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Abstract 

Background:  In recent years, a programme of vector control, screening and treatment of gambiense human African 
trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biol‑
ogy of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted 
to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study out‑
lines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite 
low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the 
trajectory of gHAT in Mandoul for the next decade under different strategies.

Method:  Our previous gHAT transmission model for Mandoul was updated using human case data (2000–2019) and 
a series of model refinements. These include how diagnostic specificity is incorporated into the model and improve‑
ments to the fitting method (increased variance in observed case reporting and how underreporting and improve‑
ments to passive screening are captured). A side-by-side comparison of fitting to case data was performed between 
the models.

Results:  We estimated that passive detection rates have increased due to improvements in diagnostic availability 
in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the 
diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9–100%, 
Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no 
parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated 
through model fitting (95% CI 96.1–99.6%, Reduction = 99.1%) is comparable to the reduction previously measured 
by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmis‑
sion was interrupted in 2015 due to intensified interventions.

Conclusions:  We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame 
can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active 
screening and vector control, provided there is a strong passive surveillance system in place.
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Background
A new World Health Organization (WHO) roadmap [1] 
has set out control, elimination or eradication goals to be 
achieved by 2030 for 20 different neglected tropical dis-
eases (NTDs)—a collection of mainly infectious diseases 
affecting some of the poorest and most marginalised 
populations globally. Amongst them is gambiense human 
African trypanosomiasis (gHAT), a vector-borne, para-
sitic infection which has a goal of elimination of trans-
mission (EOT) by 2030 following the success indicated by 
decline in global disease reporting in the last two decades 
[2]. Formerly, this disease—caused by Trypanosoma bru-
cei gambiense and transmitted by tsetse (Glossina spp.) to 
humans—impacted 36 countries across West and Central 
African [3], usually resulting in death without detection 
and treatment of those infected. Now only 24 countries 
are considered endemic—at least marginal risk—and, of 
these, six have reported only tens of cases for the last five 
years and nine have reported single figures [2].

gHAT is a slow progressing disease with early (stage 
1) infection causing relatively mild or non-specific 
symptoms such as headache or fever [4] with the para-
site found in blood and lymph fluid. Following a period 
of around one to two years [5], infection penetrates the 
blood–brain barrier where it causes late stage (stage 2) 
disease and the parasite may be found in cerebrospinal 
fluid (CSF). During stage 2 patients may suffer neuro-
logical symptoms including, but not limited to, neu-
ropsychiatric symptoms, sleep disturbance, abnormal 
gait or movement, and eventually death [4, 6]. gHAT 
is not vaccine preventable nor is it currently possible 
to use mass distribution of drugs to treat infection. 
Patients will only be treated following identification of 
the parasite in the blood, lymph system or CSF, or in 

some settings as a result of strong serological evidence. 
Consequently there is a large diagnostic component 
to medical interventions and cases must be identi-
fied either via mass screening of village populations in 
endemic areas (active screening) or rely on fixed health 
care facilities, known as “passive” detection. A criti-
cal difference between passive and active screening 
is that all individuals are screened in active screening 
irrespective of their symptomatic status whilst passive 
screening only screens those with gHAT symptoms. 
Due to the non-severe clinical signs in stage 1 and the 
differential diagnosis with malaria, the detection rate in 
passive stage 2 is higher than that of stage 1 as symp-
toms are more acute and patients seek medical treat-
ment at health facilities [5]. At this point, a patient may 
have been infected and potentially infectious for several 
years. More details on the differences of active and pas-
sive screening can be found elsewhere [4].

Initial screening for gHAT is performed using either 
the card agglutination test for trypanosomiasis (CATT) 
or rapid diagnostic tests (RDTs) followed by various 
microscopy techniques to establish the presence of active 
infection. Following diagnosis it had to  be established 
whether the infection was stage 1 or stage 2—determined 
by either the presence of trypanosomes or more than 5 
white blood-cells per µl in CSF. Up until now, this stag-
ing has been necessary for the administration of stage-
specific drugs. In recent years the treatments have been 
intravenously-administered pentamidine for stage 1 and 
nifurtimox–eflornithine combination treatment (NECT) 
for stage 2, over the course of 10–14 days. This has 
changed in recent years with the introduction of fexini-
dazole which has obviated the requirement for staging in 
all but young patients and severely infected patients [6].

Keywords:  Gambiense human African trypanosomiasis (gHAT), Modelling, Elimination of transmission, Validation, 
Tsetse, Vector control, Glossina, Diagnostics
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Detection and treatment of infected people has been 
the primary method to control disease and reduce trans-
mission by reducing the time people spend infected, and 
thereby limiting opportunities for transmission back 
to tsetse vectors. However, the vector-borne nature of 
transmission provides other complementary options for 
control, including targeting the flies directly. A range of 
different ways to reduce tsetse populations exist, includ-
ing ground and aerial spraying, insecticide-treated cattle, 
and insecticide-impregnated targets [7, 8]. Although we 
are mainly preoccupied with gHAT infection causing dis-
ease in humans, there remain questions about the poten-
tial role of animals in gHAT transmission cycles. Often 
gHAT has been described as an anthroponotic infection, 
however evidence demonstrates that gHAT infection 
can be found in domestic and wild animals in various 
gHAT foci [9]. Unfortunately the sparsity of data on ani-
mal infection and general very low prevalence of infec-
tion in humans means that it is challenging to conclude 
directly from empirical data whether and how much ani-
mals contribute to transmission. Despite this, we may 
still hypothesise that there could be non-human animal–
tsetse–human transmission occurring.

The large reductions in cases globally between 1998 
and today are broadly attributed to tools used for diag-
nosis and treatment of infections [2], including CATT 
and NECT. However, in the last decade the advances in 
RDTs and vector control have been accelerating progress 
in specific regions [10–13]. Chad is one of the countries 
now reporting very small numbers of cases—in 2002 
there was a peak of 715 cases of gHAT reported, making 
it the country with the fifth highest burden, but in 2019 
there were just 16 cases, falling to seventh place relative 
to all endemic countries [14]. Reductions between 2000 
and 2013 are attributed to active screening of at-risk pop-
ulations and passive screening in endemic foci, however 
in Chad’s main focus of Mandoul, additional interven-
tions began in 2014 and 2015 to accelerate towards zero. 
Vector control started in 2014 using Tiny Targets—with a 
measured tsetse density reduction of 99% after 4 months, 
and in 2015 the passive screening system was fortified by 
increasing the number of fixed health facilities with RDTs 
[12].

Across the continent, combinations of screening, 
treatment and sometimes vector control are being used 
to bring down remaining disease burden. The primary 
strategy against gHAT has been the use of screening and 
treatment; annual active screening of the population is 
recommended by WHO in villages where cases have 
been detected within the past three years [4] and this 
has worked well to greatly reduce infection incidence in 
many settings [1]. However, vector control tools, which 
complement screening activities, have been gradually 

rolled out in key gHAT hotspots over the last decade and 
are now being deployed in all extant foci of Côte d’Ivoire, 
Guinea and Uganda [13] with effectiveness ranging from 
80 to 97% tsetse reduction [10, 15, 16].

