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Abstract: Iron deficiency is the most common cause of anemia globally and is frequently reported
in patients with underlying inflammatory conditions, such as inflammatory bowel disease (IBD)
and chronic kidney disease (CKD). Ferric maltol is a new oral iron replacement therapy designed
to optimize iron absorption while reducing the gastrointestinal adverse events associated with
unabsorbed free iron. Ferric maltol has been studied in clinical trials involving almost 750 adults and
adolescents with iron-deficiency anemia associated with IBD, CKD, and other underlying conditions,
and it has been widely used in clinical practice. It is approved for the treatment of adults with iron
deficiency with or without anemia, independent of the underlying condition, and is commercially
available in Europe and the United States. We review the published evidence for ferric maltol, which
demonstrates consistent and clinically meaningful improvements in hemoglobin and measures of
iron availability (ferritin and transferrin saturation) and shows that it is well-tolerated over long-
term treatment for up to 64 weeks—an important consideration in patients with chronic underlying
conditions such as IBD and CKD. We believe that ferric maltol is an effective, convenient, and
well-tolerated treatment option for iron deficiency and iron-deficiency anemia, especially when
long-term management of chronic iron deficiency is required. Writing support was provided by
Shield Therapeutics (Gateshead, UK).

Keywords: adult; anemia; chronic kidney disease; ferric maltol; hemoglobin; inflammatory bowel
disease; iron deficiency; pediatric; pulmonary hypertension; tolerability

1. Introduction

Iron deficiency refers to any situation in which there is insufficient iron available in
the body to meet physiologic needs. It is the most common nutritional disorder in humans,
accounting for around 50% of the estimated 2.2 billion cases of anemia (low hemoglobin)
worldwide [1–4]. Absolute iron deficiency can develop as a result of malnutrition, mal-
absorption, or blood loss. Inflammatory bowel disease (IBD) is further complicated by
absolute iron deficiency due to chronic gastrointestinal blood loss and impaired iron ab-
sorption across the damaged bowel mucosa, as well as inflammation-associated (hepcidin-
mediated) downregulation of iron absorption [5]. In addition, inflammatory disorders such
as IBD and chronic kidney disease (CKD) may result in functional iron deficiency, with
impaired iron absorption and release from storage proteins resulting in inappropriate iron
availability to meet metabolic demands, such as erythropoiesis [4,6].

Iron deficiency adversely affects overall health and well-being, even before the develop-
ment of anemia [7–12]. Iron deficiency, with or without anemia, is associated with fatigue,
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impaired physical and cognitive function, headache, tachycardia, and dyspnea [7–17], with
resulting adverse impacts on daily activities, productivity, quality of life, and any additional
underlying illnesses [7–15,18]. The wide-ranging effects of iron deficiency reflect the crucial
role that iron plays in oxygen transport, enzymatic reactions, cellular processes, immunity,
and cognitive function [4,19,20].

Iron absorption, transport, storage, and use are normally tightly regulated, with daily
small losses in the urine, feces, or sweat replaced by iron in the diet [6]. Once absorbed,
most iron is incorporated into hemoglobin in erythrocytes, while some is converted to
myoglobin in muscle tissue. Iron that is not immediately needed can be stored in ferritin or
hemosiderin [21–23]. The transport of iron from cell to cell is achieved via iron transporter
mechanisms, including ferroportin, which mediates iron transport out of the cell from
the cytoplasm across the cell membrane; transferrin, which binds iron in the plasma for
delivery to tissues; and transferrin receptors on cell surfaces, which allow the iron to be
internalized [6,21,23]. Ferroportin activity is regulated by hepcidin in response to the
body’s iron requirements: in the presence of high iron levels, hepcidin is upregulated,
binding to ferroportin to stimulate degradation of the transport protein, thereby preventing
the movement of iron out of the cell and reducing the amount of available iron [6,22,23].
Hepcidin production is also stimulated by cytokines, resulting in the low availability of
iron in inflammatory conditions [21–23]. In patients with kidney dysfunction, such as
CKD without dialysis, renal clearance of hepcidin is impaired, thus also resulting in the
accumulation of hepcidin and contributing to the ongoing disruption of iron absorption
and recycling [22].

Low hemoglobin levels (<13 g/dL in men, <12 g/dL in nonpregnant women and
children aged >11 years, <11 g/dL in pregnant women and younger children [1]) may indi-
cate insufficient iron available for erythropoiesis (i.e., anemia). In addition, the molecules
involved in iron regulation are used as markers of iron availability and iron deficiency.
Ferritin is upregulated in the presence of iron [21]; thus, high concentrations may indicate
high iron availability, whereas low concentrations (e.g., <15 µg/L in adults) reliably indi-
cate iron deficiency [4,6]. As ferritin is upregulated in inflammatory conditions such as
IBD or CKD [21], a higher cut-off may be required (e.g., <30 or <100 µg/L) to define iron
deficiency [4,6,24]. Transferrin molecules have two iron-binding sites, but typically the
average proportion of overall binding sites occupied (termed transferrin saturation (TSAT))
is 30–50%; a TSAT of ≤20% indicates low iron availability and can be used to diagnose iron
deficiency, particularly in the presence of low ferritin levels [4,19,21].

