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Abstract
1.	 Despite important implications for human health, distribution, abundance and be-

haviour of most medically relevant snakes remain poorly understood. Such data 
deficiencies hamper efforts to characterise the causal pathways of snakebite en-
venoming and to prioritise management options in the areas at greatest risk.

2.	 We estimated the spatial patterns of abundance of seven medically relevant snake 
species from Sri Lanka, a snakebite hotspot, and combined them with indices of 
species' relative abundance, aggressiveness and envenoming severity obtained 
from an expert opinion survey, to test whether these fundamental ecological 
traits could explain spatial patterns of snakebite and envenoming incidence. The 
spatial intensity of snake occurrence records in relation to independent environ-
mental factors (fundamental niches and land cover) was analysed with point pro-
cess models. Then, with the estimated patterns of abundance, we tested which 
species' abundances added together, with and without weightings for aggressive-
ness, envenoming severity and relative abundance, best correlate with per capita 
geographic incidence patterns of snakebite and envenoming.

3.	 We found that weighting abundance patterns by species' traits increased correla-
tion with incidence. The best performing combination had three species weighted 
by aggressiveness and abundance, with a correlation of r = 0.47 (p < 0.01) with 
snakebite incidence. An envenoming severity and relative abundance-weighted 
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1  | INTRODUC TION

Globally, 1.2–5.5 million snakebites occur, 0.42–1.8 million result in 
envenoming and 20,000–94,000 deaths (Kasturiratne et al., 2008). 
Regional variability of snakebite and envenoming burden within and 
among nations have been attributed to human factors like poverty 
and occupation (e.g. agriculture; Harrison et al., 2009). However, de-
spite the logical relevance, propensity to bite, frequency of venom 
injection (Pucca et al., 2020), distribution and abundance of venom-
ous snakes in determining snakebite and envenoming burden has 
received less attention (Murray et  al.,  2020). Incorporating these 
factors into snakebite burden mapping could improve the extent to 
which development of preventive and therapeutic interventions can 
target areas or periods of highest risk and need.

Previous analyses show that there are (a) socio-economic (e.g. 
poverty, % of people working in agriculture; Harrison et al., 2009), (b) 
environmental (e.g. rainfall, temperature and vegetation greenness; 
Ediriweera et al., 2016; Molesworth et al., 2003) and (c) ecological 
(e.g. potential venomous snake abundance and richness; Bravo-
Vega et  al.,  2019; Yañez-Arenas et  al.,  2014, 2016) factors driving 
geographical snakebite patterns. Abundance and richness of ven-
omous snakes are relevant explanations of snakebite risk because 
snakebites are human–wildlife contacts (Glaudas, 2021), hence the 
number of encounters should be a function of human and snake 
abundance (Bravo-Vega et al., 2019).

Whether human–snake encounters result in bites and bites 
result in envenoming depends on traits like snake behaviour, 
venom injection and its toxicity to humans. Some species exhibit 
a greater propensity to strike or deliver venom after a bite (Healy 
et al., 2019; Pucca et al., 2020). The chance of fatal envenoming 
is also affected by venom composition and its systemic effects 
on the human body (Healy et al., 2019; Pucca et al., 2020). A logi-
cal pathway to better understand the relationship between snake 
species and snakebites is therefore to map the spatial variation of 
bite risk as a function of species' abundances weighted by their 
aggressiveness and the severity of the envenoming illness they 
produce. For instance, highly abundant but unaggressive species 

should cause less disease than less abundant but highly aggressive 
and venomous snakes. Such knowledge is still difficult to find in 
primary scientific literature, and have to be inferred from surro-
gates and/or expert knowledge.

Field-collected abundance data are missing for most snakes 
(Luiselli et  al.,  2020), but estimating abundance patterns across 
geographic ranges is possible, in theory, by characterising the 
land cover, climate or topography of the locations where spe-
cies occur (Martínez-Meyer et al., 2013). Recent work shows that 
many organisms are more abundant in locations with optimal en-
vironmental conditions (Osorio-Olvera et al., 2020). Also, snakes 
are ectotherms, hence the effect of climate on the geography of 
population sizes should be stronger than for endotherms (Kearney 
et al., 2018).

