 7787241

https://www.frontiersin.org/articles/10.3389/fitd.2021.778724/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.778724/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.778724/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.778724/full
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles
http://creativecommons.org/licenses/by/4.0/
mailto:swanji@yahoo.fr
mailto:Joseph.Turner@lstmed.ac.uk
https://doi.org/10.3389/fitd.2021.778724
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://doi.org/10.3389/fitd.2021.778724
https://www.frontiersin.org/journals/tropical-diseases
http://crossmark.crossref.org/dialog/?doi=10.3389/fitd.2021.778724&domain=pdf&date_stamp=2021-11-08


Wanji et al. Preclinical Platforms of Loa loa
ranging from asymptomatic microfilaremia to a hyper-
responsive state characterized by more frequent episodes of
local angioedema (Calabar swellings) and pronounced
eosinophilia in the absence of mf (3). Despite these symptoms,
and that over 14 million people currently reside in high-risk
areas, loiasis has often been mis-classified as a benign disease (2).
Contrary to other filarial infections such as onchocerciasis and
lymphatic filariasis (LF), loiasis has not yet been prioritized in the
World Health Organization’s list of neglected tropical diseases
(NTDs) (4). However, chronic infections can lead to renal,
cardiac, pulmonary and neurological pathologies and loaisis
has recently been identified as a cause of excess death, calling
for re-appraisal of its status as a medically important filarial
disease (5). Of additional public health relevance, L. loa hyper-
microfilaraemias are a significant risk factor for the development
of severe adverse events (SAEs) in individuals treated with
ivermectin during mass drug administration (MDA) filariasis
elimination campaigns in sub-Saharan Africa (6–9). A
microfilarial load >30,000 mf/ml is a significant risk factor for
SAE development and recent modelling predicts incidence of
SAEs will occur in 10% of individuals with parasitaemias of
50,000 mf/ml (10). Non-neurological inflammatory AEs can
develop with increased frequency below this level, which still
have the potential to incapacitate individuals for several days.

Ivermectin-induced acute pathology presents initially as
headache, fever and/or haemorrhaging of the palpebral
conjunctiva (11) which can progress to more pronounced
neurological manifestations, encephalopathy, coma and death.
Whilst the aetiology of this pathology was, until recently, ill-
defined due to a paucity of tractable animal models, it has been
speculated that drug-mediated paralysis and entrapment of mf in
brain tissue capillary beds initiates blockage, haemorrhage (as
indicated by ocular haemorrhage) and ultimately breakdown of
the blood brain barrier (3). In support of this, L. loamf have been
evidenced in cerebral-spinal fluid of individuals suffering SAEs
(10). A host inflammatory component is associated with adverse
events and may exacerbate neurological pathophysiology.
Following microfilaricidal treatment, elevation of allergic
mediators such as interleukin-5 and eosinophil degranulation
proteins are apparent in the circulation of loiasis patients (12,
13). A distinct mechanism hypothesised by Geary and colleagues
suggests that rare mutations in CNS drug efflux pumps (multi-
drug resistance 1 gene; mdr-1) may result in an ivermectin
toxicity syndrome (caused by activation of, for instance GABA
neuroreceptors present in mammalian CNS), as is apparent in
veterinary filariasis treatment (14).