Success and speed of infection reduction are governed 
by a variety of factors including geographical extent 
of foci, tsetse habitat, strength of the local health sys-
tem [17], disruptions in control activities due to politi-
cal unrest, other disease outbreaks (including Ebola in 
Guinea [18] and coronavirus disease 2019 (COVID-19) in 
all settings [19, 20]), or lack of resources [21]. For exam-
ple, in the Democratic Republic of Congo (DRC) the large 
geographic spread of endemic gHAT foci coupled with 
financial and logistical constraints currently limit the 
capacity to perform country-wide vector control. Some 
regions additionally have access challenges associate with 
limited infrastructure or political instability [22]. There-
fore, current efforts in vector control for DRC target the 
regions of highest incidence [20, 23]. Fortunately, the 
focus of gHAT in Mandoul presents a unique opportu-
nity for gHAT control as it is a relatively small area with a 
relatively small population. What is more, the tsetse habi-
tat is a single discrete area with no scope for reinvasion 
or importation of vectors from other areas.

Previous modelling work suggested that it was likely 
that transmission was already interrupted by 2015 [12], 
with 62.8% (95% credible interval (CI) 59–66%) of the 
transmission reduction due to vector control. However, 
in the present study we question whether this is consist-
ent with the low-level but persistent case reporting still 
occurring in the focus. There are numerous other ques-
tions surrounding transmission and reporting in the 
Mandoul focus: (i) given there were six reported cases in 
2018 and 11 in 2019, what does this tell us about underly-
ing transmission? (ii) when can we expect to observe zero 
cases reported? (iii) can active screening and vector con-
trol be stopped without risking recrudescence?

In the present study we critique and refine the previ-
ous modelling work to reassess likely transmission, and 
update predictions until 2030 utilising a further four 
years of case data. Specifically, we improve upon our 
previous transmission model by allowing for false posi-
tive case reporting, increasing observational variation in 
simulated case reporting, and using additional years’ data 
to parameterise improvements in passive detection and 
effectiveness of vector control. In addition our updated 
model utilises a revised statistical fitting methodology. 
Both the original model and update model include the 
use of an ensemble model approach where we assess sta-
tistical support for model variants with and without ani-
mal transmission and, based on this support, weight our 
modelling  results accordingly. In order to ensure clear, 
reproducible and rigorous modelling for this study we use 
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the Policy-Relevant Items for Reporting Models in Epide-
miology of Neglected Tropical Diseases (PRIME-NTD) 
checklist [24]. This completed checklist can be found in 
our Additional file 1 (section S9) and includes details on 
stakeholder engagement, model documentation, descrip-
tion of data used, communicating uncertainty and test-
able model outcomes. New results are also available via 
an interactive graphical user interface (https://​hatme​pp.​
warwi​ck.​ac.​uk/​Mando​ulfit​andpr​oject/​v1/).

Methods
Data
To quantify the transmission and case reporting of 
gHAT in the Mandoul focus of Chad, we utilised the 
WHO HAT Atlas data from 2000 to 2018 [2]. Records 
within this data set were annually aggregated by mode 
of screening/detection (i.e. active and passive), and loca-
tion. In a single record the number of people screened, 
cases identified and staging (if known) were recorded. In 
order to fit our model to the focus-level data we aggre-
gated all locations with the Mandoul focus together, but 
retained information on the number of active (stage 1, 
stage 2 and stage unknown) cases, passive (stage 1, stage 
2 and stage unknown) cases, and the number of people 
actively screened in each year. To supplement these data, 
we also used 2019 case and screening data provided by 
the national control programme of Chad (Programme 
National de Lutte contre la Trypanosomiase Humaine 
Africaine; PNLTHA-Chad). The geographical location 
and approximate extent of the Mandoul focus and other 
foci in Chad are presented in Additional file 1: Fig. S1.

In Chad, case identification follows an algorithm 
involving serological screening using CATT (in vehicle-
based active screening (AS)) and RDT (in passive screen-
ing (PS) and motorcycle-based AS). Confirmation of the 
presence of circulating parasites is by various microscopy 
techniques, supplemented in 2017 by the highly-sensitive 
mini anion exchange centrifugation technique (mAECT). 
However, in the absence of positive microscopy, cases 
are also confirmed by clinical signs and positive results 
by CATT on diluted serum. For some suspects additional 
(but not final) diagnostic data is obtained using loop-
mediated isothermal amplification (LAMP).

The gHAT model
Mechanistic transmission modelling is one way to repre-
sent dynamic changes in the spread of an infection over 
time. It can account for variable interventions (in par-
ticular AS), or introduction of a new strategy (such as 
improved PS and vector control (VC)). Once calibrated 
to data, models can be used to predict what we might 

expect to happen in the future if the current intervention 
strategy is continued, or if changes are made.

The Warwick gHAT model has been developed over 
the past five  years to represent the known biology of 
transmission between humans and tsetse (and possibly 
non-human animals), and to  capture key gHAT inter-
vention strategies used in both the Democratic Republic 
of Congo and Chad. Since its original development [25] 
several modifications have been made based on contin-
ual fitting to different longitudinal data sets, followed by 
assessment and refinement [12, 26–28]. In the present 
study we specifically discuss the evolution of the War-
wick gHAT model since it was originally fitted to data 
from the Mandoul focus [12] and take steps to update the 
previous fits and provide new projections for the future 
under different strategies.

Assessment and update of model fits
In order to quantitatively assess previous model projec-
tions and refine them we take three steps.

Step 1: Previous model projections corrected for new active 
screening
First we use the previously developed model code and 
posterior parameterisation from fitting to data from 2000 
to 2013 [12] and use the AS numbers from 2014 to 2019 
to update projections for those six years. In Mahamat 
et al., screening numbers for 2014 and 2015 were known, 
but numbers for 2016–2019 were not. Large differences 
between assumed screening levels and actual screening 
levels can have a substantial impact on model projec-
tions—if there is no screening there would be no active 
cases, whereas there could be a high number of cases if 
large proportions of the population were screened. In 
Mahamat et al., it was assumed that the screening num-
bers for 2016–2019 would be 27,265 each year (the same 
as in 2015), whereas new data from the WHO HAT Atlas 
and PNLTHA-Chad are somewhat lower—22,0071, 
18,144, 18,083 and 12,640 for each of the years respec-
tively. This first step enables us to compare new data with 
old model predictions (adjusted for the correct screening 
numbers). In line with the previous results, we utilised 
ensemble results from four different model variants, two 
of which include animal reservoirs (see Additional file 1 
for more details on the previous model).