2. Iron Replacement Therapy

In patients with iron-deficiency anemia, and in many of those with iron deficiency
alone, iron replacement therapy is required in order to support physiologic processes and
maintain quality of life, cognitive functioning, and the ability to complete daily activities. It
has been estimated that 500 mg of absorbed iron are needed to raise hemoglobin levels by
2 g/dL, which is generally accepted as a meaningful increase in patients with anemia [24];
this amount can be delivered as a single intravenous (IV) iron infusion or as daily oral
iron taken for ≥4 weeks [25,26]. However, although this amount of iron addresses the
immediate needs of patients with anemia, it may not replenish the body’s iron stores
sufficiently to overcome chronic iron deficiency. Particularly in patients with underlying
inflammatory diseases, longer-term iron replacement therapy is required to raise and
maintain iron stores physiologically, alongside the correction or control of the underlying
condition to minimize further loss of iron [5,26].

Oral iron replacement therapy, usually in the form of ferrous salts, offers convenience
in terms of low cost and easy administration [27]. However, the effectiveness of many oral
formulations may be reduced by limited bioavailability, particularly in patients with under-
lying inflammatory conditions, because only 10–20% of iron from oral ferrous formulations
is estimated to be absorbed [25,28]. Unabsorbed iron can form reactive hydroxyl radicals
in the gut [26,29–32], leading to mucosal irritation or damage [26,29,32–36]. The resulting
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gastrointestinal adverse events, such as nausea, epigastric discomfort, and constipation,
may reduce patients’ willingness to continue treatment [25,26,28,30,35,36]. Unabsorbed
iron may also affect the gut microbiome [26,30,32,36–39] and can trigger disease flares
in patients with IBD [26,31,33,36,37]. Absorption may be improved if treatment is taken
with ascorbic acid or on an empty stomach to increase or maintain gastrointestinal acid-
ity [26,36]. Tolerability may be improved with concurrent food intake, lower doses, or
longer intervals between dosing, although the correction of iron deficiency may be slower
as a result [25,26,28,36]. The World Health Organization recommends a maximum oral
dosage of elemental iron of 60 mg per day [40], equivalent to approximately 325 mg of
ferrous sulfate.

Intravenous iron offers rapid iron replacement by bypassing endogenous iron uptake
mechanisms in the gut and is thus useful in patients with significant iron depletion re-
quiring rapid replacement [41]. In terms of immediate iron replacement, IV iron is more
effective than oral iron, but there is limited evidence on the long-term impact of IV versus
oral iron on healthcare resource use, adverse events, and patients’ quality of life [42]. When
using IV iron, physicians must consider the higher cost and resource requirements com-
pared with oral irons. Administration of IV iron may require a hospital or clinic setting,
and there are small but potentially serious risks of anaphylaxis, hypophosphatemia, and
iron overload (particularly in the presence of functional iron deficiency, when effective
processing of available iron is disrupted) [36,43,44].

An easy-to-use oral iron therapy with good absorption and low risk of gastrointestinal
adverse events would minimize the burden of treatment on patients requiring long-term
iron replacement. Various alternatives to oral ferrous iron formulations have been devel-
oped, including polysaccharide–ferric iron complexes, sucrosomial iron, sodium feredate,
ferric citrate, and ferric maltol [27,45–47].

3. Ferric Maltol

Ferric maltol was rationally designed to optimize the absorption and tolerability of
oral iron [48]. It has been approved by the European Medicines Agency, SwissMedic, and
the US Food and Drug Administration and is commercially available in Europe and the
United States for the treatment of adults with iron deficiency, with or without anemia.
Regulatory approval was based on a comprehensive program of research, including clinical
trials in a variety of settings in adults (IBD, CKD, and pulmonary hypertension). The
absorption of iron from ferric maltol has also been investigated in adolescents (aged
10–17 years). To review the evidence base for ferric maltol, we searched PubMed and
Google Scholar for articles, excluding patents, published up to 31 May 2021, using the
free text search strings (ferric maltol) and (ferric trimaltol), with no date or language
restrictions. We supplemented the search results with our own articles in development (now
peer-reviewed and published) and congress presentations identified by the manufacturer
(Shield Therapeutics (UK) Ltd., Gateshead, UK). We identified 34 publications reporting
data on ferric maltol (Supplementary Figure S1 in the Supplementary Materials), including
12 reports of preclinical and clinical pharmacology research [49–60], 13 reports of clinical
efficacy/effectiveness and safety [61–73], and 9 reports of health economic or patient-
reported outcomes (not reviewed further here) [74–82]. While drafting this article, we
identified two additional publications, which we have also summarized below [83,84].

3.1. Preclinical and Pharmacology Studies
3.1.1. Preclinical Evidence

Ferric maltol is a complex of ferric iron and maltol (3-hydroxy-2-methyl-4-pyrone), a
naturally occurring sugar derivative found in many food products, which is highly selective
for iron [49]. The iron–maltol complex is stable at a physiologic pH [55] and, as shown
in vitro and in vivo, remains strongly chelated until the point of absorption in the gut, when
the greater affinity of iron for the iron transport receptor promotes dissociation [50,51,54].
Once dissociated, as demonstrated in vitro, ferric iron is readily transported across the
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gut lumen [51]. Maltol is separately absorbed, metabolized, and rapidly eliminated in
the urine [54].