The clinical association between loiasis microfilaraemia and
ivermectin SAEs was established more than 20 years ago. For
elimination of onchocerciasis, the subsequent impact has been to
avoid ivermectin MDA in loiasis co-endemic health districts
where levels of Onchocerca volvulus are hypo-endemic (less than
20% prevalence). MDA campaigns have ensued in meso- and
hyper-endemic onchocerciasis regions but with increased
surveillance of post-treatment SAE and protocols for clinical
care established in the local health system. Whilst a ‘test-and-
not-treat’ strategy based on a novel point-of-care L. loa
Frontiers in Tropical Diseases | www.frontiersin.org 2
diagnostic is one potential strategy to tackle elimination of
hypo-endemic onchocerciasis in co-endemic regions (15), the
cost estimate per test (between $4-8 USD) may be prohibitive to
rollout in annual MDA campaigns (16). Further, social science
investigations have identified the perceived risk of loiasis adverse
events (whether neurological or non-neurological yet interfering
with economic activities) as a major factor in persistent non-
participation in ivermectin MDA where onchocerciasis remains
meso- to hyper-endemic (17). Because ivermectin MDA must be
delivered annually, at a coverage of 80%, for periods of 15 years
or more to prevent onchocerciasis transmission, elimination may
not be feasible with the current strategy in loiasis-endemic
Central African foci. Recent modelling suggests onchocerciasis
will persist beyond 2045 in L. loa co-endemic countries with
annual ivermectin MDA (18). Similarly, L. loa endemicity would
represent a major barrier to future rollout of ivermectin MDA as
an endectocide for vector control of malaria (19).

A distinct complication of L. loa co-endemicity, disrupting
the elimination of LF in Central Africa, is the occurrence of
cross-reactivity to current point-of-care rapid diagnostic tests
(RDTs) used in mapping of LF endemic regions and decision
making to stop MDA (20, 21).

For these reasons, development of new tools to address the
treatment offilarial disease in Central Africa are urgently required.
Small scale trials have indicated that various extended or
intermittent dose regimens of the human anthelmintic,
albendazole, may be either partially macrofilaricidal and/or
mediate disruption of mf production in loiasis patients (22, 23).
An ideal novel short-course therapeutic product profile would
include a high degree of selective efficacy against adult stage L. loa
and/orO. volvulus (ideally both), without inducing the ivermectin-
like acute microfilaricidal activities which put hyper-
microfilaraemic loiasis individuals at risk of SAE. Identification of
affordable adjunctive treatments which limit inflammatory adverse
events following ivermectin treatment may also improve attitudes
to community participation in currentMDA. A scalable serological
point-of-care rapid diagnostic test for determining L. loa clinical
status may also become a pre-requisite as part of a test-and-treat
algorithm for filariasis elimination in Central Africa.

Research and development of new therapeutics and
diagnostics for loiasis have been hampered by a long-standing
lack of investment and the inertia created by a paucity of
tractable tools to enable facile preclinical research to be
undertaken. Recently, renewed investment in filariasis selective
macrofilaricide development has been initiated by funders such
as The Bill and Melinda Gate Foundation. This has
concomitantly spurred research to improve and innovate L. loa
preclinical platform technologies. In this review, we focus on
these most recent advances and applications in loiasis
pathophysiology, drug and diagnostic translational medicine.
LOIASIS IN VITRO CULTURES

In order to manipulate L. loa in vitro accurately (e.g. to examine
drug responses) it is first necessary to define culture conditions
November 2021 | Volume 2 | Article 778724
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which support parasite longevity outside of the body. Optimum
culture conditions enabling the successful long-term
maintenance of L. loa mf or developing larvae has been
recently elucidated. Standard mammalian culture media, such
as Dulbecco’s Modified Eagles Medium (DMEM), supplemented
with calf serum (5-15%) is sufficient to maintain L. loa mf
purified from the venous blood of hyper-microfilaraemic non-
human primates (NHP) for periods of between 6-12 days (24)
with a fully motile phenotype. Similarly, calf serum
supplementation supports full motility of infectious stage L3
larvae in mammalian culture for up to eight days after isolation
from the mouthparts of Chrysops flies. Completion of the L3-4
moulting process occurs in approximately 20% in these basic
cultures. Addition of an immortalised monkey kidney epithelial
cell monolayer to serum-supplemented cultures (LLC-MK2 cell
line) extends full motility of mf to 22 days. LLC-MK2 co-cultures
also increases L3/L4 motility for periods as long as 17 days and
concomitantly boosts the moulting success rate to as much
as 60%.
NON-HUMAN PRIMATE MODELS
OF LOIASIS