Measures of aggressiveness and envenoming severity for some 
medically important snakes are available in scholarly publications 
(Gerardo et al., 2019; Tasoulis & Isbister, 2017) but for many they re-
main obscure. However, experienced field herpetologists know spe-
cies' propensity to bite when encountered (Gibbons & Dorcas, 2002), 
or how abundant species are in relation to each other (Steen, 2010). 
Likewise, medical practitioners treating snakebite victims know the 
severity of the illness produced by various snake venoms. Therefore, 
exploring the contribution of these traits to explain snakebite and 
envenoming patterns constitutes another important step towards 
incorporating causality in snakebite risk analyses. Furthermore, such 
data are invaluable as snakebite research is still lacking basic data 
(Longbottom et al., 2018).

To this end, we estimated the spatial patterns of abundance of 
seven venomous snakes of medical relevance. Using expert-derived 
data, we explore its contribution towards risk in the island nation 
of Sri Lanka, a global snakebite hotspot (Kasturiratne et al., 2005), 
with the highest resolution estimates of snakebite and envenoming 
incidence yet available (Ediriweera et  al.,  2016) to explore: (a) can 
occurrence-based distribution models of snakes broadly predict 
snakebite incidence patterns?; (b) can expert-derived data improve 
these predictions?; and (c) are there specific combinations of species 
and traits that better explain snakebite and envenoming incidence?

combination of two species was the most strongly associated with envenoming 
incidence (r = 0.46, p = 0).

4.	 Synthesis and applications. We show that snakebite risk is explained by abundance, 
aggressiveness and envenoming severity of the snake species most frequently in-
volved in envenoming cases. Incorporating causality via ecological information of 
key snake species is critical for snakebite risk mapping, helping to tailor preven-
tive measures for dominant snake species and deploying the necessary antivenom 
therapies.

K E Y W O R D S

abundance, aggressiveness, fundamental niches, neglected tropical diseases, occurrence data, 
point process models, snakebite envenoming
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2  | MATERIAL S AND METHODS

2.1 | Overview

Estimating snake abundance patterns and testing its association 
with incidence comprised: (a) identifying study species, collecting 
occurrence records from private and public repositories (GBIF and 
VertNet), testing for spatial autocorrelation and filtering (1–10 km) 
and measuring the effect of observation bias on the environmental 
conditions of occurrence records; (b) selecting and reducing climatic 
dimensions via an approximation to snake species' fundamental 
niches (FNs), developing land cover data and its derivatives (pro-
portion of agricultural land, distance to forests and tree cover) and 
compiling topographic data (digital elevation model and topographic 
wetness index); (c) fitting, validating, correcting observational bias 
(Warton et al., 2013) and selecting point process models (PPMs); (d) 
collecting expert data on snake species' relative abundance, aggres-
siveness and envenoming severity to use as weights; and (e) testing 
the ability of different combinations of estimated snake abundances 
with and without weights to predict the estimates of snakebite and 
envenoming incidence. The various ecological and statistical con-
cepts used in these analyses are described in greater detail below 
and in Figure 1.

The statistical method used were PPMs, which comprise re-
gression tools for the analysis of point intensity (average number 
per unit) in a Cartesian plane as a function of environmental fac-
tors. PPMs have higher levels of control, customisation, statistical 
rigour, diagnostics and geostatistical extensions to model spatial de-
pendence (Baddeley & Turner, 2005), many of which are lacking in 
mainstream methods for species distribution modelling (e.g. Maxent; 
Renner et  al.,  2015). The types of PPMs include Poisson—assume 
spatial independence between points (Baddeley et al., 2016)—Area-i
nteraction—assume moderate levels of spatial dependence between 
points and estimate it with a random effect for point pairs and log-
Gaussian Cox processes can model highly clustered points via a 
spatially-varying random effect (Baddeley & van Lieshout, 1995).

2.2 | Handling occurrence data

2.2.1 | Study species

Seven medically relevant, truly venomous, snake species in the 
Viperidae and Elapidae families in Sri Lanka were included in the 
study: spectacled (Indian) cobra Naja naja, common krait Bungarus 
caeruleus, Sri Lankan krait B. ceylonicus, Russel's viper Daboia rus-
selii, saw scaled viper Echis carinatus, Sri Lankan green tree pit viper 
Trimeresurus trigonocephalus and the cryptic species complex of 
hump-nosed pit vipers (Hypnale hypnale, H. nepa and H. zara, here-
after Hypnale spp.). Occurrence records from published work, local 
and international museum databases, public repositories (GBIF and 
VertNet) and personal observations of local herpetologists were 
compiled (step 1 of Figure 1).

