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Abstract
Background: Monitoring malaria transmission is a critical component of efforts to achieve targets

for elimination and eradication. Two commonly monitored metrics of transmission intensity are

parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and

temporal variations in the PR and EIR of a given geographical region and modelling the relationship

between the two metrics may provide a fuller picture of the malaria epidemiology of the region to

inform control activities.
Methods: Using geostatistical methods, we compare the spatial and temporal patterns of

Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi.

We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical

models.
Results: Hotspots identified through the EIR and PR partly overlapped during high transmission

seasons but not during low transmission seasons. The estimated relationship showed a 1-month

delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with

rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable

changes in PR.
Conclusions: Our study emphasises the need for integrated malaria control strategies that combine

vector and human host managements monitored by both entomological and parasitaemia indices.
Funding: This work was supported by Stichting Dioraphte grant number 13050800.
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Introduction
National malaria control programmes, working in collaboration with global stakeholders, have

achieved extensive intervention coverage over the last two decades, leading to significant reductions

in morbidity and mortality due to malaria (Bhatt et al., 2015a). However, malaria is still a leading

global health problem. The previous successes and current challenges have motivated ambitious, yet

feasible, global and national targets towards malaria elimination. A key component of efforts to

achieve these targets is surveillance and monitoring, which is critical for continued assessment of

intervention effectiveness, identification of areas or groups at the highest risk, and guiding the

development and implementation of new intervention strategies (World Health Organization,

2015).

A wide range of metrics exists for monitoring malaria parasite transmission. The strengths and

limitations of each metric are related, in part, to the step of the parasite transmission cycle it meas-

ures (Tusting et al., 2014). These strengths and weaknesses, including the sensitivity of each metric,

vary across epidemiological settings and as parasite transmission declines within a given setting

(The malERA Refresh Consultative Panel on Characterising the Reservoir and Measuring Trans-

mission, 2017). Two of the most commonly monitored metrics are the prevalence of Plasmodium

parasites and the entomological inoculation rate (EIR), especially in moderate to high transmission

settings.

The prevalence of Plasmodium parasites in the human population at a given time point (i.e. the

parasite rate; PR) approximates the reservoir of hosts potentially available to transmit the parasite

from humans to mosquitoes. While only the gametocyte stage of the parasite contributes to trans-

mission, it remains relatively expensive to detect this stage of the parasite. Conversely, rapid diag-

nostic tests (RDTs) primarily detect asexual-stage antigens, yet they are inexpensive and easily

deployed in large-scale community-based surveys (Poti et al., 2020). Still, the limit of detection (50–

200 parasites/l) for RDTs is higher than that of expert microscopy or PCR (Chiodini, 2014), so that

RDT-based estimates of PR are biased by excluding low-density infections. Despite these limitations,

RDT-based cross-sectional surveys to measure PR capture both symptomatic and asymptomatic

infections, which is important because both are likely to contribute to transmission (Bousema et al.,

2014; Slater et al., 2019), and changes in PR over time can indicate changes in transmission.

EIR provides an estimate of the intensity of parasite transmission from mosquitoes to humans,

expressed as the number of infectious bites received per person per unit time. EIR is calculated by

multiplying the number of malaria vector bites per person per unit time, also known as the human

biting rate (HBR), by the proportion of vectors carrying the infectious sporozoite stage of malaria

parasites, referred to as the sporozoite rate (SR) (Onori and Grab, 1980). The accuracy and preci-

sion of EIR estimates, therefore, depends on the accuracy and precision with which HBR and SR can

be measured (Tusting et al., 2014). Two common methods for measuring HBR are the human land-

ing catch and the Centers for Disease Control and Prevention Light Trap, but inter-individual varia-

tion in attractiveness to mosquitoes restricts standardisation across sampling points for both of

these methods (Knols et al., 1995; Qiu et al., 2006). Alternative methods for estimating HBR

include the Suna trap, which uses a synthetic blend of volatiles found on human skin and carbon

dioxide to attract host-seeking Anopheles mosquitoes (Mukabana et al., 2012; Menger et al.,

2014; Hiscox et al., 2014). The standardised odour blend allows for reliable comparisons among

trapping locations (Mburu et al., 2019). Regardless of the method used to estimate HBR, the preci-

sion of SR decreases as the number of mosquitoes collected decreases. Despite these limitations,

EIR is a vital metric of malaria parasite transmission because it directly describes human exposure to

malaria parasites before post-inoculation factors such as immunity, nutrition, and access to health

care (Killeen et al., 2000). Moreover, EIR provides information about the relative contributions of

different vector species to transmission, which can impact malaria intervention effectiveness based

on interspecies differences in biting behaviours related to time and location, non-human blood-meal

hosts, larval ecology, and insecticide resistance profiles (Ferguson et al., 2010).

Malaria parasite transmission is heterogeneous in space and time at fine resolution due to several

factors, including the availability of larval mosquito habitat, socioeconomics, human behaviour and

genetics, and malaria intervention coverage (Carter et al., 2000; Bousema et al., 2012;

McCann et al., 2017a). Repeated cross-sectional surveys continuously carried out in communities

can reveal this fine-resolution heterogeneity (Roca-Feltrer et al., 2012), providing timely estimates
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of malaria control progress at the sub-district level and potentially identifying hotspots of malaria

parasite transmission for targeted intervention (Kabaghe et al., 2017; Bousema et al., 2016). How-

ever, understanding this heterogeneity and identifying hotspots in a way that is meaningful for con-

trol programmes remains challenging (Stresman et al., 2019), in part because hotspot location and

size can depend on which metric is used (Stresman et al., 2017). Given that PR and EIR are indica-

tive of components of the parasite transmission cycle that are separated by multiple complex steps,

each metric provides partial but useful information about the underlying risk of transmission. There-

fore, measuring and mapping both metrics can provide a fuller picture of parasite transmission

(Cohen et al., 2017).

Additionally, modelling the functional relationship between EIR and PR can provide further

insights into the underlying malaria epidemiology. Previous studies have demonstrated that this rela-

tionship is non-linear, such that small changes in EIR are associated with large changes in PR when

EIR is low, but PR saturates rather than changing at a constant rate when EIR is high (Beier et al.,

1999; Smith et al., 2005). These previous studies were meta-analyses using paired estimates of EIR

and PR, with one estimate of each outcome per site, from sites representing a wide range of EIR

and PR in Africa. Their findings had a number of important implications, which included providing

estimated ranges for the change in PR that may be expected for a given change in EIR. However,

these estimates implicitly assumed that the relationship is constant across space on a continental

scale, such that differences in EIR and PR between sites would be indicative of differences over time

within a site. Yet no previous study has explicitly examined this relationship over time within a single

geographical region.

In the current study, we use a series of repeated cross-sectional surveys conducted over 38

months in one region of southern Malawi to map the fine-scale spatiotemporal dynamics of P. falci-

parum entomological inoculation rate (PfEIR) and P. falciparum parasite prevalence (PfPR). The joint

monitoring of these two outcomes in space and time allows us to identify and compare the spatial

heterogeneities and temporal patterns of PfEIR and PfPR in a region with moderately intense, sea-

sonally variable malaria parasite transmission. We then investigate the PfEIR-PfPR relationship based

on changes in these outcomes observed at both annual and subannual scales within our study site

using several statistical models, which can be distinguished as follows: mechanistic models that are

based on different epidemiological assumptions and empirical models where the data inform the

PfEIR-PfPR relationship. These approaches allows us to address the following questions. (1) How do

spatiotemporal patterns of EIR and PR compare? (2) Do EIR and PR lead to the identification of the

same malaria hotspots? (3) As EIR changes over time, how do those changes in EIR affect PR? (4)

Does EIR have a lagged effect on PR? (5) Does the EIR-PR relationship vary between women of

reproductive age and children between 6 and 59 months of age?

Materials and methods

Study site
This study was part of the Majete Malaria Project (MMP), an integrated malaria control project in

Chikwawa District, Malawi. The catchment area of MMP consisted of three distinct geographical

regions, referred to as Focal Areas A, B, and C (Figure 1), with a total population of about 25,000

people living in 6600 households in 65 villages.

Chikwawa experiences highly variable rainfall during its single rainy season, which spans Novem-

ber/December to April/May. Temperatures are generally high, with daily maximum temperatures in

December averaging 37.6˚C, and in July averaging 27.6˚C (Joshua et al., 2016). A wide range of

both permanent and temporary water bodies create suitable larval habitats in the region for Anoph-

eles funestus s.s., Anopheles arabiensis, and Anopheles gambiae s.s., including dams, swamps,

ponds, borehole runoffs and drainage channels (Gowelo et al., 2020).

Malaria control in the district is implemented through the Chikwawa District Health Office. During

the study period, interventions applied throughout the study area included the continuous provision

of insecticide-treated nets (ITNs) to pregnant women and children under five years old, mass distri-

bution campaigns of ITNs targeting universal coverage, intermittent preventative therapy for preg-

nant women, and malaria case diagnosis and treatment with artemisinin-based combination therapy.

The only mass distribution of ITNs in the district during the study period occurred in April 2016. As
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part of the MMP, a randomised trial was conducted to assess the effectiveness of additional, com-

munity-implemented malaria interventions between May 2016 and May 2018 (McCann et al.,

2017b). The trial interventions were implemented at the village level, with villages assigned to one

of four groups: (a) no additional interventions; (b) larval source management; (c) house improvement;

and (d) both larval source management and house improvement (McCann et al., 2017b; van den

Berg et al., 2018).