The L. loa NHP model is one of the best-studied animal models
of human filarial infections (25). Indeed, a sylvatic L. loa life cycle
is evident in monkey species in forested Central Africa (26)
indicating the cross-species adaptation of this filaria. Much of the
biology of L. loa has been elucidated via parasitological
experiments using NHP. The human strain L. loa can be
experimentally transmitted to Mandrillus leucophaeus (drill),
M. sphinx (mandrill), Papio anubis (baboon), Erythrocebus
patas (patas monkey) and Macaca mulatta (rhesus macaque)
(26–29). Chrysops naturally infected with L. loa have been
collected by baited sweep traps in high transmission areas or,
alternatively, human landing catch on loiasis individuals to
provide a source of infectious stage L3 larvae. Experimental
subcutaneous inoculations of 600 L3 are typically utilised to
infect NHPs (30–33). The pre-patent interval after experimental
infection of susceptible monkeys is about 150 days, irrespective
of the species of experimental host involved. In most monkey
species, once the infection has become patent, the microfilarial
densities increase sharply, reach a peak and then fall within
several weeks to very low levels, which then persist throughout
the infection (30). The spleen plays a major role in the clearance
of mf from the peripheral blood (30–33) Splenectomised
monkeys develop very high L. loa microfilaraemias which can
persist for many months (27, 30). Although drills and monkeys
are excellent laboratory hosts for L. loa, ethically, drills are under
strict restrictions according to the convention on international
trade in endangered species (CITES) classification of primates.
As such, this species is no longer used for biomedical research. As
an alternative, the baboon offers potential to be used as an
experimental NHP model for L. loa as the parasite behaves in
this primate in essentially the same way as it does in the drill (28).
The pre-patent interval after experimental infection of
splenectomised baboons is 5 months, with microfilaremias
Frontiers in Tropical Diseases | www.frontiersin.org 3
accruing for periods up to 18 months (32). Importantly for the
study of pathophysiology of microfilaricidal adverse reactions,
hyper-microfilaremia (>30,000 mf/mL) can be achieved in the
majority (approximately 70%) of infected splenectomised
baboons and all infected animals develop eosinophilia
significantly exceeding the normal range (32).
MOUSE MODELS OF LOIASIS – CHRONIC
ADULT LOIASIS MODELS

Whilst closely emulating the life cycle of human loiasis, throughput
of the baboon NHP model is severely constraining for anti-filarial
drug research and to identify potential targets for adjunct therapies
to limit ivermectin adverse reactions. Availability of L. loa
susceptible laboratory rodent models, particularly mice, would be
a step-change improvement, both because they are a convenient,
standardised model with tractable genetic and immunological tools
available but also as a less sentient animal substitute to reduce or
replace usage of NHP. L. loa does not undergo full development in
laboratory ‘wild-type’ immunocompetent mice. L. loa infective
larvae (inoculations of between 50-200 L3s) administered sub-
cutaneously survive only for a week in BALB/c mice, an inbred
laboratory strain that is conversely permissive or semi-permissive to
serous cavity infections with related filariae, Litomosoides
sigmodontis and Brugia spp. respectively (34–36). When BALB/c
mice are immuno-suppressed with hydrocortisone, L. loa survival is
extended for up to 3 weeks (37, 38). Control of infection in BALB/c
mice is associated with a ‘type-2’ cellular immune response of
splenocytes when re-stimulated with L. loa L3 antigen, notably with
elevated production of interleukins-4, -9 and -13 (39). Confirming a
role for both IL-4/IL-13 signalling and IL-5 in the early adaptive
immune control of L. loa in mice, BALB/c IL-4 receptor and IL-5
combination deficient mice are susceptible to pre-patent adult L. loa
infections (40). (CCR)-3 knockout mice, deficient in recruitment of
eosinophils via eotaxins and other eosinophil chemokines,
demonstrate extended survival of L. loa developing larvae, linking
type-2 immune responses with tissue eosinophil recruitment as a
mediator of early immunity to loiasis (41). Since the minimum pre-
patent period prior to the release of mf in blood is 5 months,
Pionnier et al, investigated the long-term parasitological success of
L. loa infection in a panel of ‘severe-combined’ lymphopenic
immunodeficient mice lacking all adaptive immunity and facets of
innate immune responses (42). Moderate levels of pre-patent adult
L. loa infection were evident in CB.17 SCID mice (a BALB/c
congenic background strain) at 3 months post-infection,
meanwhile, Non-Obese Diabetic (NOD) SCID mice and BALB/c
RAG2-/- mice had cleared the infection at the same time point.
Fecund adult L. loa infections in the natural parasitic niche were
reproducibly evident at 5 months in compound immunodeficient,
lymphopenic mouse strains: NOD SCID gc−/− and BALB/c
RAG2−/−gc−/−, which lack both lymphocytes and the common
gamma chain (gc) cytokine signalling pathway. At this time point,
in both compound immunodeficient mouse strains, most worms
were found in the natural tissue niches of L. loa adult stages,
namely the subcutaneous and muscle fascia tissues, while some
adults were recovered from cardiopulmonary tissues as well as the
November 2021 | Volume 2 | Article 778724
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pleural and peritoneal cavities. Parasitism of L. loa within these
organs suggests that larvae might have migrated via the lymphatics
through the thoracic duct, corroborating a theory that filariae have
a unified lymphatic larval phase (43). By Implantation of a defined
number of male and female L. loa adults from these strains under
the skin of either BALB/c RAG2-/- or RAG2-/-gc-/- recipients, it was
possible to establish microfilaraemic mice one-month post-
implant with high rates of adult worm survival retained in
subcutaneous tissues (42).
MOUSE MODELS OF LOIASIS – STAGE-
SPECIFIC MICROFILARAEMIC
LOIASIS MODELS

