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Abstract  

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been 

associated with the ability of the virus to interact with potential receptors on the host 

membrane. We have modeled viral dynamics by simulating various cellular systems and 

artificial conditions, including macromolecular crowding, based on experimental and 

transcriptomic data to infer parameters associated with viral growth and predict cell 

susceptibility. We have accomplished this based on the type, number and level of 

expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 

(TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less 

studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II 

receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial 

environments on the accessibility to said proposed receptors. In addition, viral kinetic 

behavior dependent on the degree of cellular susceptibility was predicted. The latter was 

observed to be more influenced by the type of proteins and expression level, than by the 

number of potential proteins associated with the SARS CoV-2 infection. We predict a 

greater theoretical pro- pensity to susceptibility in cell lines such as NTERA-2, SCLC-

21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, 

HEK293, A549 and U-251MG. An important relationship was observed between 

expression levels, protein diffusivity, and thermodynamically favorable interactions 

between host proteins and the viral spike, suggesting potential sites of early infection 

other than the lungs. This research is expected to stimulate future quantitative experiments 

and promote systematic investigation of the effect of crowding presented here. 

Introduction  

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been 

associated with the ability of the virus to interact with potential receptors on the host 



membrane. We have modeled viral dynamics by simulating various cellular systems and 

artificial conditions, including macromolecular crowding, based on experimental and 

transcriptomic data to infer parameters associated with viral growth and predict cell 

susceptibility. We have accomplished this based on the type, number and level of 

expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 

(TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less 

studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II 

receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial 

environments on the accessibility to said proposed receptors. In addition, viral kinetic 

behavior dependent on the degree of cellular susceptibility was predicted. The latter was 

observed to be more influenced by the type of proteins and expression level, than by the 

number of potential proteins associated with the SARS CoV-2 infection. We predict a 

greater theoretical pro- pensity to susceptibility in cell lines such as NTERA-2, SCLC-

21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, 

HEK293, A549 and U-251MG. An important relationship was observed between 

expression levels, protein diffusivity, and thermodynamically favorable interactions 

between host proteins and the viral spike, suggesting potential sites of early infection 

other than the lungs. This research is expected to stimulate future quantitative experiments 

and promote systematic investigation of the effect of crowding presented here. 

Materials and methods  

Search for cell lines and proteins in databases  

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been 

associated with the ability of the virus to interact with potential receptors on the host 

membrane. We have modeled viral dynamics by simulating various cellular systems and 

artificial conditions, including macromolecular crowding, based on experimental and 



transcriptomic data to infer parameters associated with viral growth and predict cell 

susceptibility. We have accomplished this based on the type, number and level of 

expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 

(TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less 

studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II 

receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial 

environments on the accessibility to said proposed receptors. In addition, viral kinetic 

behavior dependent on the degree of cellular susceptibility was predicted. The latter was 

observed to be more influenced by the type of proteins and expression level, than by the 

number of potential proteins associated with the SARS CoV-2 infection. We predict a 

greater theoretical pro- pensity to susceptibility in cell lines such as NTERA-2, SCLC-

21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, 

HEK293, A549 and U-251MG. An important relationship was observed between 

expression levels, protein diffusivity, and thermodynamically favorable interactions 

between host proteins and the viral spike, suggesting potential sites of early infection 

other than the lungs. This research is expected to stimulate future quantitative experiments 

and promote systematic investigation of the effect of crowding presented here. 