Studies of ferric maltol in rats have demonstrated that the dissociated iron is absorbed
even in models of intestinal damage, with a plateauing effect at higher doses in both
healthy and damaged guts, indicating saturable absorption [49,53]. More effective iron
absorption from the iron–maltol complex was recorded when iron was in the ferric versus
ferrous form [49].

Unabsorbed iron remains chelated in the iron–maltol complex until excretion in the
feces, thereby potentially reducing the risk of intestinal damage from free iron [53]. Mice
with chemically induced colitis had no change in fecal iron content or colitis features
after 10 days of treatment with ferric maltol, whereas fecal iron increased significantly,
and features of colitis worsened significantly in mice treated with ferrous sulfate [83].
Other researchers have cited the presence of fecal iron as a likely factor in the adverse
effects of oral ferrous sulfate therapy in humans [29,85,86], so these preclinical data in
mice indicate a potential mechanism for reduced gastrointestinal toxicity with ferric maltol
in clinical use. Furthermore, ferric maltol supplementation was associated with fewer
changes in the murine microbiome compared with ferrous sulfate. Fecal samples from
humans with iron deficiency also showed no significant change in the microbiome from
baseline (pretreatment) following treatment with ferric maltol, whereas many genera
changed significantly following treatment with ferrous sulfate [83]. These data support a
potentially protective effect of ferric maltol on the gut microbiome and an avoidance of
free iron-induced intestinal damage.

3.1.2. Clinical Pharmacology

In human studies, iron from ferric maltol was at least as well absorbed as ferrous iron,
and it was better absorbed from the complex than from simple ferric salts [55,56]. Iron ab-
sorption was increased five-fold when ferric maltol was taken on an empty stomach versus
with food [87]. Ferric maltol showed predictable pharmacokinetics with repeated dosing
in adults and adolescents (aged 10–17 years) [59,73]. Uptake was rapid, with maximum
concentrations (Cmax) of iron in the plasma achieved within 2–3 h after administration in
adults with IBD [59]. In iron-deficient adults, serum iron levels increased substantially
following oral administration of ferric maltol, whereas considerably less absorption was
seen in iron-replete adults [56,57], confirming effective absorption of iron with physiologic
control of the uptake to meet the body’s needs. Mean ferritin concentrations increased over
time, indicating the replenishment of iron stores [59].

In adults with IBD, maltol and maltol glucuronide concentrations increased rapidly
and dose proportionally in the plasma (Cmax 1–1.5 h post dose); the ligand was rapidly
excreted as maltol glucuronide in the urine within 3 h, and no accumulation was seen with
repeated dosing [59]. Similarly, in adolescents (aged 10–17 years), maltol concentrations
increased rapidly and dose dependently, and maltol was completely metabolized to maltol
glucuronide 2–3 h after administration of the iron–maltol complex [73].

3.1.3. Posology

In Europe and the United States, the approved adult dosage of ferric maltol is 30 mg
twice daily (total 60 mg elemental iron/day), to be taken on an empty stomach to max-
imize absorption. Treatment duration is dependent on the severity of iron deficiency,
but generally at least 12 weeks of treatment is required. It is recommended that treat-
ment is continued as long as necessary to replenish the body’s iron stores according to
blood tests [88–90].

3.2. Clinical Evidence Base
3.2.1. Study Designs

Ferric maltol has been studied in phase I–III clinical trials involving 624 adults and
37 adolescents (aged 10–17 years) with iron deficiency [59,61,62,64,68,71–73]. Full details
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of these studies, as well as two reports of real-world experience in 87 adults [69,70],
are provided in Supplementary Table S1 in the Supplementary Materials. Four phase
III or IIIB trials in adults (two in patients with quiescent or mild to moderate IBD, one
in patients with non-dialysis-dependent stage III or IV CKD, and one in patients with
pulmonary hypertension) and a phase I pediatric (adolescent) trial are described here
(Table 1) [62,64,68,71–73]. In the adult trials, ferric maltol was given at the approved dosage
of 30 mg twice daily for ≥12 weeks (≥16 weeks in the CKD study) [62,68,71,72]. In the
pediatric study, patients were randomized to receive ferric maltol 7.8, 16.6, or 30 mg twice
daily for 10 days [73].

Table 1. Designs of key ferric maltol clinical studies.