2.2.2 | Testing for autocorrelation and 
observational bias

To obtain the datasets to analyse as Poisson PPMs, we first applied 
a spatial filter to each species' raw data using distance thresholds of 
0–10 km. The result was 20 different datasets for each species where 
the minimum distances between points were effectively 0.5–10 km. 
Then we tested for spatial autocorrelation with K-envelopes with 
39 iterations on each spatially filtered dataset. With the K-envelope 
tests, we identified the filtering distance that decreased spatial au-
tocorrelation (test results are shown in Supporting Information—
Autocorrelation tests).

To identify observation bias towards roads and cities and con-
trol it in the modelling process (Warton et al., 2013), we used the 
filtered datasets and a raster layer of minimum distance to roads and 
cities (https://data.humda​ta.org/). To do so, we compared the dis-
tance to roads and cities of occurrence records with the distance to 
roads and cities of random samples within a polygon enclosing the 
occurrences of each species. Then we ran two unpaired Wilcoxon 
tests, to see whether species occurrences were closer to roads and 
cities than expected by chance (Kadmon et al., 2004). To see if oc-
currences biased towards roads and cities were also environmen-
tally biased, we compared random samples close and far from roads 
and cities.

2.3 | Managing environmental data

2.3.1 | Estimating fundamental niches (FNs)

The FN is defined as the full set of abiotic conditions (e.g. tem-
perature, humidity or rainfall) tolerated by a species (Soberón & 
Peterson,  2005), and is often estimated from geographical occur-
rence records (latitude, longitude of locations where organisms have 
been observed). Here we approximated FNs using occurrence re-
cords within and outside Sri Lanka by (a) extracting climatic condi-
tions from the WorldClim v2.0 dataset (Fick & Hijmans, 2017), (b) 
summarising climatic preferences with minimum volume ellipsoids 
(Qiao et al., 2016) and (c) calculating the Mahalanobis distance to the 
centroid of the ellipsoid (distance to niche centroid, DNC). Reported 
FNs were modelled with either a subset of three bioclimatic variables 
or with the first three components of a principal component analy-
sis. The resulting FNs were then used to represent climate in the 
PPMs (see below) to estimate the geographic variability of species' 
abundances (Figure 1, steps 2.1–2.1.1). Resolution of the analysed 
data are approximately 1  km. Full details are given in Supporting 
Information—Methods.

2.3.2 | Land cover data

We produced a layer of five land cover classes (agriculture, for-
est, degraded forest, urban and tea) of Sri Lanka for the years 

https://data.humdata.org/
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2004–2017 using 30  m atmospheric-corrected reflectance prod-
ucts with unsupervised ISODATA clustering with ENVI version 5.4. 
Overall accuracy of the classified images was >95% (validated with 

600 random samples). To analyse snake occurrences, we upscaled 
the final land cover layer by majority vote to the 1 km resolution 
of FNs.

F I G U R E  1   Diagram of the modelling process, from handling occurrence data to spatial association with incidence data
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We further derived individual binary land cover classes, dis-
tance to closest forest patch and proportion of agricultural land 
to analyse snake datasets. Other land cover-related variables were 
as follows: proportion of land covered by trees (obtained from The 
Earth Observatory, https://earth​obser​vatory.nasa.gov/) and topo-
graphic wetness index generated from SRTM (Jarvis,  2008). All 
data were projected and analysed in the datum of Sri Lanka (SLD99, 
EPSG:5235).

2.4 | Point process models

The analysed data are collections of geo-referenced points of 
seven different snake species, hence a marked point process. Data 
were collected opportunistically over decades, which precludes 
its analysis as a marked point pattern to estimate interactions be-
tween species (Baddeley et al., 2016). Consequently, we compared 
three types of PPMs for estimating abundance patterns: Poisson, 
Area-interaction and log-Gaussian Cox process (LGCP; step 3, 
Figure 1).

To select a suitable model formula, we sought for lower AIC, cor-
rect computation of statistical effects and convergence of the likeli-
hood function. We began with a list of 35 model formulas containing 
at least the FN layer and combinations of individual land cover classes, 
tree cover, proportion of agricultural land, distance to closest forest 
patch and distance to roads or cities, per snake species. To control ob-
servation bias, it was assumed to be represented by distance to roads 
and cities only, and to predict spatial trends, we set its value to zero. 
Roads and cities could also be favoured environments; however, dedi-
cated studies beyond the scope of our study are still needed.