Data
To quantify PfPR and PfEIR over the course of the study, a rolling malaria indicator survey (rMIS)

(Roca-Feltrer et al., 2012) was conducted in conjunction with mosquito sampling, forming a series

of repeated cross sectional surveys. Sampling was carried out over 17 rounds, with each round span-

ning a period of 2 or 3 months. In the first two rounds of data collection (baseline, from April

through August 2015), an inhibitory geostatistical sampling design (IGSD) was used to select 300

and 270 households, respectively, for the rMIS from an enumeration database of all households in

the catchment area (Chipeta et al., 2017). The IGSD helped to ensure that randomly sampled

households are relatively uniformly spaced over the study region by requiring each pair of sampled

households to be separated by a distance of at least 0.1 km, which increases the efficiency of hot-

spot detection (Kabaghe et al., 2017). In the three subsequent rounds of data collection during the

baseline, an adaptive geostatistical sampling design (AGSD) was used to select 270 households per

round (Chipeta et al., 2016). With AGSD, new households for the current round of rMIS were cho-

sen from regions with high standard errors of estimated prevalence, based on data from all previous

rounds. In the baseline period, previously sampled households were not eligible for sampling in

Figure 1. Map of study site. Map of Malawi (insert) highlighting the Majete Wildlife Reserve and the borders of 19 community-based organisations

(CBOs) surrounding the Majete perimeter. Three focal areas (red patches), labelled as A, B, and C, show the households (black points) selected for the

parasitaemia and entomological surveys by the Majete Malaria Project (MMP). The base map was obtained from Google Maps.
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subsequent rounds. For the trial period (starting May 2016), IGSD was again used to select house-

holds from the enumeration database of all households. All households were eligible for selection in

each round of the trial period regardless of whether they were selected in a previous round. At each

round of rMIS data collection in the baseline and trial phases, respectively, 75% and 72% of the

households chosen at each round of the rMIS were then randomly selected for mosquito sampling.

In each sampled household, children under five (0.5–5 y/o) and women of reproductive age (15–

49 y/o) were tested for P. falciparum using an RDT (SD BIOLINE Malaria Ag P.f. HRP-II, Standard

Diagnostics, Yongin-si, Republic of Korea).

Mosquitoes were sampled from 5pm to 7am using Suna traps (Biogents AG, Regensburg, Ger-

many) with MB5 blend plus CO2 to mimic human odour (Hiscox et al., 2014; Mburu et al., 2019).

For a selected household in a surveillance round, the trap was set for one night indoors and one

night outdoors, with the order of indoor/outdoor determined randomly. For households where the

residents were sleeping in more than one building, a trap was set at each building. Trapped female

anophelines were preserved using a desiccant and identified using standard morphological and

molecular techniques (Gillies and Coetzee, 1987; Koekemoer et al., 2002; Scott et al., 1993).

Female anophelines were further tested for the presence of P. falciparum in their head and thorax,

after removing the abdomen, using quantitative polymerase chain reaction (qPCR ) (Bass et al.,

2008; Perandin et al., 2004). Specimens with a Ct value below 37.0 were considered positive for P.

falciparum.

Environmental and climatic factors
Environmental and climatic factors affect the abundance and suitability of water bodies that support

the development of immature mosquitoes (Madder et al., 1983; Loetti et al., 2011), the duration

of mosquito development (Ciota et al., 2014; Loetti et al., 2011; Craig et al., 1999), mosquito

host-seeking and biting behaviour, and the development rate of malaria parasites in mosquitoes

(Rumisha et al., 2014; Amek et al., 2011).

Using hourly measurements of temperature and relative humidity (RH) from a weather station in

each focal area, we computed the average temperature and RH for different ranges of days before

the day of data collection (Appendix 1 – Procedure for building the HBR, PfSR and PfPR models).

Spectral indices, namely normalised difference vegetation index (NDVI) and enhanced vegetation

index (EVI), were computed using remotely sensed multi-spectral imagery from the Landsat 8 satel-

lite. These data are freely available from the United States Geological Survey (USGS) Earth Explorer

(earthexplorer.usgs.gov) as raster files at a spatial resolution of 30 � 30 m for every 16 days. For our

analysis, we averaged each spectral index over 5 years, from April 2013 to April 2018, while omitting

scenes that were dominated by cloud artefacts.

We extracted raster data of surface elevation from the global digital elevation model (DEM) gen-

erated using measurements from the Advanced Space-borne Thermal Emission and Reflection Radi-

ometer (ASTER) (Tachikawa et al., 2011). These data are also freely available for download from the

USGS Earth Explorer. Using a flow accumulation map derived from the DEM, a river network map

was generated and used to calculate and store as raster images the distance to small rivers and large

rivers (henceforth, DSR and DLR, respectively).

Geostatistical analysis
The number of mosquitoes trapped by Suna traps can be used to estimate HBR, as these traps pri-

marily target host-seeking mosquitoes. Hence, we first estimated HBR and the P. falciparum sporo-

zoite rate (PfSR). We then estimated PfEIR as the product of these two quantities.

We carried out separate analyses for A. arabiensis and A. funestus s.s., using explanatory varia-

bles and random effects structures that we found to be suitable for each species. Details of the vari-

able selection process and the final sets of explanatory variables for each of the models later

described in this section are given in Appendix 1 – Procedure for building the HBR, PfSR, and PfPR

models. The correlation structures adopted for the geostatistical models were informed by the vario-

gram-based algorithm described in Giorgi et al., 2018. The geostatistical models for the HBR and

PfPR data described below were fitted using PrevMap (Giorgi and Diggle, 2017), freely available

from the Comprehensive R Archive Network (CRAN, www.r-project.org). The PfSR models were fit-

ted using the glmm package, also available on CRAN.

Amoah, McCann, et al. eLife 2021;10:e65682. DOI: https://doi.org/10.7554/eLife.65682 5 of 32

Research article Epidemiology and Global Health

https://earthexplorer.usgs.gov/
https://www.r-project.org/
https://doi.org/10.7554/eLife.65682


Human biting rate
Let Yðxi; tiÞ; i ¼ 1; . . . ;M, where M ¼ 2432 is the total number of houses, denote counts of mosquitoes

trapped at location xi in month ti 2 f1; . . . ; 38g, where ti ¼ 1 denotes April 2015. We modelled the

Yðxi; tiÞ using Poisson mixed models expressed by the following linear predictor

logfHBRðxi; tiÞg ¼ dðxi; tiÞ
>
bþ f ðti;aÞþ SðxiÞþZi; (1)

where: dðxi; tiÞ is a vector of spatiotemporal explanatory variables with associated regression coeffi-

cients b; the f ðti;aÞ is a linear combination of several functions of time, including sines, cosines and

splines, with an associated vector of regression parameters a, accounting for trends and seasonal

patterns; the Zi are independent and identically distributed Gaussian random variables with variance

t 2; SðxÞ is a zero-mean stationary and isotropic Gaussian process with variance s2 and exponential

correlation function �ðuÞ ¼ expð�u=fÞ, where f regulates the pace at which the spatial correlation

decays for increasing distance u between any two locations. We allow the explanatory variables

dðxi; tiÞ and f ðti;aÞ to differ between different mosquito species since different species may respond

differently to environmental changes. We point out that the stationarity of the process SðxÞ implies

that all of its properties, including the variance (s2) and scale of the spatial correlation (f), are con-

stant over space. The estimation of the model parameters is then carried out using Monte Carlo

Maximum Likelihood (Christensen, 2004).

Plasmodium falciparum sporozoite rate
Let Y�ðxi; tiÞ be the number of mosquitoes that tested positive for the presence of P. falciparum spor-

ozoites. We assumed that the Y�ðxi; tiÞ follow a Binomial mixed model with number of trials N�ðxi; tiÞ,

that is the total number of successfully tested mosquitoes, and probability of testing positive

PfSRðxi; tiÞ. We model the latter as a logit-linear regression given by

log
PfSRðxi; tiÞ

1�PfSRðxi; tiÞ

� �

¼ dðxi; tiÞ
>
b� þ f �ðti;a

�ÞþZ�
i ; (2)

where each term in (2) has an analogous interpretation to those of (1). A spatial process SðxÞ was

not included in the sporozoite rate model because we found no evidence of residual spatial correla-

tion in the sporozoite rate data (Appendix 1—figure 1).

Estimating the Plasmodium falciparum entomological inoculation rate
Let PfEIRf ðx; tÞ and PfEIRaðx; tÞ denote the PfEIR for A. funestus s.s. and A. arabiensis at a given loca-

tion x and month t. We estimated each of these two as

PfEIRf ðx; tÞ ¼HBRf ðx; tÞPfSRf ðx; tÞlðtÞ
PfEIRaðx; tÞ ¼HBRaðx; tÞPfSRaðx; tÞlðtÞ;

where lðtÞ is the number of days in month t. Finally, we estimated the overall PfEIR as

PfEIRðx; tÞ ¼ PfEIRf ðx; tÞþPfEIRaðx; tÞ: (3)

We then mapped PfEIR as in (3) over a 30 � 30 m regular grid covering the whole of the study

area for each month across 38 months.

To map PfEIR for each month, we first simulate at each prediction location (i.e. the centroid of

each grid cell) 10,000 samples from the conditional distribution of the random effects (correspond-

ing to SðxÞ þ Z in the case of the PfHBR and Z in the case of PfSR) given the data. We then transform

these to obtain 10,000 predicted surfaces for PfHBR and PfSR, and by applying (3) we obtain 10,000

predictive samples for PfEIR. The predicted PfEIR at each prediction location is taken to be the

median of the 10,000 samples at that location. The associated 95% predictive interval is the 2.5th to

97.5th percentile of the 10,000 predictive samples.