Design of theoretical expression systems  

     A set of 25 types of study systems (from 1 to 25) divided into 2 categories, theoretical 

systems of possible individual expression (from 1 to 13) further subdivided into 7 

subtypes (from A-G) was established in a totally random manner; and theoretical systems 

of possible multiple expression (from 14 to 25) which represent expression systems that 

simulate the simultaneous participation of ≥ 2 proteins (up to a maximum of 7), and 

subdivided in turn into 13 types (from A-M). All this resulted in 247 possible expression 

systems that group the cell lines Vero6, A549, HepG2, CaCo2, HEK293, HeLa, U-251 



MG, CaLu3, NTERA-2, RPTEC-TERT1, RT4, HBEC3-KT and SCLC -21H, as well as 

the possible receptors or facilitators NRP1, CD147, FURIN, TMPRSS2, ACE2, HSPA5 

and AGTR2. To delimit the number of simulations of the theoretical expression systems, 

it was proposed to study individually all the receptors in each cell line, and also due to 

their relevance, a set of possible "fixed" receptor proteins was proposed assuming a 

simultaneous and constitutive expression, specifically , the ACE2 and TMPRSS2 pair 

was assumed as a main and fixed set of proteins expressed simultaneously, as has been 

suggested [2], so the ACE2-TMPRSS2 pair was combined individually and in 

conjunction with the second group of proteins most relevant reported (NRP1, CD147 and 

FURIN) [1,2,3]. The third group of less relevant proteins (HSPA5 and AGTR2) [2] was 

simulated only jointly and associated with the ACE2-TMPRSS2 pair. The expression of 

all the proteins was also simulated simultaneously in each cell line considered (a total of 

7) as it is a probable event, although single-cell studies have revealed considerable 

variation from one cell to another, and patterns of very heterogeneous co-expression 

including cells that do not express all the genes individually, which justifies simulating 

individual and group expression scenarios (systems) where the susceptibility of cells is 

mediated by the type, number and level of expression of proteins that they behave as 

potential recipients [23].  

     In this sense, we assume that a simulated expression system represents the expression 

of a specific protein or set of proteins in one of the cell lines considered as the case may 

be. In the case of the individual expression systems, the cell lines were numbered, and the 

receptors were assigned letters, as indicated above, for example, the 1-A system, 

corresponded to the individual expression of the NRP1 (A) receptor in the Vero6 cell line 

(see Table 1). While, in the expression systems of more than one possible receptor, the 

nomenclature was reversed, and a number was assigned to the proteins followed by a 



letter to identify the cell line, for example, the 14-A system, corresponded to the co-

expression of putative possible receptors NRP1, CD147, FURIN, TMPRSS2, ACE2, 

HSPA5 and AGTR2 in the same Vero6 (A) cell line. The numbers and letters assigned to 

the designed systems are completely random, as is the order of the proteins and cell lines 

considered (see Table 1).  

Table 1. Profile of the proposed theoretical expression systems. 

System Cell lines 
 

Individual Expression*  
1 Vero6 

NRP1 (A), CD147 (B), FURIN (C), TMPRSS2 (D), 
ACE2 (E), HSPA5 (F), AGTR2 (G) 

2 A549 

3 HepG2 

4 CaCo2 

5 HEK293 

6 HeLa 

7 U251 MG 

8 CaLu3 

9 NTERA-2 

10 RPTEC TERT1 

11 RT4 

12 HBEC3-KT 

13 SCLC-21H 

System 
 

Multiple Expression* 
 

Cell lines 

14 NRP1+CD147+FURIN+TMPRSS2+ACE2+HSPA5+AGTR2 

Vero6 (A), A549 (B),  
HepG2 (C), CaCo2 (D),  
HEK293 (E), HeLa (F),  

U251 MG (G), CaLu3 (H), 
NTERA-2 (I), RPTEC TERT1 (J),  

RT4 (K), HBEC3-KT (L), 
SCLC-21H (M) 

15 TMPRSS2+ACE2 

16 NRP1+CD147+FURIN+TMPRSS2+ACE2 

17 NRP1+FURIN+TMPRSS2+ACE2 

18 CD147+FURIN+TMPRSS2+ACE2 

19 NRP1+CD147+TMPRSS2+ACE2 

20 FURIN+TMPRSS2+ACE2 

21 NRP1+TMPRSS2+ACE2 

22 CD147+TMPRSS2+ACE2 

23 CD147+TMPRSS2 

24 HSPA5+AGTR2 

25 HSPA5+AGTR2+TMPRSS2+ACE2  

*Angiotensin converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 

(CD147), FURIN protease, neuropilin 1 (NRP1), heat shock proteinA5 (HSPA5) and angiotensin 

II receptor type 2 (AGTR2).  