Study Location Underlying Condition
Anemia and

Iron Deficiency
Definitions

Patients, N Design Comparator Primary
Endpoint

Adult

Phase III IBD
(AEGIS 1/2)

[62,64]
Global

Eligibility criteria:
Quiescent or mild or moderate

IBD
UC: SCCAI score <4 at

screening and randomization
CD: CDAI score <220 at

randomization
At baseline:

UC: FM n = 29; placebo n = 29
Median (range) SCCAI score:
FM 2.0 (0–3); placebo 2.0 (0–3)
CD: FM n = 35; placebo n = 35
Median (range) CDAI score:
FM 75 (14–199); placebo 108

(10–220)

Hb ≥9.5 to
<12.0 g/dL
(women) or

<13.0 g/dL (men)
Ferritin

<30 µg/L at
screening

128 (FM n = 64;
placebo n = 64)
97 started OL
FM after DB

FM (n = 50) or
DB placebo

(n = 47)

Randomized,
DB,

superiority52-
week OL
extension

Placebo (DB
period only)

Hb change
from baseline

to week 12

Phase IIIB IBD
(H2H) [71] Global

Eligibility criteria:
Quiescent or mild or moderate

IBD
UC: SCCAI score ≤5 during

screening
CD: CDAI score ≤300 during

screening
At baseline:

UC: FM n = 46, IV FCM n = 46
Mean (SD) SCCAI score: FM

2.2 (1.8); IV FCM 2.3 (1.6)
CD: FM n = 79, IV FCM n = 79

Mean (SD) CDAI score: FM
129.6 (60.1); IV FCM 140.5

(75.8)

Hb ≥8.0 to
≤11.0 g/dL
(women) or
≤12.0 g/dL

(men)
Ferritin

<30 µg/L or
ferritin

<100 µg/L +
TSAT <20%

250 (ITT: FM
n = 125, IV

FCM n = 125;
PP: FM n = 78,

IV FCM
n = 88)

Randomized,
OL,

non-inferiority
IV FCM

Hb responder
rate at week 12

(≥2 g/dL
increase or

normalization)

Phase III CKD
[72] USA

Eligibility criteria:
CKD stage III or IV (eGFR ≥15
to <60 mL/min/1.73 m2, not

on dialysis)
At baseline:Mean (SD) eGFR:

FM 31.9 (11.5)
mL/min/1.73 m2

Placebo 29.7 (10.6)
mL/min/1.73 m2

Hb ≥8.0 to
<11.0 g/dL

Ferritin
<250 µg/L +

TSAT <25% or
ferritin

<500 µg/L +
TSAT <15%

167 (FM
n = 111;

placebo n = 56)
125 started OL

FM after 16
weeks of DB

FM (n = 86) or
DB placebo

(n = 39)

Randomized,
DB,

superiority36-
week OL
extension

Placebo
Hb change

from baseline
to week 16

Phase IIIB PH
[68]‘ Germany

Eligibility criteria:
any form of PH with mean
resting pulmonary artery

pressure ≥25 mmHg
At baseline:
PAH (n = 14)

PH due to
left heart disease (n = 1)

Inoperable chronic
thromboembolic PH (n = 7)

Mean (SD) pulmonary artery
pressure 50 (11) mmHg

Hb ≥7 to
<12 g/dL

(women) or ≥8
to <13 g/dL

(men)
Ferritin

<100 µg/L or
ferritin

100–300 µg/L +
TSAT <20%

22 Single-arm OL,
exploratory None

Hb change
from baseline

to week 12
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Table 1. Cont.

Study Location Underlying Condition
Anemia and

Iron Deficiency
Definitions

Patients, N Design Comparator Primary
Endpoint

Pediatric

Phase I [73] UK

Eligibility criteria:
Iron deficiency of any cause

At baseline:
CD (n = 8)

Other gastrointestinal
disorders (n = 11)

Vitamin D deficiency (n = 7)
CKD (n = 4)

Other conditions (n = 7)

Ferritin
<30 µg/L or

ferritin <50 µg/L
+ TSAT <20%

37 Randomized,
exploratory

Different FM
doses

PK, iron
uptake

CD, Crohn’s disease; CDAI, Crohn’s Disease Activity Index; CKD, chronic kidney disease; DB, double-blind; eGFR, estimated glomerular
filtration rate; FCM, ferric carboxymaltose; FM, ferric maltol; H2H, head-to-head; Hb, hemoglobin; IBD, inflammatory bowel disease;
ITT, intention-to-treat; IV, intravenous; OL, open-label; PAH, pulmonary arterial hypertension; PH, pulmonary hypertension; PK, phar-
macokinetics; PP, per protocol; SCCAI, Simple Clinical Colitis Activity Index; SD, standard deviation; TSAT, transferrin saturation; UC,
ulcerative colitis.

3.2.2. Efficacy Outcomes

The impact of ferric maltol on hemoglobin and iron indices in the phase III trials in
adults is summarized in Table 2.

The phase III AEGIS 1/2 IBD and CKD studies met their respective primary endpoints,
with statistically significant differences between ferric maltol and the placebo in the change
in hemoglobin from baseline to week 12 (p < 0.0001) [62] and week 16 (p = 0.01) [72],
respectively. On average, hemoglobin increased by ≥2 g/dL by week 12 in the AEGIS
1/2 IBD study, which is deemed to be a clinically meaningful rise [62], and the level was
sustained up to week 64 [64]. The increase in hemoglobin in the CKD study was smaller,
reflecting the complex interaction between inflammation, kidney dysfunction, and iron
regulation in these patients [72]. Nevertheless, the increase was significantly greater with
ferric maltol than with the placebo (p = 0.01), and patients with CKD who were treated for
up to 52 weeks achieved ongoing increases in hemoglobin over time [72]. In the phase III
IBD head-to-head study, although ferric maltol did not meet the prespecified short-term
noninferiority margin versus IV ferric carboxymaltose at the week 12 primary endpoint, the
ferric maltol group did achieve a mean increase in hemoglobin of >2 g/dL at that timepoint,
which was sustained for up to 52 weeks; at the end of the study, mean hemoglobin levels
were similar in the oral and IV arms [71]. These data demonstrate that ferric maltol can
provide effective long-term iron replacement and correction of anemia in patients with
chronic underlying inflammatory conditions.