Due to the long pre-patent period following L3 infection, a more
facile approach of infusing purified L. loamf derived from baboon
NHP directly into venous blood of mice was evaluated (42). This
approach was based on the success of establishing long-term
microfilaraemias in a variety of inbred mouse strains and
genetic knockouts using the human LF parasite, B. malayi (44,
45). After infusion with inoculates of 4x104 purified mf, persistent
microfilaraemias could be established in either BALB/c or CB.17
SCID mice over a period of at least eight days. The majority of mf
were sequestered in cardiopulmonary circulation (approximately
10% of the inoculate) with a scant peripheral microfilaraemia
evident. Both peripheral and cardio-pulmonary microfilaraemias
were improved slightly with splenectomy in BALB/c mice
although non-splenectomised SCID mice supported the highest
parasitaemias, indicative of adaptive immunity regulating density
of L. loa microfilaraemia. Increasing the L. loa inoculate to 1x105

mf per mouse lead to significantly increased cardiopulmonary
microfilaraemias in both SCID and BALB/c mice toward a hyper-
microfilaraemic density associated with risk of SAE in humans
(Figure 1A). The bias of L. loa mf accumulation in the
cardiopulmonary circulation may reflect the anatomical
differences between murine and human microvasculature. In
addition, because in humans L. loa exhibits a diurnal periodicity
(46), physiological cues for peripheral circulatory migration versus
cardiopulmonary sequestration may vary between mice and
humans. Human sub-periodic B. malayi also demonstrate a
tropism for cardiopulmonary circulation when infused into mice
(47, 48). In follow on experiments, mf purified from venous blood
samples from human volunteers was found to be comparable to
those isolated from baboons and was used as a more abundant and
ethical source to avoid NHP usage in onward applications of the
mouse models (Figure 1B).
EXPERIMENTAL GENERATION OF L. LOA
INFECTIVE LARVAE

The successful development of a range of loiasis in vivo models
increases opportunity for translational science applications.
However, the generation of infectious stage larvae has been
Frontiers in Tropical Diseases | www.frontiersin.org 4
limited to dissections of wild-caught Chrysops in baited traps
or human landing catch, which is laborious and hinders
throughput. Intrathoracic injection of mf into blackfly vectors
have been successful with Onchocerca species (49–51). Recently,
it was demonstrated that L. loa mf purified from experimentally
infected baboons and intrathoracically injected in to wild caught
Chrysops developed to infective larvae after 14 days of fly rearing
with high resultant yields of L3 (52). Validation experiments with
these experimentally reared L. loa L3 demonstrated they could be
cultured to undergo L3-L4 moulting in vitro and developed to
adult stages in C57BL/6 RAG2-/-IL-2gc-/-mice.
APPLICATION OF LOIASIS IN VITRO
CULTURES IN DRUG SCREENING