Following fitting in Mahamat et al. [12], counterfactual 
scenarios (CFSs) were run for 2014–2019 to estimate the 
impact of intensified interventions (referring to the intro-
duction of VC in 2015 and improvements in PS in the 
Mandoul focus  from 2015). For CFSs considered here, 
we simulated what would have been expected if (a) nei-
ther VC nor improved PS had been introduced in 2014 
and 2015, (b) if the only change was improved PS, and 

https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/
https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/
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(c) if the only change was VC. These three scenarios were 
compared to the “actual” strategy (with both VC and 
improved PS) in order to assess the relative impact of the 
different intervention types in reducing transmission.

Step 2: New model fit for 2000–2013
Since the publication of Mahamat et al. [12], there have 
been several refinements to the underlying gHAT model 
used. Amongst these, the model is now able to capture 
greater variance in observed case reporting (overdisper-
sion) which was originally developed for Model W in 
Castano et al. [26], and the model fitting procedure was 
improved by using informative priors which take previ-
ous biological beliefs about the parameterisation into 
account (e.g. the high-risk group in the population is 
likely a similar proportion to the proportion of working 
age men and the basic reproduction number, R0 , is prob-
ably only slightly above 1) [28]. Furthermore modelling 
of the improvement to PS (used from 2015 onwards to 
simulate increased RDT usage in Mandoul) has a slightly 
different formulation: from a discrete jump in detection 
rates to the use of a steep logisitic function, although 
the consequence of this change is expected to be mini-
mal (see Additional file  1, section S2.3). In the previ-
ous model, underreporting in PS was assumed to occur 
with both stage 1 and 2 infections, however subsequent 
updates now assume that true stage 1 infection either 
leads to reported cases or progression to stage 2. Stage 2 
infections can still lead to underreported deaths, with the 
parameter u dictating the (passive) reporting probability 
of stage 2 infections not picked up by AS.

The specificity of the diagnostic algorithm in previous 
modelling was assumed to be 100%, whereas PNLTHA-
Chad currently allow for treatment based on either a 
serological or parasitological diagnosis. Patients who are 
only positive by serology must remain positive after a 
repeat CATT test is performed with 1:8 dilution, rather 
than only on the initial CATT on whole blood, and these 
patients are termed “strongly” seropositive cases. The 
inclusion of these strongly seropositive individuals as 
cases has the potential to miss fewer remaining infections 
who might otherwise be false negative in parasitology, 
and therefore treat these people and shrink the remain-
ing infectious reservoir. However, it also risks over-diag-
nosis of cases (false positives) due to the high number 
of people screened per year, even with a high estimated 
specificity of over 99% for an algorithm including CATT 
1:16 case confirmation (95% CI 97.7–99.7%, Spec = 
99.1% [29], 95% CI 99.2–99.5%, Spec = 99.4% [30], and 
> 99.6% [31]). As infection continues to decline in Man-
doul—and globally—the positive predictive value of tests 
is reduced and eventually false positives may outnum-
ber true positives without parasitological confirmation 

or laboratory-based follow-up using molecular diagnos-
tic tools such as immune  trypanolysis [32] which are 
extremely specific. The new model, therefore, fits speci-
ficity to the data using the literature estimates as a prior. 
Our initial assumption is that any false positives would be 
assigned in the staged data as stage 1.

Using the new model code and fitting procedure, our 
second step is to fit the model again to 2000–2013, mak-
ing projections for 2014–2019 using the same assump-
tions about improvements to VC and PS in 2014 and 
2015 respectively, specifically a 99% tsetse reduction 
after four months and a doubling of both the stage 1 and 
stage 2 passive detection rates. By comparing step 1 and 
2 we can see the impact of model improvements, but 
not improvements due to more data availability. As with 
previous fitting, we fitted the same eight different model 
variants.

Step 3: New model fit for 2000–2019
Finally our third step is to fit the full data set including 
2014–2019. This includes inferring (i) the stage 1 and 
stage 2 PS improvement from 2015 and (ii) the overall 
reduction of tsetse in the whole epidemiological focus 
(rather than using the measured tsetse density reduction 
in the Mandoul study area). Estimating the tsetse reduc-
tion using the model fitting, rather than substituting the 
value measured in the field allows us to test whether 
there is agreement between model outputs based on 
human case data and entomological dynamics observed 
in the study region. Any differences in these two could 
indicate that infection is occurring outside of the area 
under control by Tiny Targets. This third step results in 
the inference of three extra parameters, parameters ηHamp 
and γHamp which dictate the increased amplitude of the 
passive detection rate in stage 1 and stage 2 respectively, 
and the probability of a tsetse receiving a lethal dose of 
insecticide during the host-seeking phase of its feeding 
cycle, ptargetdie , for VC. See Additional file 1, section 2 for 
more model details.

Based on preliminary results which assumed false posi-
tives must be stage 1, we relaxed this assumption and 
allowed false positives to be reported as either stage 1 or 
stage 2 with a fitted probability.

As in the original study, CFSs were run for 2014–2019 
to estimate the impact of intensified interventions on 
transmission and reporting. Since the actual strategy for 
this time period is now fitted rather than projected, this 
should provide a more robust estimate than reported 
previously.

Table  1 summarises assumptions for the three model 
fits described.



Page 6 of 13Rock et al. Infectious Diseases of Poverty           (2022) 11:11 

Projections and cessation
Using the 2000–2019 model fit we also make projections 
until 2050 under five strategies (see Table  2), compris-
ing of continued AS at either mean (during 2015–2019) 
or maximum coverage (during 2000–2019, MaxAS) with 
imperfect (< 100%, fitted) and perfect (= 100%) test spec-
ificity in conjunction with or without continuation of VC 
from 2021. In all scenarios PS was assumed to remain 
at present levels. Two MaxAS +  VC strategies are pre-
sented in Additional file  1, section  5. Due to resource 
limitations, including costs and effort to implement such 
programmes, we also examined a cessation criterion for 
AS and VC following three years of zero case detections 
to consider the impact that stopping activities based on 
this measure could have (see Additional file 1 for sensi-
tivity analysis on cessation criteria). The earliest cessation 
year was assumed to be 2021. Reactive AS takes place 
when any passive detections occur after the cessation 
criterion is met. The coverage of AS depends on its pro-
jection strategy. The duration of reactive AS depends on 
case reporting, such that reactive AS stops again when no 
case (either active or passive) is found in that year.

Results
Assessment of previous and new model fits to data
The previous model predicted that there would be a 
median of zero cases by 2017 in AS and by 2018 in PS. 
Newly available data from 2017 to 2019 are very low, but 
cases were still reported, indicating that our previous 
model overestimated the impact of the strategy on case 
reporting from 2014. Correcting for the real screening 
coverage had little impact on our predicted cases for this 
time period, due to the very limited remaining infection 
estimated by the model.