In subgroup analyses, ferric maltol had a consistent impact on hemoglobin concentra-
tions regardless of the baseline hemoglobin level, according to a post hoc analysis of the
phase IIIB IBD head-to-head study. In the ferric maltol arm, the mean hemoglobin increase
from baseline to week 12 was 2.92 g/dL in patients with baseline hemoglobin <9.5 g/dL
(baseline mean 8.6 g/dL; n = 38) and 2.35 g/dL in patients with baseline hemoglobin
≥9.5 g/dL (baseline mean 10.6 g/dL; n = 87), and 70% versus 67%, respectively, achieved
a ≥2 g/dL increase or normalization of hemoglobin [84]. The severity of the underlying
IBD or CKD activity, as measured by clinical index scores or inflammatory markers such
as C-reactive protein [62,65,67], and the use of proton pump inhibitors in patients with
IBD [63] did not affect the efficacy of ferric maltol.



J. Clin. Med. 2021, 10, 4448 7 of 16

Table 2. Phase III studies of ferric maltol in adults: key efficacy outcomes.

Study Mean Hb and Change from Baseline Hb Responder Rate 1 Proportion of Patients
Achieving Hb Normalization 2

Proportion of Patients
Achieving ≥2 g/dL Increase in

Hb
Mean Ferritin Mean TSAT

Phase III IBD (AEGIS 1/2)
[62,64]

Baseline
FM: 11.0 g/dL

Placebo: 11.1 g/dL
Week 12

FM: 13.2 g/dL
Placebo: 11.2 g/dL

Mean (SE) difference in change from
baseline to week 12

FM vs. placebo: 2.25 (0.12) g/dL
p < 0.0001

Up to week 64
DB FM to OL FM: 13.95 g/dL

DB placebo to OL FM: 13.33 g/dL

NR

Week 12
FM: 66% Placebo: 13%

Up to week 64
DB FM/placebo to OL FM: 86%

Week 12
FM: 56% Placebo: 0
Up to week 64%NR

Baseline
FM: 8.6 µg/L

Placebo: 8.2 µg/L
Week 12

FM: 26.0 µg/L
Placebo: 9.8 µg/L

Mean increase at week 12
FM: 17.3 µg/L Placebo: 1.2

µg/L
Up to week 64

DB FM/placebo to OL FM:
57.4 µg/L

Baseline
FM: 10.6%

Placebo: 9.5%
Week 12

FM: 28.5%
Placebo: 9.8%

Mean increase at week 12
FM: 18.0 percentage points
Placebo: −0.4 percentage

points
Up to week 64

DB FM/placebo to OL FM: 29%

Phase IIIB IBD (H2H) [71]

ITT population
Baseline

FM: 10.0 g/dL
IV FCM: 10.1 g/dL

Week 12
FM: 12.5 g/dL

IV FCM: 13.2 g/dL
LSM difference (95% CI) between

groups at week 12
FM–IV FCM: −0.6 (−1.0 to −0.2) g/dL

p = 0.002
Up to week 52/EoT

FM: 12.8 g/dL
IV FCM: 13.0 g/dL

ITT population
Week 12

FM: 67% IV FCM: 84%
Risk difference (95% CI)

FM–IV FCM: −0.17 (−0.28 to
−0.06)

PP population
Week 12
FM: 68%

IV FCM: 85%
Risk difference (95% CI)

FM–IV FCM: −0.17 (−0.30 to
0.05) 3

ITT population
Week 12
FM: 55%

IV FCM: 81%
Up to week 52/EoT

NR

ITT population
Week 12

FM: 61% IV FCM: 77%
Up to week 52/EoT

NR

ITT population
Baseline

FM: 16.6 µg/L
IV FCM: 9.2 µg/L

Week 12
FM: 25.7 µg/L

IV FCM: 139.2 µg/L
LSM difference (95% CI)

between groups at week 12
FM–IV FCM: −113.1 (−145.9 to

–80.2) µg/L
p < 0.001

Up to week 52/EoT
FM: 78.9 µg/L

IV FCM: 103.4 µg/L

NR

Phase III CKD [72]