In this procedure, all the parameters corresponding to the regression coefficients, the scale and

variance of the spatial process, and variance of Gaussian noise are fixed at their MCML estimates.

Amoah, McCann, et al. eLife 2021;10:e65682. DOI: https://doi.org/10.7554/eLife.65682 6 of 32

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.65682


Plasmodium falciparum prevalence
We mapped PfPR in women and in children by fitting a geostatistical model to each group. More

specifically, let Iðxi; tiÞ denote the number of RDT positives out of Nit sampled individuals at location

xi in month ti. We then assumed that the Iðxi; tiÞ follow a Binomial mixed model with probability of a

positive RDT result pðxi; tiÞ, such that

log
pðxi; tiÞ

1� pðxi; tiÞ

� �

¼ dðxi; tiÞ
>’þ gðti;%ÞþTðxiÞþUi; (4)

where TðxiÞ is a stationary and isotropic Gaussian process with exponential correlation function and

Ui are Gaussian noise, gðti;%Þ is a linear combination of splines, and sine and cosine functions of time

accounting for trends and seasonality, and j and % are vectors of regression parameters to be

estimated.

Hotspot detection using PfEIR and PfPR
We demarcated hotspots for PfEIR and PfPR using an exceedance probability approach. Using the

resulting 10,000 predictive samples for PfEIR and PfPR, as described above, we then obtained the

exceedance probability for each outcome at each space-time location by computing the proportion

of the 10,000 predictive samples that exceeded the respective, predefined thresholds, which were

set at 0.1 ib/person/month for EIR, 31% for PfPR in children, and 17% for PfPR in women. Finally, we

mapped these exceedance probabilities and demarcated hotspots as areas where these probabili-

ties were at least 0.9. The PfPR thresholds were defined to correspond to the PfEIR threshold based

on the best of six functional relationships between PfEIR and PfPR as described in the next section.

Modelling the relationship between PfEIR and PfPR
Because PfEIR may have a delayed effect on PfPR, possibly due to the time taken for P. falciparum

to develop in the human host, we considered that current PfPR may depend on PfEIR l months prior.

In particular, we considered l ¼ 0; 1; 2. We then assumed that the number of RDT positive individuals,

Iðxi; tiÞ, follow independent Binomial distributions such that

PfPRðxi; tiÞ ¼ hf ^PfEIRðxi; ti � lÞg; (5)

where hð�Þ is a function depending on a vector of parameters q that governs the relationship

between PfPR and PfEIR, and ^PfEIRðxi; ti� lÞ is the estimated PfEIR as in Equation (3). We considered

six models, each of which provided a different specification for hð�Þ.

We now describe the six models for hð�Þ. Models 1 to 4 make explicit assumptions on the underly-

ing mechanism of transmission, whereas models 5 and 6 describe the functional relationship

between PfEIR and PfPR through regression methods.

Model 1: The susceptible-infected-susceptible (SIS) model
Let b be the probability that an infectious mosquito bite results in an infection, referred to as the

transmission efficiency. Then, infections at ðxi; ti � lÞ are assessed to occur at a rate of

b� PfEIRðxi; ti � lÞ. We assumed that each infection cleared independently over a duration 1=r so

that the ratio g ¼ b=r is the time taken to clear infection per infectious bite. We assumed that the

relationship between PfEIR and PfPR holds throughout the study region. If PfEIRðx; t � lÞ is constant,

the relationship between PfEIRðx; t � lÞ and PfPRðx; tÞ is described by Ross, 1911

qPfPRðx; tÞ

qt
¼ b�PfEIRðx; t� lÞð1�PfPRðx; tÞÞ� r�PfPRðx; tÞ: (6)

We obtained our first model as the non-zero equilibrium solution of (6), given by

PfPRðx; tÞ ¼
gPfEIRðx; t� lÞ

gPfEIRðx; t� lÞþ 1
: (7)
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Model 2: The SIS model with different infection/recovery rates (D.I/R)
Model 1 assumes that women and children get infected and recover at the same rate. However, the

transmission and recovery rates in children may differ from those in women. We, therefore, modified

Model 1 by allowing different values of b and r for each category of people. Let �1;it and �2;it respec-

tively be the proportion of children and women sampled at ðxi; tiÞ and gk ¼ bk=rk, where k ¼ 1

denotes children and k ¼ 2 denotes women. The resulting Model 2 is

PfPRðx; tÞ ¼
X

2

k¼1

�k;it
gkPfEIRðx; t� lÞ

gkPfEIRðx; t� lÞþ 1
: (8)

Model 3: The SIS model with superinfection (S.I.)
If individuals are super-infected with P. falciparum, then the rate at which infections clear depends

on the infection rate, with clearance being faster when infection rate is low, and slower when infec-

tion rate is high. To capture this feature, we modelled infection clearance rate as

gð#; rÞ ¼ #=ðe#=r � 1Þ, where # ¼ b� PfEIR(Smith et al., 2005; Walton, 1947; Dietz et al., 1974;

Aron and May, 1982). The resulting model for PfPRðx; tÞ is

PfPRðx; tÞ ¼ 1� expf�gPfEIRðx; t� lÞg (9)

Model 4: The SIS model with S.I and D.I/R
Combining the assumptions of heterogeneous infection/recovery rates, as in Model 2 and superin-

fection, as in Model 3, we obtain Model 4,

PfPRðx; tÞ ¼
X

2

k¼1

�k;itð1� expf�gkPfEIRðx; t� lÞgÞ: (10)

Model 5: The Beier model
Beier et al., 1999 assumed that the log of PfEIR is linearly related to PfPR, and fitted the regression

model

PfPRðx; tÞ ¼ aþ b logðPfEIRðx; t� lÞÞ; (11)

the so called ‘log-linear model’.

Model 6: The logit-linear model
The Beier model has the limitation that PfPR approaches �¥ as PfEIR goes to 0 and approaches ¥

as PfEIR goes to ¥. To constrain PfPR to lie between 0 and 1, we applied the logit-link function to

PfPR to give Model 6,

logð
PfPRðx; tÞ

1�PfPRðx; tÞ
Þ ¼ aþ b logðPfEIRðx; t� lÞÞ: (12)

Parameter estimation of the PfEIR-PfPR relationship models
We estimated the parameters of each of the six models by maximising the log-likelihood function

X

ti

X

xi

Iðxi; tiÞ logðPfPRðxi; tiÞÞþ ðNit � Iðxi; tiÞÞ logð1�PfPRðxi; tiÞÞ: (13)

To fit each model, we first obtained 10,000 bootstrapped data sets of predicted PfEIR as in (3) at

the set of all space-time locations sampled for the rMIS. We did this for two reasons: to obtain PfEIR

data at locations ðxi; tiÞ that were sampled for rMIS but not for the entomological surveillance; and to

account for the uncertainty in PfEIR. The predicted PfEIR values were then paired with respective

empirical PfPR values at ðxi; tiÞ. By fitting each model to each of the 10,000 datasets, we then

obtained 10,000 bootstrapped samples f�̂1; . . . ; �̂10000g for the vector of parameter estimates �̂ of

each the six candidate models. We then summarised these samples by their mean and central 95%

probability interval. We repeated this process for l¼ 0;1;2.
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We compared the fit of the six models based on their predictive ability as measured by the bias

and root-mean-square error when each model is used to predict prevalence at all the observed

space-time locations.

Results

rMIS and mosquito sampling
From April 2015 to May 2018, a total of 6870 traps (3439 indoors; 3431 outdoors) were placed at

2432 houses over 17 rounds of sampling (Figure 2), resulting in the collection of 657 female Anoph-

eles mosquitoes (Table 1). Following PCR of the 478 A. gambiae s.l. collected, 92% were identified

as A. arabiensis, 2% as A. gambiae s.s., 1% as A. quadriannulatus, and 5% could not be identified

further. From the 179 A. funestus s.l. collected, 95% were identified as A. funestus s.s. by PCR, while

the remaining 5% could not be identified further. The observed vector composition is therefore

71%, 27%, and 2% for A. arabiensis, A. funestus s.s., and A. gambiae s.s., respectively.
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Figure 2. Summary of the entomological and rMIS sampling over time. The top panel shows the number of

houses where Suna traps were set, and the bottom panel shows the number of participants in the rMIS.
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Despite the relatively low abundance of A. funestus s.s. compared to A. arabiensis, the higher

sporozoite rate of the former made the contribution of A. funestus s.s. to the total PfEIR almost

equivalent to that of A. arabiensis (Table 1). The total PfEIR for the 38 months was 8.24 ib/person,

equivalent to an average 2.60 ib/person/year.

Over the same 38-month period, 5685 individual P. falciparum RDT tests were conducted across

3096 household visits (Figure 2). Among the 2401 tests conducted on children aged 6 to 59 months,

25.5% were positive, while 14.3% of the 3284 tests conducted on women aged 15–49 y/o were

positive.

Spatiotemporal patterns of PfEIR and PfPR
We observed clear spatiotemporal heterogeneities in PfEIR, PfPR in children, and PfPR in women

when mapped across the study region at a fine spatial resolution (30 x 30 m) and 1 month intervals.

For convenient visualisation of the main features of the spatiotemporal maps, we have developed an

interactive web-based application to show the maps at http://chicas.lancaster-university.uk/projects/

malaria_in_malawi/pfpr/. We show selected predictive maps of PfEIR and PfPR in Figure 3 and

exceedance probability of PfEIR and PfPR in Figure 4 for June 2015, August 2016 and November

2017, which are representative of high, medium and low transmission months, relative to the full

study period. Spatially, there were differences both within and between the three focal areas. Focal

Area A generally showed the lowest PfEIR and PfPR, while Focal Areas B and C showed similar,

higher levels of PfEIR. Within each focal area, the spatial patterns changed from month to month,

with hotspots of both PfEIR and PfPR proceeding through seasonal cycles of expansion and retrac-

tion over time. Over the 3-year study period, hotspots of PfEIR and PfPR generally disappeared dur-

ing the low transmission seasons, except for residual hotspots of PfPR that persisted throughout the

study period.