The updated model fit for the same fitted time period 
as before (2000–2013) better captures variation in case 
observations during the training period, attributed to the 
inclusion of overdispersion parameters in the updated 
model and improvement in the automated Markov chain 
Monte Marlo (MCMC) algorithm used for model fitting. 
It also matches more closely with the 2014–2019 data 
despite having no more information than the previous 
model for fitting and making the same assumptions on 
the VC reduction and passive detection rate improve-
ment. Again, the overdispersion in the updated model 
leads to wider prediction intervals, more reflective of 
our uncertainty. In addition, the model now accounts for 

Table 1  Comparison of the fits of previous and new models

We describe the key differences between the previous Warwick gHAT model of Mahamat et al. [12] and the present study—the “new model”—when considering fits 
to previously available data (2000–2013) or the extended data sets (2000–2019)

FP false positive, PS passive screening

Changed items Previous model New model fit for 2000–2013 New model fit for 2000-2019

Active screening specificity 100% Estimated from data Estimated from data

False positives in active screening No FP FP in stage 1 only FP in either stage

Passive detection improvement rate Doubling of stage 1 and stage 2 
PS detection rates from 2015

Doubling of stage 1 and stage 2 
PS detection rates from 2015

Stage 1 and stage 2 PS detection rates 
from 2015 were estimated from the 
data

Underreporting Both stages Stage 2 only Stage 2 only

Vector control reduction after 4 months 99% 99% Total reduction estimated from the data

Table 2  Future strategies (2020 onwards) considered in the present study

This table shows the five possible future strategies we simulated using the ensemble model. We denote the coverage of AS, assumptions around PS detection rates, 
the use of VC and the specificity of the AS algorithm in defining cases in the different columns

AS active screening, PS passive screening, VC vector control, Max maximum

Strategy name AS coverage PS VC Algorithm 
specificity 
(%)

MeanAS + VC (Imperfect 
Spec)

Mean of 2015–2019 Continued Continued ≈ 99.93

MeanAS + VC Mean of 2015–2019 Continued Continued 100

MeanAS Mean of 2015–2019 Continued Stopped in 2021 100

MaxAS Max of 2000–2019 Continued Stopped in 2021 100

Stop2021 None from 2021 (mean in 2020) Continued Stopped in 2021 100
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imperfect specificity in the diagnostic algorithm; not only 
does that allow for the potential of some false positives 
in 2017–2019, but it also impacts the model fit for 2000–
2013. Median active detection predictions increased to 
26, 26 and 18 for 2017–2019 compared to zero for the 
previous model with new screening data, and median 
passive detection predictions increased to 7, 2 and 0 
from 1, 0 and 0 for the same time frame. The updated fit 
is therefore more in line with real data from these years 
(actively reported cases were 15, 3 and 10, and passively 
reported cases were 7, 3 and 1 for 2017–2019). Further-
more the enlarged prediction intervals for case reporting 
in the updated model now cover all the reported data for 
the prediction period except passive cases in 2015 and 
active cases in 2018.

The number of new infections per year (a measure of 
transmission) is a quantity which is very important with 
respect to the 2030 elimination goal, but ultimately is 
very difficult to measure directly in the field. The mecha-
nistic model types used in this study and Mahamat et al. 
[12] can provide an estimate of transmission levels that 
would be required in order to generate the observed case 
reporting in active and passive detection. Factors such 
as underreporting and accuracy of diagnostic screening 
tests can impact the inferred level of transmission. Model 
estimates for transmission can be seen Additional file 1: 
Figs. S5–S7, and demonstrate that whilst the updated 
model fitted to the full data set infers slightly lower trans-
mission in the early 2000s, the decrease between 2000 
and 2013 follows the same trend (72% median reduction 
in the previous model and 68% median reduction in the 
updated model fitted to the 2000–2019 data). Imperfect 
specificity of the diagnostic algorithm captured in the 
updated model (but not the original) is one explanation 
for lower new infections; if some reported cases were 
false positive then the infections would be expected to 
be less than if all case reporting were true positives. The 
reporting parameter, u, can also impact inference of new 
infections. In the updated model fit (2000–2013), u was 
found to be around 20–33%, slightly higher than previ-
ously estimated using the same data (95% CI 16.8–23.6%, 
u = 19.1%). Analogous to imperfect specificity, lower 
underreporting of passive cases means that for the same 
number of new infections there would be more passive 
cases, or conversely, for the same number of passive cases 
there are actually fewer infections.

Despite the good agreement between aggregated active 
cases in the data and model (2000–2013) fit for the 
projection period, the model predicted that almost all 
reported cases would be false-positive from 2015 onward, 
whereas there are similar case detections in stage 1 as in 
stage 2 in the data. Therefore in the full data set fit (2000–
2019) we decided to allow for false positive detections 

to be assigned to either stage, rather than only stage 1. 
Using the data from 2000–2013, the reported cases were 
too high to be able to estimate this trend as most would 
be expected to be true positive cases.

The updated model fitted to the full data set (2000–
2019) enabled us to estimate the reduction in vectors 
in 2014 and the improvement to passive detection rates 
from 2015. Through our model calibration we found that 
the focus-wide reduction of tsetse (after 4 months) was 
estimated to be 99.1% (95% CI 96.1–99.6%), around our 
99% assumed estimate based on the catch of tsetse from 
monitoring traps in the intervention area. For passive 
detection we estimated that stage 1 rate ( ηH ) increased to 
2.12 times previous levels (95% CI 1.19–4.06) and stage 
2 rate ( γH ) was 1.52 times previous levels (95% CI 1.04–
8.60). This suggests that the doubling assumed for stage 
1 passive detection in the previous model was quite rea-
sonable, although it was slightly high for stage 2.

Using this full fit we estimated that the AS algorithm 
had a specificity of 99.9% (95% CI 99.9–100%) and that 
false positive cases were slightly more likely to be diag-
nosed as stage 2 rather than stage 1 (95% CI 0.46–0.74, 
Proportion = 0.61). Using the information directly from 
the data collected during 2016–2019 we can see that, 
proportionally, many of the cases reported in AS had 
positive serology but were not confirmed through parasi-
tology (see Additional file 1: Fig. S10). Full posterior dis-
tributions for these and other model parameters can be 
found in Additional file 1: Table S8 and Fig. S3. One other 
estimated parameter was the basic reproduction number, 
R0 , which is a metric of potential for infection to spread. 
Here was estimated R0 in the Mandoul focus to be 1.06 
(95% CI 1.04–1.10) in the absence of all interventions 
other than basic PS. This value is comparable to estimates 
for other gHAT foci that have been quantified—with a 
value only slightly exceeding the critical threshold of one, 
that is required to sustain endemic levels of infection [25, 
28, 33].