Baseline
FM: 10.1 g/dL

Placebo: 10.0 g/dL
LSM change from baseline to week 16

FM: 0.5 g/dL
Placebo: −0.0 g/dL

LSM (SE) difference between groups at
week 16

FM–placebo: 0.5 (0.2) g/dL
p = 0.01

Up to week 52/EoT
DB FM to OL FM: 10.9 g/dL

DB placebo to OL FM: 10.9 g/dL

NR

Week 16
FM: 27%

Placebo: 13%
Up to week 52/EoT

NR

Week 16
FM: 6% Placebo: 0

Up to week 52/EoT
NR

Baseline
FM: 97.0 µg/L

Placebo: 104.2 µg/L
LSM change from baseline to

week 16
FM: 25.4 µg/L

Placebo: −7.2 µg/L
LSM (SE) difference between

groups at week 16
FM–placebo: 32.7 (9.4) µg/L

p < 0.001
Up to week 52/EoT

DB FM to OL FM: 142.5 µg/L
DB placebo to OL FM:

146.3 µg/L

Baseline
FM: 15.7%

Placebo: 15.6%
LSM change from baseline to

week 16
FM: 3.8 percentage points
Placebo: −0.9 percentage

points
LSM (SE) difference between

groups at week 16
FM–placebo: 4.6 (1.1)

percentage points
p < 0.001

Up to week 52/EoT
DB FM to OL FM: 23.5%

DB placebo to OL FM: 21.4%
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Table 2. Cont.

Study Mean Hb and Change from Baseline Hb Responder Rate 1 Proportion of Patients
Achieving Hb Normalization 2

Proportion of Patients
Achieving ≥2 g/dL Increase in

Hb
Mean Ferritin Mean TSAT

Phase IIIB PH [68]

Baseline
FM: 10.7 g/dL

Week 12
FM: 13.6 g/dL

Median increase from baseline to week
12:

2.9 g/dL
p < 0.001

NR NR NR

Baseline
FM: 13.1 µg/L

Week 12
FM: 36.6 µg/L

p < 0.001

Baseline
FM: 7.5%
Week 12

FM: 31.7%
p < 0.001

1 Responder rate was defined as an increase in Hb of ≥2 g/dL from baseline and/or normalization of Hb (≥12 g/dL in women, ≥13 g/dL in men) [71]. 2 Hb normalization was defined as an increase in Hb to
≥12 g/dL in women or ≥13 g/dL in men in the IBD trials or to >11 g/dL in the CKD trial [62,71,72]. 3 Hb responder rate at week 12 was the primary endpoint for the IBD H2H study; as the CIs crossed the
prespecified noninferiority margin in the ITT and PP analyses, the primary endpoint of noninferiority of FM vs. IV FCM was not met [71]. CI, confidence interval; EoT, end of treatment; LSM, least-squares mean;
NR, not reported; SE, standard error.
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Measures of ferritin concentration and TSAT demonstrate that ferric maltol can in-
crease iron availability by week 12 (IBD) and week 16 (CKD) [62,72]. As with hemoglobin,
levels of these iron availability markers either increased or were maintained for up to a
year with ongoing ferric maltol therapy in patients with underlying IBD or CKD [64,72].
In the IBD head-to-head study, IV ferric carboxymaltose therapy resulted in high ferritin
levels at week 12, which had decreased somewhat by week 52; by contrast, levels in the
ferric maltol arm increased substantially with ongoing treatment up to week 52, indicating
steady replenishment of iron stores over time with this oral therapy [71]. In the phase I
pediatric study, iron availability markers were increased at all ferric maltol doses even over
the short study duration of 10 days [73].

In the phase IIIB study in patients with pulmonary hypertension (n = 22), the mean
hemoglobin level increased significantly by 2.9 g/dL, from 10.7 g/dL at baseline to
13.6 g/dL after 12 weeks of treatment with ferric maltol (p < 0.001); ferritin and TSAT
also increased significantly from baseline to week 12 (both p < 0.001) [68]. In the UK
real-world FRESH study (n = 59), 19 patients achieved normalization of hemoglobin at
week 12, and eight further patients achieved normalization after this timepoint; in addition,
16 patients achieved normalization of ferritin [69]. In the single-center, real-world study in
London (n = 28), mean hemoglobin increased from 11.0 g/dL at baseline to 12.2 g/dL after
a median of 16 weeks, while ferritin increased from 14 µg/L at baseline to 28 µg/L after a
median of 16 weeks [70].

3.2.3. Safety Findings

In total, 492 adults and adolescents received ferric maltol in clinical studies [59,61,62,64,68,71–73],
including 345 participants in trials planned to last 12 weeks (IBD and pulmonary hypertension) or
16 weeks (CKD); 293 of these 345 patients (85%) completed 12 or 16 weeks of
treatment [62,68,71,72]. In trials with a longer-term follow up, 331 patients received ferric
maltol for more than 12 weeks (IBD) or 16 weeks (CKD), of whom 229 (69%) completed
treatment for up to 64 weeks (IBD) or 52 weeks (CKD) [64,71,72]. Among patients who
stopped treatment before the end of the study, the most common reasons were adverse
events (34/96 patients (35%) who stopped ferric maltol prematurely vs. 14/53 patients
(13%) who stopped the placebo, and 2/19 patients (11%) who stopped IV ferric carboxy-
maltose prematurely) and physician or patient decision (28/96 (29%), 18/53 (34%), and
6/19 (32%), respectively) [62,64,68,71,72].