When summarised over the whole study region, each of PfPR and PfEIR exhibited seasonal pat-

terns with a single annual peak. The monthly predicted PfEIRs and PfPRs were similar to the

observed values (Figure 5). PfEIR increased from November to a peak in May and decreased to a

trough in November. PfPR started increasing from December to a peak around July, after which it

decreased to a trough between November/December.

Three observations are clear from both the spatiotemporal maps and the monthly summarised

data (Figure 5). First, children aged 6–59 months consistently had a higher level of PfPR than women

throughout the study period. Second, PfPR in both groups generally decreased from the start of the

Table 1. Details of Anopheles female mosquitoes collected.

The table shows the observed numbers collected indoors and outdoors, the HBR (number collected

per trap multiplied by the number of days in each of the 38 months of sampling), PfSR and PfEIR for

the Anopheles species sampled.

Species Number Number Empirical Empirical Empirical

Collected Collected HBR PfSR PfEIR

Indoors Outdoors (bite/person) % (ib/person)

A. arabiensis 175 263 73.66 5.48% 4.04

A. funestus s.s. 74 96 28.58 11.17% 3.19

A. gambiae s.s. 5 6 1.85 18.18% 0.34

A. quadriannulatus 1 3 0.67 0.00% 0.00

A. gambiae s.l.* 12 13 4.20 12.00% 0.50

A. funestus s.l.** 4 5 1.51 11.11% 0.17

TOTAL 271 386 110.47 8.24

A. gambiae s.l. * and A. funestus s.l. ** are Anopheles female mosquitoes morphologically identified as belonging to

the A. gambiae species complex and A. funestus species group, respectively, but which could not be further identi-

fied by PCR. The unit of EIR is infective bites per person over the course of the study (38 months).

The online version of this article includes the following source data for Table 1:

Source data 1. Source data of the details of Anopheles female mosquitoes collected.
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Figure 3. Selected predictive maps of PfEIR and PfPR for June 2015, August 2016 and November 2017,

representing high, medium, and low transmission months, respectively. Left panels: median P. falciparum

entomological inoculation rate (PfEIR). Centre panel: mean P. falciparum parasite prevalence (PfPR) in children 0.5–

5 y/o. Right panel: mean PfPR in women 15–49 y/o.

Figure 4. Selected maps of exceedance probability of PfEIR and PfPR for June 2015, August 2016 and November

2017, representing high, medium, and low transmission months, respectively. Left panels: probability that PfEIR

exceeds 0.1 infective bites/person/month. Centre panels: probability that PfPR in children 0.5–5 y/o exceeds 31%.

Right panels: probability that PfPR in women 15–49 y/o exceeds 17%. Red areas demarcate hotspots, which we

define as an exceedance probability at least 0.9.

Amoah, McCann, et al. eLife 2021;10:e65682. DOI: https://doi.org/10.7554/eLife.65682 11 of 32

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.65682


● ●

●

●

● ●

● ● ●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ●0

1

2

3

4

5
A

p
r 

2
0

1
5

M
a
y
 2

0
1

5

J
u

n
 2

0
1

5

J
u

l 
2

0
1

5

A
u

g
 2

0
1

5

S
e

p
 2

0
1

5

O
c
t 
2

0
1

5

N
o
v
 2

0
1

5

D
e

c
 2

0
1

5

J
a

n
 2

0
1

6

F
e

b
 2

0
1

6

M
a

r 
2

0
1

6

A
p

r 
2

0
1

6

M
a
y
 2

0
1

6

J
u

n
 2

0
1

6

J
u

l 
2

0
1

6

A
u

g
 2

0
1

6

S
e

p
 2

0
1

6

O
c
t 
2

0
1

6

N
o
v
 2

0
1

6

D
e

c
 2

0
1

6

J
a

n
 2

0
1

7

F
e

b
 2

0
1

7

M
a

r 
2

0
1

7

A
p

r 
2

0
1

7

M
a
y
 2

0
1

7

J
u

n
 2

0
1

7

J
u

l 
2

0
1

7

A
u

g
 2

0
1

7

S
e

p
 2

0
1

7

O
c
t 
2

0
1

7

N
o
v
 2

0
1

7

D
e

c
 2

0
1

7

J
a

n
 2

0
1

8

F
e

b
 2

0
1

8

M
a

r 
2

0
1

8

A
p

r 
2

0
1

8

M
a
y
 2

0
1

8

Month/Year
(a)

P
fE

IR

Data
● Observed

Predicted

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
p

r 
2

0
1

5

M
a
y
 2

0
1

5

J
u

n
 2

0
1

5

J
u

l 
2

0
1

5

A
u

g
 2

0
1

5

S
e

p
 2

0
1

5

O
c
t 
2

0
1

5

N
o
v
 2

0
1

5

D
e

c
 2

0
1

5

J
a

n
 2

0
1

6

F
e

b
 2

0
1

6

M
a

r 
2

0
1

6

A
p

r 
2

0
1

6

M
a
y
 2

0
1

6

J
u

n
 2

0
1

6

J
u

l 
2

0
1

6

A
u

g
 2

0
1

6

S
e

p
 2

0
1

6

O
c
t 
2

0
1

6

N
o
v
 2

0
1

6

D
e

c
 2

0
1

6

J
a

n
 2

0
1

7

F
e

b
 2

0
1

7

M
a

r 
2

0
1

7

A
p

r 
2

0
1

7

M
a
y
 2

0
1

7

J
u

n
 2

0
1

7

J
u

l 
2

0
1

7

A
u

g
 2

0
1

7

S
e

p
 2

0
1

7

O
c
t 
2

0
1

7

N
o
v
 2

0
1

7

D
e

c
 2

0
1

7

J
a

n
 2

0
1

8

F
e

b
 2

0
1

8

M
a

r 
2

0
1

8

A
p

r 
2

0
1

8

M
a
y
 2

0
1

8

Month/Year
(b)

P
fP

R
 i
n

 C
h

ild
re

n
 0

.5
−

5
 y

/o

Data
● Observed

Predicted

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
p

r 
2

0
1

5

M
a
y
 2

0
1

5

J
u

n
 2

0
1

5

J
u

l 
2

0
1

5

A
u

g
 2

0
1

5

S
e

p
 2

0
1

5

O
c
t 
2

0
1

5

N
o
v
 2

0
1

5

D
e

c
 2

0
1

5

J
a

n
 2

0
1

6

F
e

b
 2

0
1

6

M
a

r 
2

0
1

6

A
p

r 
2

0
1

6

M
a
y
 2

0
1

6

J
u

n
 2

0
1

6

J
u

l 
2

0
1

6

A
u

g
 2

0
1

6

S
e

p
 2

0
1

6

O
c
t 
2

0
1

6

N
o
v
 2

0
1

6

D
e

c
 2

0
1

6

J
a

n
 2

0
1

7

F
e

b
 2

0
1

7

M
a

r 
2

0
1

7

A
p

r 
2

0
1

7

M
a
y
 2

0
1

7

J
u

n
 2

0
1

7

J
u

l 
2

0
1

7

A
u

g
 2

0
1

7

S
e

p
 2

0
1

7

O
c
t 
2

0
1

7

N
o
v
 2

0
1

7

D
e

c
 2

0
1

7

J
a

n
 2

0
1

8

F
e

b
 2

0
1

8

M
a

r 
2

0
1

8

A
p

r 
2

0
1

8

M
a
y
 2

0
1

8

Month/Year
(c)

P
fP

R
 i
n

 W
o

m
e

n
 1

5
−

4
9

 y
/o Data

● Observed
Predicted

Figure 5. Summaries of monthly PfEIR and PfPR. The plot shows monthly median PfEIR (a), mean PfPR in children 0.5–5 y/o (b) and mean PfPR in

women 15–49 y/o (c), over the study region. The round points are the observed data and the triangular points are the predictions from our models. The

shaded regions represent the corresponding 95% confidence interval of the predicted values. The confidence intervals were obtained by simulating

10,000 samples of the respective metric under the respective fitted model.
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study in April 2015 to December 2016, after which there was a general trend of increasing PfPR in

both age groups. Finally, PfEIR was steady in the first 2 years of the study, followed by a general

decrease after May 2016. Strikingly, the observed PfEIR was 0 between June 2017 and the end of

the study, while the PfPR increased in both children and women between November 2017 and May

2018.

The relationship between PfEIR and PfPR
Temporally, the seasonal patterns of PfEIR and PfPR within each year were nearly concurrent, with

the estimated peak in PfEIR preceding that of PfPR by one month (Figure 5).

Spatially, PfEIR and PfPR showed broadly similar patterns. When comparing the hotspots of PfEIR

and PfPR using spatiotemporal maps of exceedance probabilities, the hotspots of PfEIR and PfPR

partly overlapped during the high transmission season (http://chicas.lancaster-university.uk/projects/

malaria_in_malawi/pfpr/). However, there were hotspots of PfEIR that were not necessarily hotspots

of PfPR and vice versa (Figure 6).

Scatter plots of the logit of PfPR against the log of PfEIR show an approximately direct linear rela-

tionship (Figure 7).