     To compare the susceptibility propensity of cell lines to be infected by SARS-CoV-2, 

we assumed as a reference the expression level of each possible putative receptor using 

the consensus transcriptomic data used to classify all genes according to their expression 

specific tissue, single cell, brain region, blood cell or cell line specific reported in The 



Human Protein Atlas, especially since it has been reported that the expression levels of 

cellular receptors can confer permissiveness for infections including those associated with 

SARS-CoV-2 [24,25,26]. In this study, the consensus normalized expression (NX) value 

was used for each gene, which represents the maximum value of NX in the 

transcriptomics database in The Human Protein Atlas. An NX value ≥1 is indicative of 

the expression of the protein in at least one type of tissue/region/cell, while an NX <1 

represents the absence of expression, however, since the expression levels of some 

important receptors are very low in some cell lines, it has been suggested to assign 

minimum expression values as a reference [11]. Therefore, to reduce the error resulting 

from the limitations that both the databases and the expression level detection methods 

may present, we assume that an NX = 0.0 would be equivalent to an NX = 0.01 (see 

Figure 1, see Figure 2). For more details on the normalization of transcriptomic data, as 

well as its classification and the source of the data, it is recommended to read the “Assays 

and Annotations section” in The Human Protein Atlas [18].  

Figure 1. Cell lines and the level of RNA expression of the potential receptors considered 

in this study in terms of normalized NX values. The expression levels of angiotensin 

converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), 



FURIN protease, neuropilin 1 (NRP1), heat shock protein A5 (HSPA5) and angiotensin 

II receptor type 2 (AGTR2), are shown.  

 

 
Figura 2. Summary of the RNA expression levels of the receptors studied in different cell 

lines analyzed in the Atlas of Human Proteins. The generated RNA sequencing results 

are reported as normalized NX values. Numerical values and a pie chart representation of 

the expression levels of angiotensin converting enzyme 2 (ACE2), transmembrane serine 

2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1), heat shock 

protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2).  

 

Viral dynamics data 

     For illustrative purposes, we consider an in vitro data set of SARS-CoV-2 virus 

infection in cell lines recommended for culturing SARS-CoV-2. In order to observe the 

theoretical infectivity of the virus as a function of the level of susceptibility mediated by 

the type, number and level of expression of the proteins associated with virus receptors, 

we assume constant values of the viral titer with a multiplicity of infection (MOI) equal 

to 1 as suggested to ensure the same probability of infection [10,27,28,29,30,31,32,33], 

and especially to consider the recommended viral load to induce cytopathological effects 

after infection (pi) [28]. We also assume an initial cell concentration of ~1x105 cells/mL 

as suggested [1,10,11,31]. The time period for measuring the infection was set at 24 hours 

post infection (hpi) as has also been reported [10,30,32,33,34], especially since it has been 

described that at 24 hpi in plaque assays of infections with SARS-CoV-2 the infectious 



virus titer may spike in several cell lines [30,35]. An effective infection rate (β) equal to 

2 was assumed, considering the reported number of basic reproduction, R0 [8].  

     To determine the hypothetical concentration of target or susceptible cells based on the 

type, number and level of expression of the proteins considered, the following was carried 

out. First, we assumed the same initial total number of cells/mL previously described for 

each cell line, and in view of the fact that the expression levels of some important 

receptors are very low in some cell lines, we assigned minimum values of percentage 

expression to calculate a hypothetical number of cells, and the percentage of receptors 

expressed, as suggested [11,36]. The percentage expressions of some of the receptors 

considered very close to the NX values have already been experimentally reported [1], in 

this sense, we assume that each NX value would represent the percentage value of 

susceptible cells in the case of the receptors considered individually, and the mean of the 

expression systems with 2 or more proteins would equally represent the percentage of 

susceptible cells in the modeled systems.  