In the phase III studies, the proportion of patients needing to stop ferric maltol therapy
because of adverse events before week 12 or 16 was low (~10%) and similar rates in patients
randomized to the placebo, even in the AEGIS 1/2 IBD study, which enrolled patients who
had been unable to tolerate prior oral ferrous iron therapy [62]. The proportion increased
slightly during the longer-term follow up in the AEGIS 1/2 IBD study, but it remained low
in the IBD head-to-head and CKD studies [62,64,71,72]. In patients with IBD or CKD, the
most common adverse events leading to discontinuation of ferric maltol treatment during
long-term treatment (up to 52–64 weeks) were gastrointestinal, including abdominal pain
in 2–3% (IBD only), constipation in 1–2%, diarrhea in 1–3%, and nausea in 1–2%. For
comparison, among patients with IBD given placebo, 3% stopped prematurely because of
abdominal pain and 2% stopped because of diarrhea. Figure 1 summarizes the safety and
tolerability of ferric maltol reported in the long-term phase III studies [62,64,68,71,72].

In the exploratory phase IIIB pulmonary hypertension study, treatment with ferric
maltol was well tolerated by most patients, with only 2 of 22 patients (9%) unable to
complete 12 weeks of treatment (diarrhea n = 1, pneumonia n = 1) [68]. In the phase I
pediatric study, 20 of the 37 adolescents (54%) experienced an adverse event during the
10-day treatment period, with similar frequencies at each ferric maltol dose level. Only one
adolescent discontinued treatment because of an adverse event (tonsilitis) [73].
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Overall, the most frequent treatment-emergent adverse events were gastrointestinal,
which occurred at similar rates in patients treated with ferric maltol or placebo (~30–40%)
up to week 12 or 16; the incidence increased slightly with longer treatment (46–57%) in
the AEGIS 1/2 IBD and CKD open-label extensions [62,64,71,72]. Gastrointestinal adverse
events reported in all studies were constipation (4–6% of patients with IBD, 13–16% of
patients with CKD treated with ferric maltol for up to 52–64 weeks, 2–4% of patients with
IBD or CKD given placebo for 12–16 weeks, and <1% of patients with IBD treated with
ferric carboxymaltose), diarrhea (5–14%, 8–13%, 9–10%, and <1%, respectively), nausea
(5%, 12–13%, 2–9%, and 2%, respectively), and vomiting (<1–4%, 0–8%, 3% (IBD only),
and 3%, respectively). In addition, nasopharyngitis was reported across all studies (8–18%,
8–11%, 12% (IBD only), and 3%, respectively). Gastrointestinal adverse events reported
only in patients with IBD were abdominal pain (9–16% of patients treated with ferric maltol
over 52–64 weeks, 12% of patients given placebo for 12 weeks, and 3% of patients treated
with ferric carboxymaltose), flatulence (3–8%, 0%, and 0%, respectively), and IBD flare
(6–17%, 12%, and 7%, respectively).

In the pulmonary hypertension study, 14% of patients had diarrhea [68]. Gastroin-
testinal events were also the most common adverse events in the 10-day pediatric study
(32%) [73].

Two reports of ferric maltol use in UK clinical practice support the favorable safety
profile of ferric maltol in the real world. In the FRESH study, 19 of 59 patients with IBD
(32%) experienced adverse events (most commonly abdominal pain/discomfort [15%]),
and 30 of 59 patients (51%) were treated for 12 weeks [69]. In the London study, 14 of
21 patients with IBD (67%) tolerated ferric maltol for at least 1 month, including 5 of
10 patients (50%) who had not previously tolerated oral ferrous iron therapy [70].

4. Review of the Evidence and Clinical Implications

To date, ferric maltol has been assessed in almost 750 adults and adolescents (661 in
clinical trials and 87 in real-world studies) with a range of underlying conditions, including
IBD, CKD, and pulmonary hypertension. The clinical trials were designed, as far as
possible, to reflect the real-world settings in which ferric maltol will be used, with primary
endpoints at 12 or 16 weeks followed by longer-term maintenance treatment in line with



J. Clin. Med. 2021, 10, 4448 11 of 16

recommended treatment durations for oral iron therapies and current understanding of the
time required for physiologic restoration of iron stores [45,88–91]. A further phase III study
is being planned in infants and children (age range 1 month to 17 years) with IBD and iron-
deficiency anemia, which will use an oral suspension currently under investigation [92].

Underlying inflammatory conditions pose an ongoing risk of iron deficiency; thus,
many patients require long-term iron replacement with a well-tolerated iron formulation.
Ferric maltol fits this profile, with two-thirds of patients in open-label study arms staying
on therapy for up to a year and thus benefitting from the long-term impact of ferric mal-
tol on the body’s iron needs [64,71,72]. Across all of the trial populations studied, ferric
maltol has shown consistent and clinically relevant effects on hemoglobin and iron indices,
with early increases in hemoglobin to meet erythropoiesis needs, followed by sustained
replenishment of iron stores. In patients with IBD, 56–61% achieved a 2 g/dL increase in
hemoglobin by week 12. Although ferric maltol has not been directly compared with other
oral iron replacement therapies, this is similar to rates reported with oral ferrous sulphate
(58–71% at weeks 8–12) [93], and a network meta-analysis indicated favorable hemoglobin
improvements with ferric maltol (mean change 2.76 g/dL versus placebo at 12 weeks)
compared with other oral irons (mean change 1.04 g/dL) and IV irons (mean change
1.27–2.12 g/dL) after adjusting for baseline hemoglobin levels [66]. Over 52 weeks of treat-
ment, ferric maltol provided similar hemoglobin increases to IV ferric carboxymaltose in
patients with IBD, while ferritin levels increased substantially over time [71]. Nevertheless,
IV iron should be preferred if a patient has severe anemia or more active IBD (compared
with the disease activity in the clinical trials).