Estimating past impact using counterfactual scenarios
By simulating CFSs without one or both intensified inter-
ventions occurring in 2014 and 2015 (VC and improved 
PS respectively), the model can be used to estimate 
case reporting and transmission that would have likely 
occurred if previous AS and baseline PS had contin-
ued. Table  3 shows the reduction in transmission for 
the first 2-year period and first 6-year period following 
implementation of intensified interventions. It also pro-
vides the percentage attributions of the basic strategy, 
enhanced PS and VC in achieving the reductions. Nota-
bly, VC is computed to have had the most impact on 
transmission amongst all the interventions for both time 
periods, however both intensified interventions were 
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inferred to have substantial impact over the 6-year period 
(23.6% for enhanced PS and 34.7% for VC). Even without 
new interventions, AS and PS alone would have likely 
reduced transmission, but not enough to interrupt trans-
mission by the target year of 2030 (see Additional file 1: 
Fig. S8); under the strategy including enhanced PS but no 
VC, there was a prediction of a 6.6% probability of EOT 
when performed in conjunction with mean AS. With the 
conducted intervention the estimated year of EOT was 
2015 (95% CI 2015–2015).

Evidence for alternative model structures (including 
animal reservoirs)
We found that there was most support for model variants 
4 and 5—both of which have high-/low-risk structure for 
the human population, but do not have animal reservoirs 
(see Additional file 1 for more details). Less than 0.1% of 
the ensemble model was made up of simulations from 
Models 7 and 8 (equivalent to Models 4 and 5 but includ-
ing transmission to and from animals). Even taking these 
models alone, fitting indicates it is unlikely that animals 
constitute a maintenance reservoir, with 39% and 24% of 
simulations having human-only maintenance of infection 
in Models 7 and 8 respectively, and the remainder requir-
ing both transmission from humans and non-human 
animals.

Model projections to 2030
Figure  2 shows the ensemble model prediction (using 
the updated 2000–2019 fit) under five different strate-
gies including three with continuation of the mean level 
of AS (2015–2019), one under the maximum coverage 
observed during 2000–2019, and one with no AS from 
2021. In the baseline case we assume that specificity 
remains imperfect in AS (99.9%), however in all other 
scenarios we assume that additional testing in the AS 
algorithm increases specificity to 100% from 2021. We 
simulate cessation of AS following three years of no case 
detections in Fig. 2, however other cessation criteria yield 
virtually identical results.

Notably, under all strategies we predict that EOT has 
already occurred and will not resume even after cessation 
of vertical interventions. In these simulations the extreme 
suppression of the fly population does not recover, how-
ever even if there were very rapid bounce back of tsetse 
through reinvasion or other means, only 2% of our 
model simulations (with 90% adult tsetse reintroduction 
in 2021) saw resurgence of infection in humans where 
transmission occurred beyond 2030 as a result. Our more 
modest reintroduction scenarios (10% and 50% in 2021) 
found 0% and 1% resurgence probability respectively (see 
Additional file 1: Fig. S9).

Interactive results for both the CFSs and the projec-
tions from 2020 can be found through our graphical user 
interface (https://​hatme​pp.​warwi​ck.​ac.​uk/​Mando​ulfit​
andpr​oject/​v1/), which shows the ensemble model results 
for both sets of model outputs.

Discussion
This modelling study has critically examined previ-
ous modelling work to assess its predictive ability and 
to refine the results presented before [12]. Overall, we 
have found that the model predictions were reasonable, 
however slightly underestimated active case reporting 
in the late 2010s. A combination of model improve-
ments and new data have allowed us to examine how 
predictions could be updated using refined methodol-
ogy alone, and what additional information could be 
learnt from new data. Our updated model estimates the 
same EOT year as before (2015) and the previous and 
updated models attribute transmission reductions in 
quantitatively similar proportions to the different inter-
vention activities. One particular challenge faced in 
the previous modelling exercise was uncertainty in the 
future level of AS coverage that would occur between 
2016–2019. In hindsight the level used (27,265, which 
corresponded to the coverage in 2015) for the Mahamat 
et al. projections was higher than achieved, and screen-
ing dropped in subsequent years. Despite this, we don’t 
think that in this instance the screening level substan-
tially impacted our results, as is demonstrated with 
our re-simulation of the original gHAT model with 
correct screening coverage for those years (see Fig. 1). 
Whilst the new modelling presented here now utilises 
the 2016–2019 screening data for both fitting and sub-
sequent projections, predictive modelling always faces 
the challenge of defining realistic future intervention 
strategies as there are scenarios where changing to 
a different strategy than the one modelled can have a 
major impact on results. This type of effect has been 
particularly noticeable in model projections or fore-
casting for the COVID-19 pandemic and policy rapidly 
evolves and is often not the same as interventions that 
we used to create model projections [34]. Here we try to 
mitigate against this situation by providing projections 
for five alternative strategies which we believe provide a 
good insight into a range of plausible outcomes.

This modelling update brings together quantita-
tive validation with discussions for those familiar with 
on-the-ground implementation, thus representing an 
important step for models aimed at providing policy 
recommendations. The present study adheres to the 
policy-relevant items for reporting models in epide-
miology of neglected tropical diseases (NTD-PRIME) 
criteria, which map good modelling practice [24] (see 

https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/
https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/


Page 9 of 13Rock et al. Infectious Diseases of Poverty           (2022) 11:11 	

Additional file  1 for more details). Our graphical user 
interface also provides a more interactive way to view 
our new results https://​hatme​pp.​warwi​ck.​ac.​uk/​Mando​
ulfit​andpr​oject/​v1/.

Limitations
Despite our updated model modification to better 
reflect observed cases (e.g. overdispersion in sampling 
and the possibility of false positive reporting), there are 
still elements of the biology which are not captured, 

Fig. 1  Comparison of previous and new model outputs. This figure panel shows the results of fitting to case data during A 2000–2013 using the 
previous model, B 2000–2013 using the new model, and C 2000–2019 using the new model. The solid black lines show the case data. Grey box and 
whiskers indicate years of model fits (median for centre line and 95% credible intervals for whiskers) and green box and whiskers denote model 
projections based on known active screening coverage

Table 3  Estimated percentage reduction in transmission by intervention since intensified strategy began

Attributions to each strategy component are based on counterfactual strategy simulations. Medians are given with 95% credible intervals in brackets

AS active screening, PS passive screening, VC vector control

Transmission reduction by intervention Transmission Transmission
2013–2015 2013–2019

Total reduction (%) 100.0 (99.7–100.0) 100.0 (100.0–100.0)

Percentage of reduction attributed to AS and baseline PS 19.9 (12.8–28.5) 41.3 (27.4–55.7)

Percentage of reduction attributed to enhanced PS 5.6 (1.2–18.3) 23.6 (8.3–43.8)

Percentage of reduction attributed to VC 74.0 (57.8–84.4) 34.7 (13.9–58.2)

https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/
https://hatmepp.warwick.ac.uk/Mandoulfitandproject/v1/
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including no possibility for asymptomatic, self-curing 
human infections [35] and no imported cases from 
other regions. We use a deterministic model which 
captures the average dynamics rather than a stochas-
tic model, although work using both deterministic and 
stochastic gHAT models in other regions [36–39] indi-
cates that we would expect the dynamics to be very 
similar. Future work regarding stochastic reinvasion 
of infection via human imports (such as from other 
extant foci in Chad or over the nearby border with the 
Central African Republic) would provide insights on 

post-elimination risks for Mandoul, but is beyond the 
scope of the present study.