For each of the six classes of model, those with a 1-month lagged-effect were found to be the

best based on the root-mean-square-error (RMSE) and bias indices of predictive performance.

Among these, the empirical models (i.e. logit-linear and Beier) yielded lower values for the bias and

RMSE values than the mechanistic models (Appendix 1 – Procedure for building the HBR, PfSR, and

PfPR models, Appendix 1—table 6). The logit-linear model, albeit by a small margin, outperformed

all the models (Appendix 1 – Procedure for building the HBR, PfSR, and PfPR models, Appendix 1—

table 6).

The fitted logit-linear model (Figure 8) shows that PfPR rises quickly with increasing PfEIR at very

low PfEIR, followed by a flattening off or saturation. From the estimated relationship for women and

children combined (Figure 8a), a decrease in PfEIR from 1 ib/person/month to 0.85 ib/person/month

(i.e. a 0.15 decrease in PfEIR) is associated with a reduction in PfPR from 27.17% to 26.85% on aver-

age (i.e. a 1.18% decrease in PfPR). However, at the lower ranges of EIR, the same decrease of 0.15

ib/person/month from 0.2 ib/person/month to 0.05 ib/person/month is associated with a reduction

in PfPR from 24.10% to 21.66% on average (i.e. a 10.13% decrease in PfPR). The resulting non-linear
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reltionship emphasizes two aspect of the PfPR-PfEIR relationship. First, for large values in PfEIR,

reductions in PfEIR are associated with smaller reductions in PfPR, whilst if PfEIR is low, reductions in

PfEIR are associated with greater reductions in PfPR. Second, even when transmission, as measured

by PfEIR, has been driven close to zero, PfPR can still remain substantial.

An indication of possible differences in the PfEIR–PfPR relationship between children and women

lies in the logit-linear model fitted to children and women separately (Figure 8b). The average tra-

jectories of PfPR and corresponding 95% confidence intervals with varying PfEIR are distinct for

women and children. PfPR in children tends to show a steeper rise with increasing PfEIR than in

women. From the estimated relationship for children, a decrease in PfEIR from 0.1 ib/person/month

to 0.01 ib/person/month is associated with a reduction in PfPR from 31.07% to 25.52% on average

(i.e. a 17.86% decrease in PfPR). From the estimated relationship for women, the same decrease in

PfEIR is associated with a reduction in PfPR from 16.84% to 14.33% (i.e. a 14.90% decrease in PfPR)

on average. We make two observations. (1) With decreasing PfEIR, the percentage reduction in PfPR

achieved in children tends to be higher than in women. (2) When transmission has been driven

almost to zero, PfPR remains consistently high in children.

Discussion
Using data from 38 months of repeated cross-sectional surveys, we have mapped the fine-scale spa-

tiotemporal dynamics of PfEIR and PfPR in a region of Malawi with moderately intense, seasonally

variable malaria parasite transmission. We found evident spatial heterogeneity in both PfEIR and

PfPR, with areas of higher PfEIR and PfPR expanding and contracting over time. We also found that

hotspots of PfEIR and hotspots of PfPR overlapped at times, but the amount of overlap varied over

time. Finally, we showed that month-to-month variations in PfEIR over the study period are strongly

associated with changes in PfPR. These findings highlight the dynamic nature of malaria parasite

transmission and underscore the value of monitoring both PfEIR and PfPR at fine spatial and tempo-

ral resolutions.
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Figure 7. Plot of the linear relationship between the logit of PfEIR and the log of PfEIR. Each point represents a focal area and a month where there

was empirical data for PfPR (n=100). PfEIR is the median (model-based predicted) PfEIR over the focal area. Prevalence is the average empirical

prevalence over the focal area, with children and women put together. The shaded regions represent the corresponding 95% confidence region. The

confidence region was obtain from 10,000 predictive samples where each sample was obtained by plugging in one of the bootstrap samples parameter

estimate into the logit-linear model.
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Figure 8. A plot of the estimated logit-linear relationship between PfPR and PfEIR. The solid lines are the estimated relationships and the shaded areas

are the associated 95% confidence region for children and women combined (a) and for children and women separately (b). The shaded regions

represent the corresponding 95% confidence region. The confidence regions were obtain from 10,000 predictive samples where each sample was

obtained by plugging in one of the bootstrap samples parameter estimate into the logit-linear model.
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In this study, we used model-based geostatistics (Diggle and Giorgi, 2019) to analyse repeated

cross-sectional data with a unique sampling framework (Roca-Feltrer et al., 2012; Kabaghe et al.,

2017) and estimate the fine-scale spatial patterns of PfEIR and PfPR across our study site at monthly

intervals. This approach was essential for identifying hotspots of PfEIR and PfPR through the use of

exceedance probabilities, because it allowed us to acknowledge the effects of unmeasured malaria

risk factors on each metric through the inclusion of spatially structured random variations. Conse-

quently, we were able to directly compare the spatial patterns of PfEIR and PfPR over an extended

period of time in a single geographical region. As expected, there were hotspots identified by each

of the two metrics of malaria transmission risk, which expanded and retracted over time. However,

the hotspots of PfEIR and PfPR only partially overlapped, with the most substantial amount of over-

lap observed during the high transmission seasons. Within-village and between-village spatial heter-

ogeneities of malaria parasite transmission are well documented across many sites

(Greenwood, 1989; Thompson et al., 1997; Amek et al., 2012; Mwandagalirwa et al., 2017), but

few previous studies have compared the spatial distributions of different transmission metrics in the

same site (but see Stresman et al., 2017). Given that all available metrics of malaria parasite trans-

mission have their own strengths and weaknesses (Tusting et al., 2014), our findings suggest that

monitoring multiple transmission metrics, each aligned with widely separated steps of the parasite

transmission cycle, provides a more complete understanding of the underlying spatial heterogeneity

in malaria parasite transmission (Cohen et al., 2017). Furthermore, monitoring multiple metrics may

provide an opportunity to optimise the impact of control activities by targeting different control

activities to different locations based on differences in the metrics (Cohen et al., 2017). For exam-

ple, areas with higher transmission risk according to an entomological metric (e.g. PfEIR) than a mea-

sure of the potential transmission reservoir (e.g. PfPR) may indicate a need for increased vector

control, whereas areas with lower PfEIR and higher PfPR may indicate a need for increased treatment

of malaria parasite infections.

Our geostatistical modelling approach also provided a principled framework for estimating PfEIR

in our study, allowing us to robustly investigate the PfEIR-PfPR relationship despite the low mosquito

densities observed in this region. Previous studies Beier et al., 1999; Smith et al., 2005 have esti-

mated the relationship between PfEIR and PfPR using paired estimates of these metrics from several

sites throughout Africa, characterised by a wide range of transmission intensities (PfEIR <1 to >500

ib/person/year). These studies demonstrated that small changes in PfEIR are associated with large

changes in PfPR when PfEIR is low, for example below about 15 ib/person/year (Beier et al., 1999).

However, estimating PfEIR in settings with low mosquito density is challenging because the accuracy

and precision of PfEIR depend on the accuracy and precision of the human biting rates and sproro-

zite rates used to calculate PfEIR (Tusting et al., 2014). We overcame these challenges by using

model-based geostatistics to improve the precision of our PfEIR estimates and, just as importantly,

used bootstrap procedures to propagate the uncertainty from each modelling step to the next. Alto-

gether, these methods allowed us to investigate the PfEIR-PfPR relationship with a focus on much

lower ranges of PfEIR than previous studies.

An additional advantage of using geostatistical models in this study was the prediction of ento-

mological data at unsampled geographical locations. For a number of logistical reasons (e.g. mos-

quito sampling was conducted over 2 consecutive nights at each sampled location), we sampled for

mosquitoes at roughly 75% of the locations visited for parasitaemia sampling in each round. For the

geographical locations where empirical parasitaemia data were available but entomological data

were not, our geostatistical model predictions of PfEIR were combined with the empirical PfPR data.

This rigorous statistical solution enriched the data used in our assessment of the PfEIR-PfPR

relationship.

Prior to our study, the most recent assessment of PfEIR in this district of Malawi was from 2002,

with an estimated annual PfEIR of 183 ib/person/year (Mzilahowa et al., 2012). The drastic reduc-

tion in annual PfEIR since then to an estimated 2.60 ib/person/year in our study is likely due, at least

in part, to an increase in the use of ITNs and ACTs as observed elsewhere (Bayoh et al., 2010;

Mwangangi et al., 2013). Nationwide, use of ITNs by children under 5 years old in Malawi has

increased from nil in 2000 and 14.8% in 2004 (Mathanga et al., 2012) to 67.8% in 2014

(Malawi National Malaria Control Programme and ICF International, 2014). Treatment for malaria

in Malawi switched from sulfadoxine–pyrimethamine to ACT with artemether–lumefantrine in 2007

(Mathanga et al., 2012), and by 2014, 39.3% of children under five reporting a fever had taken ACT

Amoah, McCann, et al. eLife 2021;10:e65682. DOI: https://doi.org/10.7554/eLife.65682 16 of 32

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.65682


(Malawi National Malaria Control Programme and ICF International, 2014). In addition to these

long-term, nationwide trends, changes in malaria intervention coverage over time also likely

impacted malaria parasite transmission in the more specific context of our study. Mass distributions

of ITNs took place across Malawi in 2012 (World Health Organization, 2013), that is about 3 years

prior to our study, and again in April 2016, that is, 1 year into our 38-month study. Additionally, ran-

domly selected villages in our study site implemented community-led larval source management,

house improvement, or both as part of a randomised trial between May 2016 and May 2018

(McCann et al., 2017b; van den Berg et al., 2018). Although no differences in PfEIR or PfPR were

observed between the trial arms (McCann et al., 2021), the entire study site, including the trial’s

control arm, was included in the 2016 mass ITN distribution, as well as other National Malaria Con-

trol Programme interventions and a community engagement programme as part of the Majete

Malaria Project (McCann et al., 2017b; van den Berg et al., 2018). Therefore, the changes in PfEIR

and PfPR over time observed in this study reflect the combined effects of seasonal weather patterns,

year-to-year climatic variation and all malaria control activities.