In chronic conditions such as iron-deficiency anemia requiring long-term therapy, it is
important that treatment does not add to the overall burden of disease. Gastrointestinal
adverse events have been widely reported with oral ferrous irons, including the most
commonly used of these, ferrous sulphate. In a systematic review and meta-analysis,
Tolkien et al. identified 43 trials involving 6831 adults, 3264 of whom received ferrous
sulphate (range 7–226 patients/trial). Gastrointestinal adverse events were reported in
2–90% of patients (10–68% in studies where ≥100 patients received ferrous sulphate). The
odds ratio for gastrointestinal adverse events in patients who received ferrous sulphate
was 2.32 (95% confidence interval 1.74–3.08, p < 0.0001) versus placebo and 3.05 (2.07–4.48,
p < 0.001) versus intravenous iron [30]. In the AEGIS 1/2 IBD study, the proportion of
patients experiencing any adverse events up to week 12 was lower in the ferric maltol arm
(58%) than in the placebo arm (72%), while the proportion of patients with gastrointestinal
events was similar (38% and 40%, respectively) [62]. In the CKD study, the overall incidence
of adverse events was again lower with ferric maltol (68%) than with the placebo (75%) up
to week 16, although the incidence of gastrointestinal events was higher (40% vs. 31%) [72].
The incidence of any adverse events and of gastrointestinal events increased slightly with
longer-term treatment (up to 52 or 64 weeks) in both studies [64,72]. In the IBD head-to-
head study versus IV ferric carboxymaltose, 10% of patients in the ferric maltol arm stopped
treatment because of adverse events compared with 3% in the IV arm. The frequency of
gastrointestinal events was higher with ferric maltol (31% up to week 52) than with IV iron
(13%), but the incidence in the ferric maltol arm was consistent with that reported with the
placebo in the AEGIS 1/2 IBD study [62,71].

In a meta-analysis of IV versus oral ferrous irons, Bonovas et al. reported an odds ratio
of 0.24 (0.12–0.49) in favor of IV iron for treatment discontinuation due to adverse events,
even though most of the oral iron studies may have had a selection bias toward favorable
tolerability by excluding patients with known intolerance to previous oral irons [94],
highlighting the need for a better tolerated oral iron formulation. In the AEGIS 1/2 IBD
study, two-thirds of patients had previously stopped oral ferrous iron therapy because
of adverse events; thus, they might be expected to have poor tolerance of a subsequent
oral iron therapy, but in fact most patients were willing to continue ferric maltol for up
to 64 weeks [62,64]. This finding is supported by the proof-of-concept study, in which
19 of 23 patients with known intolerance of prior oral therapies completed 3 months of



J. Clin. Med. 2021, 10, 4448 12 of 16

ferric maltol therapy [61], and the reported real-world experience, in which 50% of patients,
including a high proportion with prior oral therapy intolerance, were able to tolerate
ferric maltol [69,70].

Collectively, these findings indicate that prolonged treatment with ferric maltol pro-
vides sufficient iron to meet the body’s erythropoietic needs, which could help reduce the
need for erythropoiesis-stimulating agents or blood transfusions. At the same time, the
amount of free iron in the gut is minimized, thereby reducing the risk of damage to the gut
microbiome and of exacerbation of any underlying gastrointestinal disease.

5. Summary and Future Directions

The oral iron replacement therapy ferric maltol is licensed in Europe and the United
States for the treatment of adults with iron deficiency with or without anemia. Of the
661 adults and adolescents who participated in the clinical trials, 492 received ferric maltol,
and it has been widely used in clinical practice. Consistent evidence in a range of settings,
including IBD, CKD, and pulmonary hypertension, indicates that ferric maltol is an effective
and efficacious oral therapy for patients with iron deficiency and anemia, regardless of
the underlying disease. The clinical impact of ferric maltol on iron deficiency without
anemia or in other settings should be confirmed in future research. Future head-to-head
studies of different oral iron replacement therapies in disease conditions where a direct
comparison might be appropriate and ethically feasible especially in the context of drug
safety could also help to guide clinical decision making. Nevertheless, with the exception
of patients experiencing an IBD flare [88–90] and those requiring rapid iron replacement
(best achieved with IV iron), we believe that ferric maltol is an appropriate treatment option
for patients in whom long-term, convenient, and well-tolerated management of chronic
iron deficiency is desired.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10194448/s1, Figure S1. CONSORT flow diagram, Table S1. Designs of ferric maltol
clinical trials.
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