After selecting the model formula, we fitted the Area-interaction 
and LGCP models. To select between Poisson, Area-interaction or 
LGCP, we analysed the spatially smoothed residuals and lurking plots 
(residuals along x and y coordinates), fitted the K-function to model 
smoothed residuals, simulating K- and L-envelopes with the pre-
dicted intensity patterns for each model type (Baddeley et al., 2016) 
and measuring the models' capacity to predict spatially partitioned 
datasets using the partial ROC test (Peterson et al., 2008; step 3.2, 
Figure  1). The partial ROC test measures the area under a curve 
formed by the proportion of predicted points versus the proportion 
of the area of a raster surface at increasing threshold values, and 
then divided by the random expectation (Supporting Information—
Validation statistics, Methods).

2.5 | Association of snake species with land cover

We tested if species were more likely to be found in certain 
land cover classes by comparing the observed and expected 
frequency of observation per class. We used the 1-km-filtered 
datasets and a land cover layer of the areas without land-use 
changes between 2004 and 2017. Observed frequencies were 
determined by counting the occurrence records per class and 

species, and the expected frequencies were equivalent to the 
proportion of area covered by each land cover class. Given that 
observational bias was significant (methodological overview 
and PPMs), we divided the number of observed records per land 
cover class by the average number of records of all species per 
class to reduce the greater representation of urban areas. The 
resulting observed and expected frequencies were analysed 
with a Chi-squared test, estimating p-values with 10,000 Monte 
Carlo realisations of the samples as implemented in R ’s chisq.test 
(Hope, 1968; R-Development-Team, 2019).

2.6 | Snake ecological/biological traits and expert-
derived data

A questionnaire-based survey was conducted at a workshop at-
tended by herpetological and medical experts in Sri Lanka to collect 
biological and clinical data on the study species. The index of aggres-
siveness was collated by agreement among three herpetologists, 
while the index of envenoming severity by three medical experts. 
Both indices are ratings on a 0–10 scale (min–max for each trait, 
Figure  1, steps 1 and 4). Data on species' relative abundance and 
associations with different types of land cover were agreed upon 
a different group of nine herpetologists (Supporting Information—
Questionnaire). Relative abundances were provided first as the esti-
mates of population densities in 1-km2 optimal habitat by two field 
herpetologists. Given the uncertainty, we transformed expert esti-
mates to relative abundances. These indices (Table 3) were used as 
weights in the analyses of the next section.

2.7 | Association of incidence patterns with species 
combinations

We performed an exploratory analysis of snakebite and envenom-
ing incidence with the estimated patterns of snake abundance. 
First, we generated all possible additive combinations of two to 
seven species with and without weighting (1920 total combina-
tions) with each and all species' traits: estimated abundances 
summed and multiplied by the aggressiveness, envenoming sever-
ity and relative abundances. Then we tested the spatial association 
of snake combinations with snakebite and envenoming incidence 
measured as the fraction of the population estimated to be at risk 
(Ediriweera et  al.,  2016), with the modified t-test to account for 
spatial autocorrelation, equivalent to a Pearson correlation test 
(Clifford et al., 1989; Figure 1, step 5).

Adjusting for relative abundance was necessary as the esti-
mated point intensities depend on the number of occurrence re-
cords. If these do not reflect relative abundances, point intensities 
will not reflect such characteristics of the snake assemblage. In 
addition, correcting for relative abundance with expert opinion 
partially addresses the issue of detectability differences among 
snake species.

https://earthobservatory.nasa.gov/
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All analyses were done with the r packages spatstat—PPMs 
(Baddeley & Turner,  2005); SpatialPack—modified t-test (Osorio 
et al., 2016); and Niche A—multivariate ellipsoids (Qiao et al., 2016). 
All code and data are publicly available (Martín, 2021; https://doi.
org/10.5281/zenodo.5646511).

3  | RESULTS

3.1 | Occurrence data

We found significant spatial autocorrelation and observation bias, 
where most snake species were more likely to be recorded near 
roads and cities (Wilcoxon's test). Bias towards roads was statisti-
cally significant in the species Bungarus caeruleus (W  =  13,816, 
p = 0.021), Bungarus ceylonicus (W = 2,046, p = 0.04), Daboia russelii 
(W = 95,009, p < 0.01), Hypnale spp. (W = 88,124, p < 0.01) and Naja 
naja (W = 58,859, p < 0.01).