Mechanistic model for the simulation of viral dynamics  

     It was adjusted using a limited model of target cells, the mathematical model 

considered depends on the available data and the hypothesis to be addressed based on the 

susceptibility of cells as a function of the type, number and level of expression of 

receptors, for which we sought to estimate rates of infection of susceptible cells and death 

of infected cells. Therefore, a widely used model for viral infection called the limited 

target cell model was utilised [11,14]. The model includes three compartments: 

susceptible cells (U), infected cells (I) and viral titers (V). The applied model is 

represented in the following differential equations: 



𝑑𝑈

𝑑𝑡
=  − 𝛽𝑈𝑉                    (eq.1) 

𝑑𝐼

𝑑𝑡
=  𝛽𝑈𝑉 − 𝛿𝐼                    (eq.2) 

     The term on the left of the equations represents the change of the variables with respect 

to time. Parameters β and δ represent the effective infection rates and dead infected cells, 

respectively. It is considered that the virus (V) infects susceptible cells (U) with a β rate, 

and that infected cells are eliminated with a δ rate. Based on this model, the basic 

reproduction number was calculated, R0, representing the average number of cells that 

can be infected from a single infected cell at the beginning of infection:  

𝑅𝑜 =  
𝑝β𝑈

𝛿(𝑐 +  β𝑈)
                   (eq.3) 

  

     Where virions are released from infected cells productively at a rate (p) per day, and 

are eliminated from the circulation at a rate c or are lost when infecting a target cell, for 

which it was assumed that the rate of elimination of the virus, c, was equal to 10 days-1 

as recommended [11]. For SARS-CoV-2 it has been suggested that the rate p is equal to 

≈22.7 copies/day per cell, and that since the rate p depends on U, it must be estimated by 

the product p × U [11].  

Protein-protein docking and molecular dynamics (MD) of the SARS-CoV-2 spike 

protein and the proteins of interest 

     As it has been shown that the spike protein is responsible for the ability of SARS-

CoV-2 to interact with receptors expressed on the membrane of host cells leading to virus 

entry [1]. We performed a comparative analysis using two popular molecular docking 

models for a rigorous prediction of the standard free energy (ΔG) of protein-protein 

complexes made up of the spike protein and each of the proteins that behave as possible 

facilitators of the interaction between the virus and the target cells. The protein structures 



used were neuropilin 1 (NRP1) (PDB: 7JJC), CD147 (PDB: 3I84), FURIN protease 

(PDB: 6HZB), serine transmembrane protease 2 (TMPRSS2) (PDB: 7MEQ) [1,2,3], as 

well as angiotensin converting enzyme 2 (ACE2) (PDB: 6VW1) which has been 

described as the main cellular receptor for interaction with the spike protein [4]. 

Additionally, the less popular HSPA5 (PDB: 6ZYH) and AGTR2 (PDB: 6JOD) were also 

investigated [2]. The spike protein has been crystallised in a number of forms including 

in theclosed conformation (PDB: 6VXX), the open conformaiton (PDB: 6VYB) and in 

fragments including the S1 region (PDB: 7DEO) and the S2 region (PDB: 7COT). It was 

sought determine if there is the theoretical possibility of a thermodynamically favorable 

interaction between any region of the viral spike protein with any of the potential 

receptors considered in this study and so all the spike protein structures listed were used 

in these experiments. All structures were obtained in PDB format from the RCSB protein 

database (https://www.rcsb.org/), and the quality of the crystal structures was validated 

using MolProbity (http://molprobity.biochem.duke.edu/) [37].  