The microfilaricidal activities of anti-malarial drugs (mefloquine,
amodiaquine, artesunate, chloroquine and quinine),
anthelmintics (praziquantel, flubendazole and its metabolites),
trypanocidal agents (fexinidazole and Scynexis-7158) and the
anti-cancer drug, imatinib, have been evaluated against L. loamf
in dose titration assays (53). Imatinib is of interest as it has
established in vitro adulticidal activity against B. malayi (54).
Further, ‘counter-screening’ experiments have been run to
scrutinise potential off-target effects of the onchocerciasis anti-
Wolbachia macrofilaricide clinical candidate, ABBV-4083 and
lead-optimised quinazoline anti-Wolbachial compounds (55,
56). Rapid inhibition of L. loa motility was noted with
mefloquine and amodiaquine. These antimalarial compounds
achieved 50% inhibition concentrations (IC50) <5 µg/mL within
the first 24 hours of exposure. Scynexis-7158 also induced a
concentration-dependent reduction in mf motility but more
gradually, with an IC50 of 10mg/mL after 5 days, whereas
imatinib only had minor reductions in mf motility (<50%)
over five days in culture, in a concentration-dependent
manner. Contrastingly, praziquantel and fexinidazole were
completely inactive. Flubendazole and its metabolites as well as
the anti-Wolbachials ABBV-4083, CBR417 and CBR490 were
also inactive until doses far exceeded the physiological range (55,
56). In a distinct study, 10mM flubendazole or its active
metabolite was confirmed inactive against L. loa mf after 72
hours exposure (57). The direct activities of anti-malarial or anti-
trypanosomidal drugs on L. loa mf in vitro highlights a potential
opportunity for re-purposing development but also flags a
possibility of AE risk during the treatment of other tropical
diseases in loiasis microfilaraemic individuals. However, in a
single open-label randomised trial, standard dose amodiaquine
did not impact on L. loa mf in circulation up to 90 days post-
treatment (58).

In comparison to inactivity against L. loa mf in vitro, when
tested against developing L3 in culture, flubendazole and its
metabolites achieved gradual IC50 threshold reductions in larval
motility after 15 days, in a dose-dependent manner (41). This
benzimidazole anthelmintic also completely blocked the L3-L4
moult at all doses tested (as low as 50 ng/mL). These pilot in vitro
L. loa studies illustrate the potential of new L. loa culture systems
November 2021 | Volume 2 | Article 778724
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as pharmacological screens to identify selective efficacies of
repurposing or novel small molecule drugs before triaging into
animal testing.
APPLICATION OF L. LOA
MICROFILARAEMIC MOUSE MODELS
IN DRUG SCREENING

Because CB.17 SCID mice sustained the highest yields of L. loa
microfilaraemias, this model was validated as a drug screen.
CB.17 SCID mice were infused with 4x104 L. loa mf and treated
with single-dose oral ivermectin at 1mg/kg, aligning to human
standard dose systemic exposures (42). Multiple experiments
demonstrated a consistent, rapid >90% clearance of mf two days
after single oral dose ivermectin which further increased to
approximately 99% mf clearance after seven days (Figure 1C).
This model has been utilised to evaluate five direct-acting and
nine anti-Wolbachia Onchocerca macrofilaricide candidates.
Oxfendazole, a veterinary benzimidazole anthelmintic with
Frontiers in Tropical Diseases | www.frontiersin.org 5
macrofilaricidal activity in Litomosoides sigmodontis rodent
infection models (59), has undergone phase I trials as a
repurposed treatment for human helminthiases (60).
Encouragingly, this candidate showed no direct activity against
L. loa mf (42) and is currently undergoing further clinical
development for filarial indications (61). Similarly, an oral-
bioavailable formulation of flubendazole developed by Janssen
Pharmaceutica as a potential Onchocerca macrofilaricide (62)
was tested in the L. loa microfilaraemic SCID mouse model and
found to be inactive (42).
APPLICATION OF IN VIVO LOIASIS
MODELS IN PATHOPHYSIOLOGY
STUDIES