This study examined a variety of plausible future inter-
vention strategies for Mandoul, however PS was assumed 
to remain intact at current operating levels in all of them. 
Reduction in the capacity or coverage to find and treat 
gHAT-infected people could have deleterious impact 
on the focus which otherwise anticipates reaching zero 
infected people in the next few years. Another concern 
is the possible effect of other infectious disease outbreaks 
on gHAT. The most notable example is in Guinea, where 

Fig. 2  Projections to 2030. The ensemble model fitted to data during 2000–2019 was used to make projections under five different strategies. The 
baseline strategy, MeanAS + VC with imperfect specificity ( ∼ 99.93% ), is denoted by grey boxes. With specificity improved to 100% from 2021, the 
strategy MeanAS + VC is denoted by purple boxes. Blue and red boxes are MeanAS and MaxAS strategies with AS screening specificity switching to 
100% and stopping VC from 2021. Finally, Stop 2021 under which both AS and VC stop in 2021 is shown by the green boxes. All simulations assume 
PS remains at the level as estimated for 2019 and continues indefinitely. The top panel shows the level of AS assumed in the different projections, 
the second row shows the active case predictions, the third shows the passive case predictions and the forth shows the expected amount of new 
infections. The bottom row shows the probability of EOT for each year. AS: active screening; VC: vector control; Max: maximum; EOT: elimination of 
transmission
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the West African Ebola outbreak in 2014–2016 had a 
large impact on the national control programme’s active 
and PS activities and is likely to have increased morbidity 
and mortality from this disease [18, 40]. Whilst there was 
some delay to AS activities for gHAT in Chad in 2020 
due to the COVID-19 pandemic, screening was able to 
resume later in the year yielding only a small impact on 
total annual coverage compared to recent years. Other 
factors which could lead to reduction in PS capacity 
include lack of funding, motivation, or dedicated human 
resources especially after several years of zero case detec-
tions. Horizontal integration within the health system 
could be vital for post-elimination monitoring and signs 
of resurgence.

Ongoing work is bringing together transmission mod-
elling and costs in a health economic framework in 
order to provide assessment of the expected total costs 
and cost-effectiveness of possible future strategies in the 
focus.

Conclusions
In this study we used a mathematical transmission 
model of gHAT in Mandoul to update previous model-
ling including demonstrating the impact of improve-
ments made, and using new data to further improve the 
updated model fit. We found that our previous assump-
tion of a doubling stage 1 passive detection rate appears 
appropriate, although the stage 2 passive detection rate is 
unlikely to have increased substantially. Tsetse reduction 
estimated by the model was in good agreement with that 
measured by tsetse density in the intervention area and 
tsetse control contributed to 74.0% of the transmission 
reduction between 2013–2015. Modelling indicated that 
elimination of transmission occurred in 2015.

Projections suggest that we expect to have zero passive 
case reporting before 2023, although active case detec-
tion would continue due to imperfect specificity of the 
current diagnostic algorithm, and therefore additional 
confirmatory testing (such as mAECT, LAMP or tryp-
anolysis) ought to be considered. It appears that cessation 
of vertical interventions (active screening and vector con-
trol) would be unlikely to result in a resurgence of infec-
tion if there are no or few importations of gHAT to the 
region, however continued surveillance will be important 
to have assurance that elimination of transmission has 
been met.

Abbreviations
AS: Active screening; CATT​: Card agglutination test for trypanosomiasis; 
COVID-19: Coronavirus disease 2019; CFSs: Counterfactual scenarios; CI: Credi‑
ble interval; CSF: Cerebrospinal fluid; DRC: Democratic Republic of Congo; EOT: 
Elimination of transmission; FP: False positive; gHAT: gambiense human African 
trypanosomiasis; LAMP: Loop-mediated isothermal amplification; mAECT: Mini 
anion exchange centrifugation technique; MCMC: Markov chain Monte Carlo; 

NECT: Nifurtimox–eflornithine combination therapy; NTDs: Neglected tropical 
diseases; PNLTHA-Chad: Programme National de lutte contre la Trypanosomi‑
ase Humaine Africaine (National control programme against human African 
trypanosomiasis ); PS: Passive screening; RDT: Rapid diagnostic test; VC: Vector 
control; WHO: World Health Organization.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40249-​022-​00934-8.

Additional file 1. Additional model description, results and PRIME-NTD 
criteria checklist.

Acknowledgements
The authors thank PNLTHA-Chad for original data collection and WHO for data 
access (in the framework of the WHO HAT Atlas [2]).

Authors’ contributions
KSR was responsible for the conception of this work, its design, methodology, 
formal analysis, investigation, data curation and funding. REC was involved 
in developing the methodology. CH was responsible for formal analysis and 
methodology. PRB, REC and CH were responsible for software development. 
CH and PRB were involved in the visualisation of results. PRB, REC, CH, AP, JD, 
SM and MP performed data curation. KSR and CH wrote the original draft and 
all authors reviewed and edited the paper. KSR and EHC were responsible for 
project administration. All authors read and approved the final manuscript.

Funding
This work was supported by the Bill and Melinda Gates Foundation (www.​
gates​found​ation.​org) through the Human African Trypanosomiasis Model‑
ling and Economic Predictions for Policy (HAT MEPP) project [OPP1177824 
and INV-005121] (CH, REC, PEB, MA, EHC, KSR), through the NTD Modelling 
Consortium [OPP1184344] (KSR), and the Trypa-NO! project [INV-008412 and 
INV-001785] (PRB, AP, SJT, PS and IT). SJT received funding from the Biotech‑
nology and Biological Sciences Research Council (www.​bbsrc.​ukri.​org; Grants 
BB/S01375X/1, BB/S00243X/1, BB/P005888/1). The funders had no role in 
study design, data collection and analysis, decision to publish, or preparation 
of the manuscript.

Availability of data and materials
Data cannot be shared publicly because they were aggregated from the 
World Health Organisation’s HAT Atlas which is under the stewardship of the 
WHO. Data are available from the WHO (contact neglected.diseases@who.
int or visit https://​www.​who.​int/​trypa​nosom​iasis_​afric​an/​count​ry/​foci_​AFRO/​
en/) for researchers who meet the criteria for access. Model code and outputs 
produced from this study are available through Open Science Framework 
https://​osf.​io/​rak9d/.