Within this context of observing month-to-month changes in both PfEIR and PfPR in a single geo-

graphical region, we have demonstrated that fluctuations in PfEIR over short periods are associated

with predictable changes in PfPR in the same region. We found that a logit-linear model explained

the PfEIR-PfPR relationship better than any of the other five model classes examined, and our data

better supported a one-month delayed effect of PfEIR on PfPR than no delayed effect or a 2-month

delayed effect. The one-month delayed effect is likely due to the incubation period of the parasite

(Ruan et al., 2008) and the duration of infections (Felger et al., 2012). As shown in previous studies

(Beier et al., 1999; Smith et al., 2005), we observed that small changes in PfEIR led to relatively

large changes in PfPR at lower ranges of PfEIR, while PfPR saturated rather than changing at a con-

stant rate at higher ranges of PfEIR. These previous studies were based on estimates of PfEIR and

PfPR from 31 locations (Beier et al., 1999) and more than 90 locations (Smith et al., 2005) repre-

senting a wide range of PfEIR and PfPR in Africa. By assuming that the PfEIR-PfPR relationship is con-

stant across space on a continental scale, results from these previous studies suggested that

variation between PfEIR and PfPR across geographical location is representative of variation

between PfEIR and PfPR over time. In our study, we explicitly confirmed this association between

PfEIR and PfPR within a single location. Whilst we also assumed that the PfEIR-PfPR relationship

does not change dynamically across space and time, we believe this to be a realistic assumption for

the restricted geographical setting of our study.

The saturation in PfPR with increasing PfEIR may be explained by several factors, which are not

mutually exclusive. One set of factors relates to people being heterogeneously exposed to vectors

(Guelbéogo et al., 2018) because of differences in attractiveness (Knols et al., 1995; Qiu et al.,

2006), behaviour (Sherrard-Smith et al., 2019; Finda et al., 2019), access to ITNs (Bhatt et al.,

2015b), housing design (Tusting et al., 2015; Tusting et al., 2017), or the spatial distribution of

vector habitat (McCann et al., 2017a), so that as PfEIR increases, it is more likely that infectious vec-

tors are biting already infected individuals (Smith et al., 2007b; Smith et al., 2010). The second set

of factors relates to inter-individual variation in acquired immunity, which in some individuals may

prevent vector-inoculated sporozoites from progressing to blood-stage infection (John et al., 2005;

Offeddu et al., 2017), keep blood-stage infections at densities lower than the level of detection

(Doolan et al., 2009) (about 50–200 parasites/ml for RDTs as used in our study), or increase the rate

at which blood-stage infections are cleared (Hviid et al., 2015).

Regardless of the underlying factors driving the PfEIR-PfPR relationship, our results have practical

implications for the selection and interpretation of malaria parasite transmission metrics. In settings

with higher ranges of PfEIR, moderate changes in PfEIR will not be associated with appreciable

changes in PfPR (Beier et al., 1999; Smith et al., 2005; Churcher et al., 2015). Framed in terms of

a public health goal to decrease PfPR in these settings with high baseline PfEIR, relatively large

reductions in PfEIR would be required to achieve appreciable reductions in PfPR. In terms of select-

ing an appropriate metric for monitoring changes in transmission in these same high-PfEIR settings,

PfPR may only be suitable for measuring very large changes in transmission.

Conversely, in settings with a lower range of PfEIR, our results show that PfPR is sensitive to

smaller, short-term changes in malaria parasite transmission. This finding highlights the importance

of sustaining vector control efforts in settings with relatively low PfEIR, because a small increase in

the rate of infectious bites (PfEIR) could result in a rapid increase in the proportion of people
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infected (PfPR). This sensitivity of PfPR to short-term changes in parasite transmission, when PfEIR is

low, also confirms that PfPR can be used for monitoring changes in the intensity of parasite transmis-

sion linked to either environmental conditions or the effects of malaria interventions. However, this

sensitivity of PfPR in these settings suggests that annual cross-sectional surveys aiming for a trans-

mission peak are more likely to miss the actual peak than in settings with higher parasite transmis-

sion intensity, as shown previously by others (Kang et al., 2018). National malaria control programs

and others planning malaria indicator surveys to measure year-to-year variation in PfPR should there-

fore consider approaches to identify and account for any potential bias in PfPR estimates from a sin-

gle time point, for example incorporating continuous or ‘rolling’ surveys at sentinel sites (Roca-

Feltrer et al., 2012; Kabaghe et al., 2017), monitoring ‘easy-access groups’ (Sesay et al., 2017), or

modelling sub-annual trends based on health facility data (Sturrock et al., 2014; Awine et al.,

2018). These considerations likely apply to settings where increasing coverage of ITNs (Bhatt et al.,

2015a) and ACTs (Bennett et al., 2017) has reduced PfPR from �50% (i.e. holo- and hyperendemic

[Hay et al., 2008]) to between 10–50% (i.e. mesoendemic), which have become increasingly com-

mon over the last 20 years (Weiss et al., 2019).

The monthly PfEIR in our study region was 0 ib/person/month in multiple months. This likely indi-

cates that the number of infectious bites received per person during these months was below the

level of detection, rather than an actual interruption of transmission during those months, especially

in the first 2 years of the study when these periods only lasted 2–3 months. Our finding that a

monthly PfEIR near or equal to zero is associated with substantial PfPR is, therefore, unsurprising

given that previous studies have had similar findings when comparing annual PfEIR to PfPR

(Kabiru, 1994; Mbogo et al., 1995; Beier et al., 1999; Smith et al., 2005). On the other hand, we

observed an increase in PfPR from about November 2017 to May 2018 while PfEIR remained at zero.

It remains unclear whether this rise in PfPR was due to new infectious bites that nevertheless

remained below the level of detection or to previously infected individuals with parasite densities

that increased to detectable levels (Drakeley et al., 2018). Either way, this result shows that a rise in

PfPR may be observed even when PfEIR cannot be detected by current methods, and, therefore,

both interventions and monitoring need to continue for some time after PfEIR has not been

detected. Our results also highlight the importance of monitoring additional metrics of parasite

transmission (in addition to PfEIR) when the annual PfEIR is <10 ib/person/year, especially when

expecting a reduction in transmission as in the case of testing malaria interventions. Nonetheless,

when PfEIR is above the level of detection, it provides information about the vector species involved

in transmission, which is critical because different mosquito species may respond differently to vector

control interventions (Ferguson et al., 2010; Wilson et al., 2020).

We observed a consistently higher PfPR in children 0.5–5 y/o than in women 15–49 y/o through-

out the study region and study period, as expected. The extent of difference in PfPR between chil-

dren and adults for a given region generally increases with parasite transmission intensity. However,

even in mesoendemic settings (PfPR between 10–50%), it is common for PfPR in children to be

appreciably higher than in adults (Smith et al., 2007a). This pattern is due to increasing acquired

immunity with increased exposure to malaria parasites over time (Baird, 1995), which may decrease

transmission efficiency and time to clear a P. falciparum infection in adults compared to children

(see Appendix 1 – Procedure for building the HBR, PfSR, and PfPR models, Appendix 1—table 6

and Smith et al., 2005). Moreover, the higher PfPR in children than adults, even at the lowest levels

of transmission, suggests that children may play a more significant role in transmission, consistent

with other studies (Walldorf et al., 2015; Ouédraogo et al., 2016).

Although the functional form of our best fitting PfEIR-PfPR model matches that of previous stud-

ies (Beier et al., 1999; Smith et al., 2005), the estimated values of PfPR as a function of PfEIR show

non-negligible differences. For example, based on our best model, a 0.15 ib/person/month decrease

in PfEIR from 0.2 to 0.05 ib/person/month leads to a decrease in PfPR from 24.10% to 21.66% on

average, a reduction of about 10.13%. In Beier et al., 1999, instead, the same decrease in PfEIR cor-

responds to a decrease in PfPR from 33.88% to 19.31%, a reduction of about 43.00%, whilst in the

case of the best model of Smith et al., 2005, that yields a decrease in PfPR from 33.46% to 16.51%,

a reduction of about 50.66%. One possible reason for these differences is that our study focuses on

a geographically limited area where lower values in PfEIR are observed. Secondly, both previous

studies excluded data from sites reporting mosquito control activities whilst our study site included

multiple interventions. Finally, another important difference with our study is that, our focus was on
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a relatively small sub-national area of Malawi, whereas Beier et al., 1999 and Smith et al., 2005

used data from across Africa and implicitly assumed that the properties of the PfEIR-PfPR relation-

ship do not vary over such continental scale.

In this study, the empirical PfPR was used as the response variables of six different statistical mod-

els, while the modelled PfEIR from a geostatistical model was used as the independent variable in

each of the six models. As shown in this paper, this approach has two main advantages: (1) it

allowed us to develop a bootstrap procedure for propagating the uncertainty arising from the esti-

mates of PfEIR into the PfPR-PfEIR relationship; (2) it allowed us to avoid the generation of spurious

correlations in the estimation of the PfPR-PfEIR relationship. The risk of spurious correlation may in

fact occur when using approaches that are based on the estimates of both PfPR and PfEIR, which

are obtained from statistical models informed by the same set of covariates.