When baboons with L. loamf densities >8000 mf/ml of blood are
treated with ivermectin at a standard dose of 150mg/kg, a
significant decrease of microfilaremia in all treated animals, up
to 98.4% reduction, is achieved by day 7 (33). Clinical
A B

C

FIGURE 1 | Performance of loiasis microfilaraemic mouse models. (A) microfilaraemias ≥10000 mf/ml can be achieved in both BALB/c (immunocompetent) and
CB.17 SCID mice by increasing unit of inoculation (B) L. loa mf ethically sourced from human volunteers establishes similar microfilaraemias to those derived from
NHP (C) consistent >90% depletions in L. loa microfilaraemias are mediated following single oral treatment with ivermectin 2 days (left) or 7 days (right) post-
treatment in CB.17 SCID mice in multiple independent experiments. Data plotted is mean ± SEM. Lines are global averages of vehicle treated mice (red) and 95%
confidence intervals (dashed). Significant differences are indicated ***P < 0.001 and **P < 0.01. Data is previously unpublished (A, B) and combination of published
(42) and previously unpublished (C).
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manifestations are evident 2 days post-treatment mirroring early
symptomology observed in human loiasis (7, 8). Body
temperature, respiratory rates and pulse rates all increase above
the normal range. Other clinical manifestations observed are
body rashes and itches, pinkish ears, swollen face, conjunctival
haemorrhages, loss of appetite, and diarrhoea. Animals display
subdued behaviour 48 hours after ivermectin treatment with fatal
SAE apparent in baboons >100,000 mf/ml (33). Autopsy findings
in this study revealed a widespread vasculopathy. Petechial
haemorrhages were seen in the CNS, the lungs, the
conjunctiva, the cardiac tissues, the peritoneum and the
omentum. Histopathological examination identified mf in
varying degrees of degeneration in small vessels, associated
with deposition of fibrin, endothelial changes including
damage of blood vessels and the presence of extravascular
erythrocytes. There was an increased presence of extravascular
eosinophils and mononuclear cells, often in large numbers and
associated with mf destruction. Highly vascularized organs like
the brain, heart, lungs, and kidneys were observed to have more
mf in tissue sections and mf were also present within the
peritoneal cavity indicating extravasation following ivermectin
treatment (33).

Exploiting the establishment of L. loa microfilariaemias in
BALB/c immune-intact mice, the inflammatory response post-
ivermectin was evaluated. Immune priming of BALB/c mice with
subcutaneous inoculations of heat-killed L. loamf 2-weeks prior to
infusion with 4x104 L. loamf and coincident treatment augmented
the microfilaricidal treatment response from 90% in naive to 97%
in immune-challenged mice, providing evidence that prior
exposure to L. loa mf antigens in immune-competent mice can
bolster the already substantial rapid efficacy of ivermectin (42).
Elevated systemic inflammatory responses were noted in antigen-
experienced mice after receiving ivermectin. Whilst initially both
type-1 (IFNg) type-2 (IL-4, IL-5, CCL11) and regulatory type (IL-
10) inflammatory mediators were upregulated post-treatment, by
day 7, a switch to a predominant type-2 inflammatory signature
was apparent, characterised by maintenance of IL-4 and IL-5,
downregulation of IFNg and IL-10 and significant increases of the
eosinophil chemokine, eotaxin (CCL11). Increased eosinophilia
was apparent in peripheral circulation, in secondary lymphoid
tissue and in the peritoneal cavity of microfilaraemic mice post-
ivermectin treatment.
APPLICATIONS OF LOIASIS PRECLINICAL
PLATFORMS IN DIAGNOSTICS RESEARCH