Declarations

Ethics approval and consent to participate
As this study was a secondary analysis of aggregated programme data which 
was not personally identifiable, ethics approval was not required.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Mathematics Institute, University of Warwick, Academic Loop Road, Coven‑
try CV4 7AL, UK. 2 Zeeman Institute for Systems Biology & Infectious Disease 
Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, 
Coventry CV4 7AL, UK. 3 Independent Consultant, Edinburgh, UK. 4 Department 
of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. 5 Institut 
de Recherche pour le Développement, UMR INTERTRYP IRD‑CIRAD, Université 

https://doi.org/10.1186/s40249-022-00934-8
https://doi.org/10.1186/s40249-022-00934-8
http://www.gatesfoundation.org
http://www.gatesfoundation.org
http://www.bbsrc.ukri.org
https://www.who.int/trypanosomiasis_african/country/foci_AFRO/en/
https://www.who.int/trypanosomiasis_african/country/foci_AFRO/en/
https://osf.io/rak9d/


Page 12 of 13Rock et al. Infectious Diseases of Poverty           (2022) 11:11 

de Montpellier, 34398 Montpellier, France. 6 Swiss Tropical and Public Health 
Institute, Basel, Switzerland. 7 University of Basel, Basel, Switzerland. 8 Founda‑
tion for Innovative New Diagnostics (FIND), Geneva, Switzerland. 9 Programme 
National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), 
Moundou, Chad. 

Received: 14 October 2021   Accepted: 3 January 2022

References
	1.	 World Health Organization. Ending the neglect to attain the sustainable 

development goals: a road map for neglected tropical diseases. Geneva: 
World Health Organization; 2020.

	2.	 Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, et al. Monitor‑
ing the elimination of human African trypanosomiasis at continental and 
country level: update to 2018. PLoS Negl Trop Dis. 2020;14(5):e0008261.

	3.	 Davis CN, Rock KR, Keeling MJ. Human African trypanosomiasis: current 
status and eradication efforts. CAB Rev Perspect Agric Vet Sci Nutr Nat 
Resour. 2020;15(028):1–11.

	4.	 World Health Organization. Control and surveillance of human African 
trypanosomiasis. Geneva: World Health Organization; 2013.

	5.	 Checchi F, Funk S, Chandramohan D, Haydon DT, Chappuis F. Updated 
estimate of the duration of the meningo-encephalitic stage in gambi‑
ense human African trypanosomiasis. BMC Res Notes. 2015;8(1):292.

	6.	 World Health Organization. WHO interim guidelines for the treatment 
of gambiense human African trypanosomiasis. Geneva: World Health 
Organization; 2019.

	7.	 Shaw APM, Torr SJ, Waiswa C, Cecchi G, Wint GRW, Mattioli RC, et al. Esti‑
mating the costs of tsetse control options: an example for Uganda. Prev 
Vet Med. 2013;110(3–4):290–303.

	8.	 Shaw APM, Lehane MJ, Tirados I, Mangwiro CTN, Esterhuizen J, Torr SJ, 
et al. Costs of using “Tiny Targets’’ to control Glossina fuscipes fuscipes, a 
vector of gambiense sleeping sickness in Arua district of Uganda. PLoS 
Negl Trop Dis. 2015;9(3):e0003624.

	9.	 Büscher P, Bart JM, Boelaert M, Bucheton B, Cecchi G, Chitnis N, et al. Do 
cryptic reservoirs threaten gambiense-sleeping sickness elimination? 
Trends Parasitol. 2018;34(3):197–207.

	10.	 Courtin F, Camara M, Camara M, Rayaisse JB, Kagbadouno MS, Kagba‑
douno M, et al. Reducing human-tsetse contact significantly enhances 
the efficacy of sleeping sickness active screening campaigns: a promising 
result in the context of elimination. PLoS Negl Trop Dis. 2015;9(8):1–13.

	11.	 Wamboga C, Matovu E, Bessell PR, Picado A, Biéler S, Ndung’u JM. 
Enhanced passive screening and diagnosis for gambiense human African 
trypanosomiasis in north-western Uganda—moving towards elimination. 
PLoS ONE. 2017;12(10):e0186429-19.

	12.	 Mahamat MH, Peka M, Rayaisse JB, Rock KS, Toko MA, Darnas J, et al. 
Adding tsetse control to medical activities contributes to decreasing 
transmission of sleeping sickness in the Mandoul focus (Chad). PLoS Negl 
Trop Dis. 2017;11(7):e0005792.

	13.	 Ndung’u JM, Boulangé A, Picado A, Mugenyi A, Mortensen A, Hope A, 
et al. Trypa-NO! contributes to the elimination of gambiense human 
African trypanosomiasis by combining tsetse control with “screen, diag‑
nose and treat’’ using innovative tools and strategies. PLoS Negl Trop Dis. 
2020;14(11):e0008738.

	14.	 World Health Organization. Global Health Observatory data repository. 
World Health Organization; 2021. https://​apps.​who.​int/​gho/​data/​node.​
main.​A1636?​lang=​en. Accessed 1 Sept 2021.

	15.	 Kaba D, Djohan V, Berté D, Ta BTD, Selby R, Kouadio KADM, et al. Use of 
vector control to protect people from sleeping sickness in the focus of 
Bonon (Côte d’Ivoire). PLoS Negl Trop Dis. 2021;15(6):e0009404.

	16.	 Tirados I, Esterhuizen J, Kovacic V, Mangwiro TC, Vale GA, Hastings I, et al. 
Tsetse control and Gambian sleeping sickness; implications for control 
strategy. PLoS Negl Trop Dis. 2015;9(8):e0003822.

	17.	 Snijders R, Fukinsia A, Claeys Y, Hasker E, Mpanya A, Miaka E, et al. Costs 
and outcomes of integrated human African trypanosomiasis surveillance 
system using rapid diagnostic tests, Democratic Republic of the Congo. 
Emerg Infect Dis. 2021;27(8):2144.

	18.	 Kagbadouno MS, Camara O, Camara M, Ilboudo H, Camara M, Camara 
ML, et al. Ebola outbreak brings to light an unforeseen impact of tsetse 

control on sleeping sickness transmission in Guinea. bioRxiv. 2018. 
https://​doi.​org/​10.​1101/​202762.

	19.	 World Health Organization. Community-based health care, including out‑
reach and campaigns, in the context of the COVID-19 pandemic: interim 
guidance. Geneva: World Health Organization; 2020.

	20.	 Abomo P, Miaka E, Crossman S, Hope A. Demonstrating the sustainability 
of capacity strengthening amidst COVID-19. Int Health. 2021;13(5):480–1.

	21.	 Falisse JB, Mwamba-Miaka E, Mpanya A. Whose elimination? Front‑
line workers’ perspectives on the elimination of the human African 
trypanosomiasis and its anticipated consequences. Trop Med Infect Dis. 
2020;5(1):6.

	22.	 Inocencio da Luz R, Phanzu DM, Kiabanzawoko ON, Miaka E, Verlé P, De 
Weggheleire A, et al. Feasibility of a dried blood spot strategy for serologi‑
cal screening and surveillance to monitor elimination of human African 
trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl 
Trop Dis. 2021;15(6):e0009407.