One limitation of this study was that the six PfEIR-PfPR models do not allow for overdispersion in

the estimation of the PfEIR-PfPR relationship. However, the use of standard Binomial likelihoods still

delivers unbiased estimates of the functional relationship between PfEIR and PfPR, even in the pres-

ence of overdispersion (Godambe and Kale, 1991). Furthermore, given that the uncertainty around

the PfPR-PfEIR relationship is mainly driven by the predictive distribution of PfEIR, which we account

for through our bootstrap procedure, we do not expect overdispersion to have non-negigible influ-

ence on the parameter estimates. Finally, the development of models that allow for overdispersion

may be achieved in several different ways, for example, by modelling the parameters that modulate

the PfEIR-PfPR relationship as stochastic processes. However, these approaches would require a

larger amount of data than those available in this study and should be the subject of future research.

A second limitation was the use of RDTs to estimate PfPR. RDTs can show false positives after

anti-malarial drug treatment due to persistence of the antigens detected by RDTs (Dalrymple et al.,

2018). Also, the limit of detection (usually 50–200 parasites/ml) is higher than that of expert micros-

copy or PCR (Chiodini, 2014). In modelling the relationship between PfEIR and PfPR, we did not

account for the sensitivity and specificity of the RDT used to detect P falciparum infection. If the sen-

sitivity a and specificity b were known, we could account for them by setting PfPRðx; tÞ as used in our

analysis to aðPfPRðx; tÞb� 1Þ=ðaþ b� 1Þ. Thus, strictly, what we have called PfPR should be inter-

preted as the probability of testing positive for P. falciparum using RDT. However, the use of RDTs

as a diagnostic test for the detection of malaria infection provides PfPR estimates that are compara-

ble to national malaria indicator surveys.

An additional limitation of our study was the unidirectional relationship implicitly assumed in our

models of PfEIR-PfPR. In reality, PfPR and PfEIR are causally linked by the malaria parasite transmis-

sion cycle, which alternates between the human host and the mosquito vector. A higher rate of infec-

tious bites received per person (i.e. PfEIR) increases the probability of the person becoming infected

when bitten. Therefore, any factor that reduces mosquito populations, biting rates or human-to-mos-

quito parasite transmission (e.g. effective vector control interventions) will reduce PfEIR and conse-

quently translate to reductions in PfPR. Similarly, a higher rate of parasite infection in people (i.e.

PfPR) increases the probability of a mosquito becoming infected after any given blood meal. There-

fore, factors that directly reduce PfPR (e.g. treatment of infections with effective drugs) will conse-

quently reduce PfEIR. The impact of interventions may therefore affect both PfEIR and PfPR in such

a way that a cyclic relationship may better describe the association between these metrics. Future

modelling efforts may thus be improved by taking into account the cyclic aspect of the PfEIR-PfPR

relationship.

Conclusion
Measuring PfEIR and PfPR using the rolling MIS sampling framework and a geostatistical modelling

approach allowed us to assess the fine-scale spatial and temporal distributions of malaria parasite

transmission over 38 months in a mesoendemic setting. The relationship between PfEIR and PfPR

estimated here shows that at low levels of PfEIR, changes in PfEIR are associated with rapid changes

in PfPR, while at higher levels of PfEIR, changes in PfEIR are not associated with appreciable changes

in PfPR. Comparing hotspots of PfEIR and PfPR revealed that each metric could identify potential

transmission hotspots that the other fails to capture. Our results emphasise that PfEIR and PfPR are

essential, complementary metrics for monitoring short term changes in P. falciparum transmission

intensity in mesoendemic settings, which have become increasingly common as many regions reduce

transmission and shift from the highest malaria endemicity levels. Our study emphasises the need to
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couple vector control with identifying and treating infected individuals to drive malaria to elimination

levels and to monitor both entomological and parasitaemia indices in malaria surveillance.
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Appendix 1

Procedure for building the HBR, PfSR and PfPR models
Let AvgðTempðxi; tiÞ; s1; s2Þ and AvgðRHðxi; tiÞ; s1; s2Þ respectively denote the average temperature and

relative humidity taken over s1 to s2 days prior to the data collection. Procedure for building the

HBR, PfSR and PfPR models Appendix 1—table 1 shows the s1 and s2 values over which average

temperature and relative humidity were computed. A set of these variables were selected as the

best predictors each of the outcome variables based on the procedure in the next section.

We selected the best combination of fixed and random effects that best explain HBR, PfSR and

PfPR using the following procedure.

1. We first built a generalized linear model in which temperature and RH are considered together
with time trends and sine and cosine functions for seasonality. For AvgðTempðxi; tiÞ; s1; s2Þ,
AvgðRHðxi; tiÞ; s1; s2Þ, the choice of s1 and s2, as illustrated by Procedure for building the HBR,
PfSR and PfPR models Appendix 1—table 1, was based on the deviance profile of the variable
involved, that is, either temperature or RH. Piecewise-linear transformations of temperature
and RH were considered based on visual inspection and epidemiological knowledge.

2. Potential confounding between seasonal sinusoids, temperature and RH were checked. Covari-
ates that did not improve the model fit as judged by the AIC were excluded. Sin-cosine terms
were always considered together as if they were one covariate.

3. With the current model as a basic model we include other available explanatory variables
based on forward selection, and check for interactions.

4. When no more explanatory variables significantly improve the model fit, we fit a generalized
linear mixed model with a random effect for each unique space-time location.

5. We then check for the presence of residual spatial, temporal, and spatio-temporal correlations
using the algorithm described in Giorgi et al., 2018, and then include the random effect terms
that improve the model fit.
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Appendix 1—figure 1. Empirical variograms (Solid lines) and 95% confidence regions (grey areas)

developed by randomly pairing locations, that is, assuming that there is no residual spatial correla-

tion in the sporoziote rate data of An funestus s.s. (left panel) and An arabiensis (right panel). The

variograms lie entirely within the respective 95% confidence regions, indicating that there is no

residual spatial correlation.

The selected fixed effects for the HBR, PfSR and PfPR models
We specify the set of fixed effects we selected to be in the final model for the A. arabiensis HBR, A.

funestus s.s. HBR, PfSR, and the PfPR models. Detailed description of the terms involved in the fixed
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effects and the estimates of all the parameters of each model are given in S1 Appendix 1—table 2–

5.

. A. arabiensis human biting rate

dðxi; tiÞ
>
bþ f ðti;aÞ ¼ b11ðxi 2AÞþb21ðxi 2 BÞþb31ðxi 2 CÞþb41ðIndoorÞþ

b5DSRðxiÞþb6AvgðRHðxi; tiÞ;14;35Þþ
b7minfAvgðTempðxi; tiÞ;7;14Þ;22:9g
þb8maxfAvgðTempðxi; tiÞ;7;14Þ� 22:9;0gþ
a1 sinð2pti=12Þ=tþa2 cosð2pti=12Þ=t

. A. funestus s.s. human biting rate

dðxi; tiÞ
>
bþ f ðti;aÞ ¼ b0 þElevationðxiÞþb1DSRðxiÞþb2NDVIðxiÞþ

b3AvgðTempðxi; tiÞ;0;7Þþb4AvgðTempðxi; tiÞ;7;14Þþ
þb5AvgðRHðxi; tiÞ;14;21Þ
þa1 sinð2pti=12Þþa2 cosð2pti=12Þþ
þa3minfti;12gþa4maxfti� 12;0g

. A. arabiensis sporozoite rate

dðxi; tiÞ
>
b� þ f �ðti;a

�Þ ¼ b�
0
þb�

1
DLRðxiÞþb�

2
DSRðxiÞþb�

3
ElevationðxiÞþ

b�
4
EVIðxiÞþa�

1
sinð2pti=12Þþa�

2
cosð2pti=12Þþ

a�
3
minfti;12gþa�

4
maxfti� 12;0g

. A. funestus s.s. sporozoite rate

dðxi; tiÞ
>
b� þ f �ðti;a

�Þ ¼ b�
0
þa�

1
sinð2pti=12Þþa�

2
cosð2pti=12Þþ

a�
3
minfti;12gþa�

4
maxfti� 12;0g

. P. faciparum prevalence

dðxi; tiÞ
>’þ gðti;%Þ ¼ ’11ðxi 2AÞþ’21ðxi 2 BÞþ’31ðxi 2 CÞþ

’4ElevationðxiÞþ’5DLRðxiÞþ
’6AvgðTempðxi; tiÞ;14;42Þþ’7NDVIðxiÞþ
’8WealthðxiÞþ %1minfti;21gþ %2maxfti� 21;0gþ
þ%3 cosð2pti=12Þþ %4 sinð2pti=12Þ

Appendix 1—table 1. Range of days prior to data collections over which temperature and relative

humidity were averaged.

To ðs2Þ 0 3 5 7 14 21 28 35 42

From ðs1Þ

0 [* [ [ [ [ [ [ [ [

3 [ [ [ [ [ [ [

5 [ [ [ [ [ [

7 [ [ [ [ [

14 [ [ [ [

21 [ [ [

28 [ [

35 [

*The check marks indicate the days from/to which temperature and relative humidity were averaged.
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Appendix 1—table 2. Regression table for the A. arabiensis human biting rate model.