3.2 | Fundamental niches

The climatic variables selected for each species' FNs are shown in 
Table 1, along with the estimated centroids (Table 1). Mos species' 
FNs were characterised with three bioclimatic variables, but for 
Trimeresurus trigonocephalus, we used the first three principal com-
ponents (Table 1; Figure 2). Centroids listed in Table 1 are those of 
the grey, outer ellipses in the leftmost column of Figure  2. These 
ellipses encompass 99% of the climatic conditions that snake spe-
cies encounter across their distributions. The smaller orange ellip-
ses inside the grey ellipses represent the climatic conditions that 
snakes encounter inside Sri Lanka. These ellipses show that the cli-
matic conditions that occur in Sri Lanka are only a portion of what 

non-endemic species (Bungarus caeruleus, Echis carinatus, Daboia rus-
selii and Naja naja) encounter elsewhere, and are in most cases fully 
contained inside the grey ellipses.

3.3 | Point process models

All species' models, except Echis carinatus, were very similar in all 
measures of goodness-of-fit (residuals, K- and L-envelopes and 
K-residuals; Supporting Information—Model fit tests), although 
Area-interaction models had smaller residuals than Poisson. 
Fitted environmental effects of LGCP models were slightly dif-
ferent from Poisson, but intensity trends were identical (1:1 cor-
respondence). Consequently, we only compared Area-interaction 
and Poisson PPMs, and based on smaller residuals we kept Area-
interaction models for all species except Echis carinatus (Poisson; 
Table 2).

All selected models contained the FN variable (DNCspp—distance 
to niche centroid; Table 2), with a negative effect indicating that all 
species' abundance patterns are significantly affected by climate. The 
variable distance to roads and cities was also present in all final models. 
Given that we found significant observational bias by using distance 
to roads and cities as surrogate, it was set to zero for predicting point 
intensity.

Most models retained tree cover, distance to forests or proportion 
of agriculture (Table 2). The absence of land cover in all selected mod-
els indicates that there is no evidence of preference or avoidance 
of any specific classes. This coincides with the observed/expected 
ratios which rarely exceeded the 1 or −1 (preference/avoidance) 
thresholds (Figure 3, full details below).

The models of Echis carinatus, Hypnale spp., Naja naja and Trimeresurus 
trigonocephalus contained proportion of agricultural land and distance to 
closest forest patch. Also, all species' models except Bungarus caeruleus 

TA B L E  1   Venomous snake species reported in Sri Lanka, where families are Elapidae (E) and Viperidae (V). Global occurrences are GBIF, 
VertNet and expert-contributed records combined (in parentheses), and which occur inside and outside Sri Lanka. The division for Sri Lankan 
records are the full data points within Sri Lanka before (Total) and after filtering. The variables column lists the climatic factors selected for 
species, and the location of the multivariate centroid of the ellipsoids formed by the three variables for each species. For the meaning of the 
climatic axes, we refer the reader to Fick & Hijmans (2017)

Species name Family

Number of presence records

Climatic axes (FN)

Centroids' climatic coordinates

Global

Sri Lanka

Global Sri LankaTotal Filtered

Bungarus caeruleus E 316 (156) 291 194 bio17, bio9, bio4 126.3, 24.5, 241.5 191.1, 27.2, 99.4

Bungarus ceylonicus E 169 (58) 169 74 bio19, bio15, bio10 780.1, 48.2, 23.4 780.1, 48.2, 23.4

Daboia russelii V 614 (402) 561 355 bio15, bio10, bio7 99.1, 27.0, 14.7 68.4, 26.4, 9.9

Echis carinatus V 91 (4) 52 49 bio17, bio10, bio2 42.4, 29.9, 8.9 70.2, 29.3, 6.0

Hypnale spp. V 568 (387) 568 307 bio12, bio10, bio3 3071.8, 25.8, 68.5 2340.1, 25.4, 72.0

Naja naja E 645 (320) 549 328 bio11, bio7, bio4 17.4, 18.6, 359.7 23.8, 9.7, 103.2

Trimeresurus 
trigonocephalus

V 347 (89) 329 134 PC1, PC2, PC3 266.4, 25.6, 94.1 266.4, 25.6, 94.1

https://doi.org/10.5281/zenodo.5646511
https://doi.org/10.5281/zenodo.5646511
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F I G U R E  2   From left to right. Grey ellipses represent the species-wide niches, while orange represent occupied niches within Sri Lanka. 
In the central panel is the predicted point intensity of each species within Sri Lanka (grey areas are those where the models predicted zero 
potential abundance). The rightmost panels show the Mahalanobis distance to the species-wide centroid of the ellipse in the left-side panels 
(values of the centroids are shown in Table 1)