	23.	 Tirados I, Hope A, Selby R, Mpembele F, Miaka EM, Boelaert M, et al. 
Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector 
of human African trypanosomiasis in the Democratic Republic of the 
Congo. PLoS Negl Trop Dis. 2020;14(10):e0008270.

	24.	 Behrend MR, Basáñez MG, Hamley JID, Porco TC, Stolk WA, Walker M, et al. 
Modelling for policy: the five principles of the Neglected Tropical Dis‑
eases Modelling Consortium. PLoS Negl Trop Dis. 2020;14(4):e0008033.

	25.	 Rock KS, Torr SJ, Lumbala C, Keeling MJ. Quantitative evaluation of the 
strategy to eliminate human African trypanosomiasis in the Democratic 
Republic of Congo. Parasites Vectors. 2015;8(1):532.

	26.	 Castaño MS, Ndeffo-Mbah ML, Rock KS, Palmer C, Knock E, Mwamba 
Miaka E, et al. Assessing the impact of aggregating disease stage data 
in model predictions of human African trypanosomiasis transmission 
and control activities in Bandundu province (DRC). PLoS Negl Trop Dis. 
2020;14(1):e0007976.

	27.	 Rock KS, Pandey A, Ndeffo-Mbah ML, Atkins KE, Lumbala C, Galvani A, 
et al. Data-driven models to predict the elimination of sleeping sickness 
in former Equateur province of DRC. Epidemics. 2017;18:101–12.

	28.	 Crump RE, Huang CI, Knock ES, Spencer SEF, Brown PE, Mwamba Miaka 
E, et al. Quantifying epidemiological drivers of gambiense human African 
trypanosomiasis across the Democratic Republic of Congo. PLoS Comput 
Biol. 2021;17:1–23.

	29.	 Checchi F, Chappuis F, Karunakara U, Priotto G, Chandramohan D. 
Accuracy of five algorithms to diagnose gambiense human African 
trypanosomiasis. PLoS Negl Trop Dis. 2011;5(7):e1233-15.

	30.	 Bisser S, Lumbala C, Nguertoum E, Kande V, Flevaud L, Vatunga G, et al. 
Sensitivity and specificity of a prototype rapid diagnostic test for the 
detection of Trypanosoma brucei gambiense infection: a multi-centric 
prospective study. PLoS Negl Trop Dis. 2016;10(4):e0004608.

	31.	 Lumbala C, Bessell PR, Lutumba P, Baloji S, Biéler S, Ndung’u JM. Perfor‑
mance of the SD BIOLINE® HAT rapid test in various diagnostic algo‑
rithms for gambiense human African trypanosomiasis in the Democratic 
Republic of the Congo. PLoS ONE. 2017;12(7):e0180555-17.

	32.	 Jamonneau V, Bucheton B, Kaboré J, Ilboudo H, Camara O, Courtin F, et al. 
Revisiting the immune trypanolysis test to optimise epidemiological 
surveillance and control of sleeping sickness in West Africa. PLoS Negl 
Trop Dis. 2010;4(12):e917.

	33.	 Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F. Identifying 
transmission cycles at the human-animal interface: the role of animal 
reservoirs in maintaining gambiense human African trypanosomiasis. 
PLoS Comput Biol. 2013;9(1):e1002855.

	34.	 Keeling MJ, Dyson L, Hill E, Moore S, Tildesley M. Road map scenarios and 
sensitivity: step 4. UK government. 2021. https://​assets.​publi​shing.​servi​
ce.​gov.​uk/​gover​nment/​uploa​ds/​system/​uploa​ds/​attac​hment_​data/​file/​
10011​72/​S1302_​Unive​rsity_​of_​Warwi​ck_​Road_​Map_​Scena​rios_​and_​
Sensi​tivity_​Step_4.​2__6_​July_​2021__​1_.​pdf. Accessed 7 Dec 2021.

	35.	 Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, Solano P, et al. 
Untreated human infections by Trypanosoma brucei gambiense are not 
100% fatal. PLoS Negl Trop Dis. 2012;6(6):e1691-7.

	36.	 Castaño MS, Aliee M, Mwamba Miaka E, Keeling MJ, Chitnis N, Rock KS. 
Screening strategies for a sustainable endpoint for gambiense sleeping 
sickness. J Infect Dis. 2020;221(Supplement 5):S539–45.

	37.	 Aliee M, Rock KS, Keeling MJ. Estimating the distribution of time to 
extinction of infectious diseases in mean-field approaches. J R Soc Inter‑
face. 2020;17(173):20200540.

https://apps.who.int/gho/data/node.main.A1636?lang=en
https://apps.who.int/gho/data/node.main.A1636?lang=en
https://doi.org/10.1101/202762
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001172/S1302_University_of_Warwick_Road_Map_Scenarios_and_Sensitivity_Step_4.2__6_July_2021__1_.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001172/S1302_University_of_Warwick_Road_Map_Scenarios_and_Sensitivity_Step_4.2__6_July_2021__1_.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001172/S1302_University_of_Warwick_Road_Map_Scenarios_and_Sensitivity_Step_4.2__6_July_2021__1_.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001172/S1302_University_of_Warwick_Road_Map_Scenarios_and_Sensitivity_Step_4.2__6_July_2021__1_.pdf


Page 13 of 13Rock et al. Infectious Diseases of Poverty           (2022) 11:11 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	38.	 Aliee M, Castaño S, Davis CN, Patel S, Miaka EM, Spencer SEF, et al. Predict‑
ing the impact of COVID-19 interruptions on transmission of gambiense 
human African trypanosomiasis in two health zones of the Democratic 
Republic of Congo. Trans R Soc Trop Med Hyg. 2021;115(3):245–52.

	39.	 Davis CN, Castaño MS, Aliee M, Patel S, Miaka EM, Keeling MJ, et al. 
Modelling to quantify the likelihood that local elimination of transmission 
has occurred using routine gambiense human African trypanosomiasis 
surveillance data. Clin Infect Dis. 2021;72(Supplement 3):S146–51.

	40.	 Camara M, Ouattara E, Duvignaud A, Migliani R, Camara O, Léno M, 
et al. Impact of the Ebola outbreak on Trypanosoma brucei gambiense 
infection medical activities in coastal Guinea, 2014–2015: a retrospec‑
tive analysis from the Guinean national human African trypanosomiasis 
control program. PLoS Negl Trop Dis. 2017;11(11):e0006060-15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Update of transmission modelling and projections of gambiense human African trypanosomiasis in the Mandoul focus, Chad
	Abstract 
	Background: 
	Method: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data
	The gHAT model
	Assessment and update of model fits
	Step 1: Previous model projections corrected for new active screening
	Step 2: New model fit for 2000–2013
	Step 3: New model fit for 2000–2019

	Projections and cessation

	Results
	Assessment of previous and new model fits to data
	Estimating past impact using counterfactual scenarios
	Evidence for alternative model structures (including animal reservoirs)
	Model projections to 2030

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	References