Variable Description Parameter Point estimate

Covariates

1ðxi 2 AÞ A binary indicator taking the value 1 if
location xi

b1 �13.525

belongs to Focal Area A and 0 otherwise. (�16.217,–10.833)*

1ðxi 2 BÞ A binary indicator taking the value 1 if
location xi

b2 �9.995

belongs to Focal Area B and 0 otherwise. (�12.656,–7.333)

1ðxi 2 CÞ A binary indicator taking the value 1 if
location xi

b3 �10.848

belongs to Focal Area C and 0 otherwise. (�13.514,–8.182)

1ðIndoorÞ A binary indicator taking the value 1 if the
mosquito

b4 0.456

trap was set indoors and 0 otherwise. (0.264, 0.647)

DSRðxiÞ Distance from location xi to the closest small
river

b5 0.631 � 10�3

( 0.143, 1.120 ) �
10�3

AvgðRHðxi; tiÞ; 14; 35Þ Average relative humidity 14 to 35 days prior
to the

b6 0.056

data collection. (0.038, 0.073)

minfAvgðTempðxi; tiÞ; 7; 14Þ; 22:9g The effect of temperature when
temperature is

b7 0.180

below 22.9˚C. (0.072, 0.289)

maxfAvgðTempðxi; tiÞ; 7; 14Þ � 22:9; 0g The effect of temperature when
temperature is

b8 �0.132

22.9˚C or higher. (�0.22,–0.044)

Seasonality and Trends

sinð2pti=12Þ=t a1 �0.291

(�0.907, 0.325)

cosð2pti=12Þ=t a2 1.092

(�0.759, 2.943)

Spatial Correlation

Signal variance s2 4.114

(3.262, 5.189)

Scale (km) f 0.649

(0.492, 0.856)

Nugget variance t 2 0.162

(0.124, 0.21)

Dependent Variable: log of A. funestus mosquito density.

*95% confidence intervals are in brackets.

Appendix 1—table 3. Regression table for the A. funestus human biting rate model.

Variable Description Parameter Point estimate

Covariates

Continued on next page
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Appendix 1—table 3 continued

Variable Description Parameter Point estimate

Intercept b0 2.523

(�3.209, 8.256)*

ElevationðxiÞ Elevation of the location xi. b1 �5.583 � 10�3

(�7.896,–3.271) � 10�3

DSRðxiÞ Distance from location xi to the nearest small river. b2 2.993 � 10�3

(2.329, 3.658) � 10�3

NDVIðxiÞ Normalized difference vegetation index at b3 1.392

location xi. (�1.251, 4.035)

AvgðTempðxi; tiÞ; 0; 7Þ Average temperature one week prior to data b4 �0.154

collection. (�0.279,–0.028)

AvgðTempðxi; tiÞ; 7; 14Þ Average temperature 7 to 14 days prior to data b5 �0.116

collection. (�0.295, 0.064)

AvgðRHðxi; tiÞ; 14; 21Þ Average relative humidity 14 to 21 days prior to data b6 �0.043

collection. (�0.078,–0.008)

Seasonality and Trends

sinð2pti=12Þ a1 �0.291

(�0.907, 0.325)

cosð2pti=12Þ a2 1.092

(�0.759, 2.943)

minfti; 12g a3 �0.291

(�0.907, 0.325)

maxfti � 12; 0g a4 1.092

(�0.759, 2.943)

Spatial Correlation

Signal variance s2 4.456

(3.379, 5.876)

Scale (km) f 0.906

(0.66, 1.245)

Nugget variance t 2 0.142

(0.105, 0.191)

Dependent Variable: log of A. funestus mosquito density

*95% confidence intervals are in brackets.

Appendix 1—table 4. Regression table from fitting the P. falciparum sporozoite rate models.

Variable Description Parameter A. funestus s.s. A. arabiensis

Covariates

Intercept b�
0

0.139 �3.392

(�7.793, 8.071)* (�4.772,–
2.125)

DLRðxiÞ Distance from location xi to the nearest small b�
1

�1.945 � 10�3 —

river. (�3.345,–0.545) � 10�3

DSRðxiÞ Distance from location xi to the nearest large b�
2

�4.309 � 10�3 —

river. (�7.499,–1.119)

Continued on next page
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Appendix 1—table 4 continued

Variable Description Parameter A. funestus s.s. A. arabiensis

ElevationðxiÞ Elevation of location xi. b�
3

7.786 � 10�3 —

(5.819, 9.752) � 10�3

EVIðxiÞ Enhanced vegetation index of location xi. b�
4

�36.648 —

(�65.090,–8.206)

Seasonality

and Trends

sinð2pti=12Þ a�
1

�0.378 �0.253

(�0.565,–0.19) (�0.882, 0.375)

cosð2pti=12Þ a�
2

�0.722 �0.867

(�0.954,–0.489) (�1.864, 0.13)

minfti; 12g a�
3

�0.056 0.027

(�0.072,–0.041) (�0.086, 0.140)

maxfti � 12; 0g a�
4

0.061 �0.089

(0.039, 0.084) (�0.305, 0.127)

Dependent Variables: logits of the probability that a mosquito tests positive for sporozoites

*95% confidence intervals are in brackets.

Appendix 1—table 5. Regression table for the P. falciparum parasite rate model.

Variable Description Parameter
Children under 5 Y/
o Women 15-49 Y/o

Covariates

1ðxi 2 AÞ A binary indicator taking the value 1
if

’1 0.685 �0.506

xi belongs to Focal Area A and 0
otherwise.

( �1.877 , 3.247 ) ( �3.166 , 2.155 )

1ðxi 2 BÞ A binary indicator taking the value 1
if

’2 2.829 2.568

xi belongs to Focal Area B and 0
otherwise.

( 0.41 , 5.248 ) ( 0.134 , 5.002 )

1ðxi 2 CÞ A binary indicator taking the value 1
if

’3 3.192 2.641

xi belongs to Focal Area C and 0
otherwise.

( 0.806 , 5.577 ) ( 0.224 , 5.058 )

ElevationðxiÞ Elevation of the location xi. ’4 5.165 � 10�3 5.920 � 10�3

( 2.322 , 8.008 ) �
10�3

( 3.039 , 8.800 ) �
10�3

DLRðxiÞ Distance from location xi to the
nearest

’5 �0.372 � 10�3 �0.181 � 10�3

large river. ( �0.522 , �0.222) �
10�3

( �0.353,–0.009) �
10�3

AvgðTempðxi; tiÞ; 14; 42Þ Average temperature 14 to 42 days
prior to

’6 �0.112 �0.096

data collection. ( �0.201 , �0.023 ) ( �0.187 , �0.005 )

NDVIðxiÞ Normalized difference vegetation
index at

’7 �2.424 �5.556

location xi. ( �4.703 , �0.144 ) ( �7.63 , �3.482 )

WealthðxiÞ Wealth index of the i-th household. ’8 �0.212 �0.159
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Appendix 1—table 5 continued

Variable Description Parameter
Children under 5 Y/
o Women 15-49 Y/o

( �0.283 , �0.141 ) ( �0.215 , �0.102 )

Seasonality

and Trends

minfti; 21g %1 �0.079 �0.079

( �0.098 , �0.06 ) ( �0.1 , �0.059 )

maxfti � 21; 0g %2 0.072 0.086

( 0.042 , 0.102 ) ( 0.056 , 0.117 )

cosð2pti=12Þ %3 �0.045 0.101

( �0.265 , 0.175 ) ( �0.123 , 0.324 )

sinð2pti=12Þ %4 0.209 0.175

( �0.138 , 0.556 ) ( �0.173 , 0.523 )

Spatial Correlation

Signal variance s2 0.347 0.602

( 0.222 , 0.542 ) ( 0.416 , 0.872 )

Scale (km) f 1.175 1.055

( 0.617 , 2.238 ) ( 0.631 , 1.765 )

Nugget variance t 2 1.546 1.368

( 0.956 , 2.500) ( 0.932 , 2.007 )

S.I. denotes supper infection and D.I/R denotes different infection/recovery rates for children and

women. 95% confidence intervals are in brackets. RMSE is the root-mean-square error.

Appendix 1—table 6. Parameter estimates from the models for the relationship between PfEIR and

PfPR where PfEIR has a month’s lag effect on PfPR.

The models’ predictive abilities are assessed by the root-mean-square error (RMSE) and bias.

Model pðx; tÞ g g1 g2 RMSE Bias

1. SIS gPfEIRðx;t�1Þ
gPfEIRðx;t�1Þþ1

7.02 0.361 7:597� 10
�3

(3.906,
12.284)

2. SIS with D.I/R P

2

k¼1

�k;it
gkPfEIRðx;t�1Þ

gkPfEIRðx;t�1Þþ1

107.208 0.762 0.353 27:386� 10
�3

(0.088,
381.139)

(0.485,
24.344)

3. SIS with S.I. 1� e�gPfEIRðx;t�1Þ 1.728 0.351 78:301� 10
�3

(0.638,
3.087)

4. SIS with S.I. and D.I/R P

2

k¼1

�k;itð1� e�gkPfEIRðx;t�1ÞÞ
22.603 0.471 0.392 99:390� 10

�3

(0.128,
67.048)

(0.234, 7.02)

a b

5. Beier aþ b logðPfEIRðx; t � 1ÞÞ 0.253 0.013 0.328 5:376� 10
�3

(0.232, 0.283) (0.009,
0.021)
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Appendix 1—table 6 continued

Model pðx; tÞ g g1 g2 RMSE Bias

6. Logit-linear PfEIRðx;t�1Þb

PfEIRðx;t�1Þbþexpð�aÞ

-0.986 0.100 0.327 4:874� 10
�3

(-1.160, -
0.804)

(0.062,
0.147)

Logit-linear for children
only

-0.523 0.119

(-0.742, -
0.296)

(0.073,
0.174)

Logit-linear for women
only

-1.427 0.083

(-1.575, -
1.218)

(0.046,
0.133)
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