TA B L E  2   Formulas of the models selected for each species. Tr = Proportion covered by trees; DF = Distance to closest forest patch; 
R = Distance to closest main road; Agr = Proportion of agricultural land; To = Topographic wetness index; DNCspp. = Distance to species' 
niche centroid. Estimates of variable effects appear in Supporting Information. ‘Type’ indicates whether the model used for each species as 
Area-interaction (AI) or Poisson PPM

Species Model formula Type AIC

Bungarus caeruleus ln λ = 1 + R + √R + (To + To2 + Tr) × (1 + DNCB. cae) AI 4,102.619

B. ceylonicus ln λ = 1 + R + √R + Tr + Tr2 + DNCB. cey AI 2,632.736

Daboia russelii ln λ = 1 + To + To2 + R + √R + Agr + Agr2 + DF + √DF + Tr + Tr2 + DNCD. rus AI 8,707.9

Echis carinatus ln λ = 1 + To + To2 + R + √R + Agr + Agr2 + DF + √DF + Tr + Tr2 + DNCE. car Poisson 1,876.127

Hypnale spp. ln λ = 1 + To + To2 + R + √R + Agr + Agr2 + DF + √DF + Tr + Tr2 + DNCH. spp. AI 8,726.97

Naja naja ln λ = 1 + To + To2 + R + √R + Agr + Agr2 + DF + √DF + Tr + Tr2 + DNCN. naj AI 7,836.291

Trimeresurus 
trigonocephalus

ln λ = 1 + To + To2 + R + √R + Agr + Agr2 + DF + √DF + Tr + Tr2 + DNCT. tri AI 4,643.176
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had tree cover as an explanatory variable (Table 2). Point intensities largely 
coincided in space with distance to niche centroids, although point in-
tensity also increased with respect to other independent variables in-
cluded (Supporting Information), indicating that habitat characteristics in 
addition to climate affect species' abundances. All predicted patterns of 
abundance compared with FNs are shown in Figure 2.

3.3.1 | PPM validation

Residuals plots indicate bias was not widespread, and therefore the 
models adequately represented point intensity trends. Partial ROC 
tests indicate that models performed better than random on partitioned 
validation data for all species: Bungarus caeruleus 1.33 (omission = 0.05, 

F I G U R E  3   Land cover associations 
of the different snake species. y-axis 
shows the ratio − 1 of observed/expected 
presences within each land cover class. 
Positive ratios mean the species has 
been y amount of times more frequently 
observed in that land cover class than 
expected by chance. Negative ratios mean 
the opposite. Each species' panel contain 
the Chi-squared test results for reference

p

p p p

p

p p

.
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p = 0), Bungarus ceylonicus 1.74 (omission = 0.05, p = 0), Daboia rus-
selii 1.13 (omission  =  0.025, p  =  0.02), Echis carinatus 1.60 (omis-
sion = 0.125, p = 0), Hypnale spp. 1.16 (omission = 0.15, p = 0), Naja naja 
1.14 (omission = 0.1, p = 0.01) and Trimeresurus trigonocephalus 1.52 
(omission = 0.125, p = 0; Supporting Information—Validation statistics).

3.3.2 | Snake associations with land cover classes

Most of the study species occurrences were not randomly distributed 
among land cover classes (Figure 3). Bungarus caeruleus was more fre-
quently found in urban areas and less so in agriculture, whereas Echis 
carinatus was more frequently reported in agriculture. Daboia rus-
selii was detected more frequently in degraded forest and less in tea 
plantations, and Hypnale spp. was reported in tea plantations, less so 
in agriculture, urban areas and forests. Naja naja was detected more 
frequently in degraded forest than the rest of the land cover classes. 

Bungarus ceylonicus and Trimeresurus trigonocephalus showed marginal 
association with forest and tea, and avoided urban and agriculture 
(Figure  3). Despite statistically significant results for most species, 
some ratios were close to 1 (random expectation threshold), suggesting 
that better data are needed to distinguish associations from random.