Following clinical evidence that W. bancrofti antigen-based
immunodiagnostic tests cross-react with L. loa patients with
high microfilaraemias (63), laboratory investigations were
initiated to understand the molecular basis of cross-reactivity.
Experimental studies using whole blood or sera derived from
microfilaraemic baboons or the supernatants of short-term (6h)
cultures of L. loa mf or L3, determined consistent, strong cross-
reactivity with the W. bancrofti immuno-chromatographic test
(ICT) (64). Follow on culture studies utilising pre-patent or
patent male or female 24h cultures derived from RAG2-/-gc-/-
Frontiers in Tropical Diseases | www.frontiersin.org 6
mice demonstrated cross-reactivity was evident to the filarial test
strip (FTS, a next generation ICT test) (42). Further, whole blood
from lymphopenic mice chronically infected with adult stage L.
loa were FTS positive both before and after the onset of mf
production (42). By using a quantitative immunoassay (ELISA),
Og4C3, which utilises distinct monoclonal antibodies to those
employed in the ICT/FTS rapid diagnostic, cross-reactivity in
frozen plasma derived from patently infected RAG2-/-gc-/- mice
was also evident. These studies illustrate that a common or
several distinct secreted antigen/s from L. loa mf, L3, immature
adults, mature males and mature females cross-react with
current monoclonal antibodies used in available antigen tests
for LF mapping and elimination surveillance. Proteomic pull-
down experiments have identified a specific ‘Av33-like’ secreted
L. loa protein antigen derived from immature adult L. loa
cultures and from loiasis patient serum that is recognised by
the monoclonal antibody, AD12, used in LF ICT/FTS rapid
diagnostic tests (65).
CONCLUSIONS: FUTURE USE OF L. LOA
PRECLINICAL PLATFORMS TOWARD
IMPROVED THERAPEUTICS AND
DIAGNOSTICS FOR FILARIASIS
TREATMENT

In the past decade, a substantial advance has been made in
preclinical technologies for the tropical neglected disease, loiasis
(Figure 2). These have been motivated to a large extent by the
pressing public health barrier to filarial NTD elimination within
Central Africa caused by this infection, namely: ivermectin SAEs
in the treatment of onchocerciasis and cross-reactivity to current
LF diagnostics. Important outcomes of applying loiasis
preclinical tools have been to confirm that three onchocerciasis
macrofilaricide clinical candidates positioned in phase I or II
trials (two anti-Wolbachia drugs, ABBV-4083 & AWZ1066S, one
re-purposed benzimidazole, oxfendazole) (61, 66) do not
emulate ivermectin rapid microfilaricidal efficacies in vitro or
in vivo. Application of a baboon NHP model has confirmed
experimentally that ivermectin neurological SAEs are associated
with pre-treatment hyper-microfilaraemias, multi-organ
vasculopathy and CNS inflammation. Finally, use of L. loa
animal models have elucidated the molecular basis for cross-
reactivity with current LF immunodiagnostics.

Current limitations of loiasis preclinical platforms are the
requirements for wild-caught Chrysops for infectious larvae
generation. Should a method be established to maintain the
Chrysops life-cycle in the laboratory, this would resolve a final
barrier in establishing a full laboratory life-cycle. In the interim,
it may be possible to cryopreserve and ship large batches of L. loa
L3 to expand experimental usage, including in vitro screening
and experimental infections of mice, as has been founded for O.
volvulus (67).