3.4 | Exploratory analyses of snakebite and 
envenoming incidence

3.4.1 | Snakebite

The additive combination of Bungarus caeruleus, Daboia russelii 
and Trimeresurus trigonocephalus weighted by aggressiveness and 
adjusted for relative abundance had the highest, positive and 
significant spatial association with snakebite incidence (r = 0.47, 
df = 163, p = 0). The same additive combination of species without 

F I G U R E  4   Species' combination that 
maximised association with snakebite 
(left) and envenoming (right) incidence 
data. Insets in the top-right corners show 
scatterplots of analysed data

Species Aggressiveness
Envenoming 
severity

Aggressiveness ×  
severity

Relative 
abundance

Bungarus caeruleus 0.2 1.0 0.2 0.21 (0.2–0.23)

Bungarus ceylonicus 0.1 1.0 0.1 0.05 (0.01–0.09)

Daboia russelii 0.8 1.0 0.8 0.12 (0.11–0.13)

Echis carinatus 1.0 0.5 0.5 0.04 
(0.023–0.05)

Hypnale spp. 1.0 0.3 0.3 0.36 (0.27–0.459)

Naja naja 0.5 1.0 0.5 0.09 (0.07–0.11)

Trimeresurus 
trigonocephalus

0.6 0.1 0.06 0.10 (0.16–0.04)

TA B L E  3   Scores of aggressiveness, 
bite severity and overall hazard score of 
each venomous Sri Lankan snake species, 
curated by Sri Lankan herpetologists and 
medical experts. Relative abundances are 
mean and min–max of estimates
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adjusting for relative abundance had a lower association with 
snakebite incidence (r = 0.44, df = 111, p = 0), and this was even 
lower without weighting for aggressiveness (r  =  0.41, df  =  183, 
p = 0).

3.4.2 | Envenoming

The additive combination of Bungarus caeruleus and Hypnale spp. 
adjusted for relative abundance and weighted by envenoming sever-
ity had the highest positive and significant spatial association with 
envenoming incidence (r = 0.46, df = 20, p = 0.02; Figure 4). The 
same species' combination had a lower association without relative 
abundance adjustment (r = 0.25, df = 61, p = 0.03), but only slightly 
lower without weighting for severity (r = 0.45, df = 21, p = 0.01).

4  | DISCUSSION

Snakebite is a major health hazard in low-income tropical countries 
(Harrison et  al.,  2009). Geographical estimates of venomous snake 
abundance provide a causal basis for estimating risk to populations, 
which we estimated for Sri Lanka using occurrence records of seven 
species. We integrated abundance models with snake aggressiveness 
and envenoming severity, and found the combinations of species and 
traits that best explain the estimates of snakebite and envenoming 
incidence (Ediriweera et al., 2016). In contrast with previous analy-
ses of snake distributional ecology (Bravo-Vega et al., 2019; Yañez-
Arenas et al., 2014), our results show that at a higher resolution, risk 
to local populations is driven by snake abundances, aggressiveness 
and venom toxicity. While these analyses successfully characterised a 
key role for snake ecology, links between snake traits and geographic 
variability of snakebite and envenoming risk were still lacking.

The spatial association of incidence patterns with snake spe-
cies' traits is because venom transmission after a snakebite is akin 
to infectious disease transmission which is a mass action process 
(Bravo-Vega et  al.,  2019). Snakebite and envenoming illness are 
driven by species' abundance, aggressiveness and envenoming 
toxicity, among other factors like the propotion of dry bites (Pucca 
et al., 2020), activity overlap with humans (Goldstein et al., 2021), and 
species' tendency to seek shelter in houses (Ariaratnam et al., 2008). 
Estimating these factors and their geographic variability should be 
prioritised to characterise snakebite fundamental epidemiology and 
further improve analyses. For instance, envenoming severity for   
D. russelii is known to vary geographically (Wüster, 1998). In this sense, 
our analyses parse out the explanatory value of aggressiveness and 
severity for snakebite and envenoming incidence at 3 km resolution.

The unexplained variability in our models may relate to the above-
mentioned snake factors and further human risk factors absent in the 
additive combinations, like socio-economic (Harrison et  al.,  2009), 
occupational (Mise et  al.,  2019) and cultural (Kumar,  2006) char-
acteristics of exposed populations. Also, incidence data are the 
estimates of a national snakebite survey, which despite being the 

highest resolution data to exist, are an approximation to incidence 
variability. Nevertheless, snake species correlated with snakebite 
and envenoming incidence could be those more frequently involved 
in human–snake interactions. The different subsets of species for 
snakebite and envenoming indicate that snake biological factors are 
the primary drivers of spatial heterogeneity. The absence of import-
ant species from both subsets do not detract from their actual con-
tribution in driving snakebite risk.