Now that tools for loiasis preclinical research are established and
scalable, at least within the context of specialist laboratories within
Central Africa (proximal to sources of natural infection and
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vectors), it is opportune to consider how these platforms may be
applied in the future to advance filariasis therapeutics and
diagnostics research (Box 1). The success in establishing a
chronic mouse model of loiasis offers a new tool to define the true
extent of albendazole efficacy with chronic dose regimens, utilising
human bio-equivalent 400-800mg/day dosages defined in mice
(68). Comparatively, this model can also be utilised to determine
the minimum sufficient drug exposures of clinical Onchocerca
macrofilaricide candidates, oxfendazole and emodepside,
mediating significant curative activity against L. loa. By modelling
pharmacokinetic (PK) metrics of drug exposures achieved in mice
aligned with tolerated doses in humans (derived from available
phase I trial data) an effective dose prediction can be determined
which will be an important decision-making tool for proceeding
into clinical testing for loiasis-specific indications (Figure 3).
Simultaneously, establishing a complete curative drug regimen in
the loiasis mouse model will be important to evaluate the utility of
LF cross-reactive immunodiagnostics as serological biomarkers of
adult living L. loa and prognostic determinants of macrofilaricidal
Frontiers in Tropical Diseases | www.frontiersin.org 7
activity. Biobanking of serum and urine from drug-cured and
vehicle control mice could similarly be exploited in future for
omics-based discovery of living adult worm biomarkers. For
emodepside, a macrofilaricidal regimen with selectivity over acute
killing of mf in circulation remains to be resolved for the treatment
loiasis or onchocerciasis in L. loa co-endemic regions. For this, the
SCID microfilaraemic mouse model can be employed to address
whetherhumanpredicted efficacious dosesmediate ivermectin-like
rapid microfilaricidal activity.

Building on initial findings in both NHP and mouse
microfilaraemic mouse models that ivermectin triggers type-2
inflammation, vasculopathy and a myeloid, eosinophil-rich cell
recruitment, the availability of murine reagents and genetic
modifications to manipulate facets of this inflammatory pathway
can be exploited to define causal inflammatory components driving
adverse reactions. Central to this research will be the development
of quantitative clinical measures of ivermectin adverse events in
mice, such as heart rate, oxygen saturation, core temperature and
grossmotor activity changes,which canbe simultaneously captured
FIGURE 2 | Summary of loiasis preclinical platforms and applications in translational research. Left: generation of all life cycle stages is achievable by blood sampling
human patients, purification of L. loa mf, experimental injections in Chrysops, isolation of infectious stage larvae and chronic infections of either compound lymphopenic
mice or splenectomised baboons. Derived L. loa mf, L3 or adults can be utilised in long-term in vitro cultures for drug or diagnostic biomarker discovery. It is proposed
that mf from chronic mouse infections can be used to passage into Chrysops to establish a full laboratory life cycle (dashed loop). Right: in vivo infection models can be
utilised to determine selective macrofilaricidal efficacy, validate candidate biomarkers and to research the aetiology of ivermectin adverse events including targetable
pathways for adjunct therapeutics.
BOX 1 | Future directions in loiasis preclinical research.

drug development

• dose optimization of albendazole as a loiasis indication
• dose prediction of oxfendazole and emodepside as loiasis curative indications
• assessment of emodepside selectivity as a loiasis macrofilaricide vs microfilaricide
diagnostics development

• can LF immunodiagnostic cross-reactivity be exploited to measure macrofilaricidal efficacy?
• novel loiasis-specific biomarker discovery
aetiology of ivermectin AE and adjunctive therapeutic development

• role of host inflammatory responses in development of ivermectin adverse events
• assessment of pharmacological and biological interventions that modify host inflammation
November 2021 | Volume 2 | Article 778724
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with remote telemetry devices. A detailed knowledge of underlying
inflammatory circuits in loiasis microfilaraemic mice following
ivermectin treatment can then be considered for pharmacological
or biological interventions aimed at disrupting these pathways and
thus ameliorating febrile/allergic-type inflammatory adverse
events. Selective secondary testing of any highly promising
adjunctive intervention in the hypermicrofilaraemic NHP model
would evaluatewhether itmight be possible tomitigate against SAE
development or prolongment. Affordable, effective adjunctive
treatments may possibly increase acceptability of ivermectin-
based MDA campaigns if clinically validated. In lieu of safe
macrofilaridical treatments for onchocerciasis and/or loaisis, this
strategy might be operationalised to achieve filariasis elimination
targets set for 2030.
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