The species' combination that best represents snakebite inci-
dence includes two highly venomous, abundant and widespread 
species (B. caeruleus and D russelii) and one relatively common but 
mildly venomous and unaggressive species (T. trigonocephalus; de 
Silva & Aloysius, 1983). Unlike T. trigonocephalus, the former two are 
unexpected because non-envenoming bites are unlikely to be caused 
by highly venomous species. However, the association of B. caeruleus 
and D. russelii with bites only is explained by their higher abundance in 
the same smaller areas where the snakebites are highest (Ediriweera 
et al., 2016). We have inferred higher abundance of these two spe-
cies from high-quality habitat which might translate into higher 
abundances of other common non-venomous species. The effect 
of abundance surrogacy of one species or habitat on other species’ 
abundance is common in other animal groups (Cushman et al., 2010). 
It is possible then that abundance hotspots of B. caeruleus and D. rus-
selii represent habitat surrogates for other non- or mildly venomous 
snakes frequently encountered (de Silva & Aloysius,  1983), but for 
which we lack occurrence or abundance data.

Regarding envenoming, the severity-weighted combination of 
B. caeruleus and Hypnale spp. had more explanatory power than all 
other possible combinations and is consistent with the epidemiol-
ogy of snakebites in Sri Lanka (Ediriweera et al., 2017). Envenoming 
incidence is higher in eastern Sri Lanka, where the highly venom-
ous B. caeruleus is very abundant. Whereas in the western wet zone, 
Hypnale spp. is more abundant but causes less severe envenoming 
than B. caeruleus. The high abundance of both and greater envenom-
ing severity of B. caeruleus than Hypnale spp. (Table 3) explain why 
people seek formal medical treatment more often after a snakebite 
in dry eastern Sri Lanka (Ediriweera et  al.,  2017). The fact that D. 
russelii, N. naja and E. carinatus do not explain the east versus west 
envenoming pattern as would be expected is because the first two 
are almost equally abundant on both sides, and the latter is present 
in small areas, contributing few data points. The remaining, B. cey-
lonicus, rarely causes severe envenoming illness because it is unag-
gressive, and T. trigonocephalus is only mildly venomous. For these 
reasons incidence patterns are broadly driven by a few species at 
the 3 km scale.

Social and cultural factors also explain the epidemiologic rele-
vance of some snake species. For instance, D. russelii bites mainly 
occur in the lower limbs of young men because they traditionally 
practice barefoot rice paddy farming (Kularatne,  2003). In con-
trast, Hypnale spp. bites tend to occur in the upper limbs of women, 
because Hypnale spp.'s primary habitat is leaf litter (Kularatne 
et al.,  ), and women tend to be in charge of home gardens. Finally, 
the majority of B. caeruleus bites occur among the poor while they 
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are asleep in the floor (Kularatne, ). Including some of these factors 
in the future analyses will help clarify each snake species' roles 
and find how these affect the geography of snakebite incidence. 
In fact, land cover may be used to represent social characteristics 
at large scales (Ganzeboom et al., ); however, snake species' rela-
tionship to land cover is still uncertain, hence we require better 
data in this respect. In the light of existing limitations, character-
ising species’ traits relevant to snakebite human risk factors is key 
to of women, because Hypnale spp.'s primary habitat is leaf litter 
(Kularatne et al., 2011), and women tend to be in charge of home 
gardens. Finally, the majority of B. caeruleus bites occur among the 
poor while they are asleep in the floor (Kularatne, 2002). Including 
some of these factors in the future analyses will help clarify each 
snake species' roles and find how these affect the geography of 
snakebite incidence. In fact, land cover may be used to represent 
social characteristics at large scales (Ganzeboom et  al.,  1992); 
however, snake species' relationship to land cover is still uncertain, 
hence we require better data in this respect. In the light of exist-
ing limitations, characterising species’ traits relevant to snakebite 
human risk factors is key to implement adequate mitigation strat-
egies such as mosquito nets to prevent B. caeruleus envenoming, 
promoting footwear and various degrees of agricultural mecha-
nisation against D. russelii bites in the geographical areas where 
species are most abundant (Figure 2).

Combining publicly and privately available data with expert 
knowledge allowed us to overcome some data limitations to charac-
terise snake abundance and biology as the driving factors of snake-
bite and envenoming incidence. Therefore, we provide a causal 
basis for the role of environmental conditions on snakebite burden. 
Better understanding the human–snake–environment triad provides 
a novel avenue towards better eco-epidemiological understanding 
of snakebite and paves a path for anticipating its potential responses 
to global change: population growth, snake biodiversity loss, climate 
and land-use change.
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