     Complexes were constructed using HDOCK (http://hdock.phys.hust.edu.cn/) an 

algorithm for hybrid protein-protein docking with template-based modeling [38], and 

HawkDock (http://cadd.zju.edu.cn/hawkdock/) a web server for the prediction and 

structural analysis of the protein-protein complex that combines the ATTRACT algorithm 

for global macromolecular docking and the HawkRank algorithm for scoring, in addition 

to the MM/GBSA method that is used to predict free bond energy [39]. As usual, for all 

the docking methods all the water molecules were removed and the PDB files were 

separated into two different files, one containing the spike protein and the other 

containing the structure of the potential receptor. In the sampling of the probabilistically 

most feasible and thermodynamically most favorable positions in the complexes, only the 

three runs with the most favorable berth were considered. This criterion was used to 



discriminate the complexes that would be subjected to further analysis, including 

molecular dynamics [40]. Additionally, to validate the results of the docking, the 

DockScore algorithm (http://caps.ncbs.res.in/dockscore/) was used to score the protein-

protein complexes. This method identifies the optimal interactions between the two 

associated proteins using several putative interface characteristics such as area, short 

contacts, conservation, spatial clustering, and the presence of hydrophobic and positively 

charged residues [41].  

     To determine the subset of residues at the interface that account for most of the free 

binding energy in the protein-protein complex, residues called "binding hot spots" were 

predicted. For which the KFC Server (Knowledge-based FADE and Contacts) 

(https://mitchell-web.ornl.gov/KFC_Server/index.php) was used, which provides a web 

tool to predict protein binding hot spots based on machine learning approaches. For each 

residue within the link interface, the KFC2 server characterizes its local framework and 

compares it to known experimentally determined hot spot environments. Specifically, the 

server analyzes various chemical and physical characteristics surrounding an interface 

residue and predicts the residue's classification using a model trained on previous 

experimental data [42].  

     Molecular dynamics (MD) simulations for favorable docking were performed with 

two purposes: 1) to study the relative stability of the bond; and 2) obtain the minimum 

energy conformation of the complexes. For a protein-protein complex, the MD system 

was first relaxed through a series of minimization procedures that include three phases: 

relaxation, equilibrium, and sampling, as recommended [40]. The MD simulation of the 

crystalline structures was carried out in an explicit water system. Specifically, the 

solvation of the system was carried out in an 8.0 Å solvation box. Our MD system also 

consisted of a copy of the coupled chain region of each protein system. An Amber99SB-



ILDN force field was applied to the complex, with TIP3P water model. The whole system 

was neutralized. Water molecules were treated as rigid bodies in all models, allowing a 

simulation time interval of 2 fs. Periodic boundary conditions were applied and the 

Berendsen algorithm was adopted for the docking of temperature and pressure. After a 

first steeper descent to 5000 steps and a conjugate gradient to 5000 steps energy 

minimizations with positional constraints on the solute, an initial simulation of 100 ps 

was performed with the positions of the solute atoms constrained by a constant of force 

of 10 kcal/(mol*Å2) to allow water to diffuse around the molecule and for equilibrium. 

The PME method was used to calculate the electrostatic contribution to unbound 

interactions with a limit of 14.0 Å and a time interval of 1 fs. The cutoff distance of the 

van der Waals interaction was 14.0 Å. After this equilibration run, the NVT production 

run (number of particles, volume, temperature) at 300 K was performed with the cell size 

remaining the same. The SHAKE algorithm was applied to the system and the time 

interval was set at 2 fs. Ten structures were obtained every 10 ns as target structures 

extracted from a total path of 100 ns. For calculations of mean squared deviations 

(RMSD), the equation, 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ 𝛿𝑖

2𝑛
𝑖=1                            (eq.4) 

     where δi is the distance between atom i and a reference structure or the average 

position of the n equivalent atoms. All MD simulations and additional adjustments were 

performed using COSGENE/myPresto [40,43].  

     Additionally, to predict conformational changes in each protein-protein complexes 

after its interaction, the NMSim software (https://cpclab.uni-

duesseldorf.de/nmsim/main.php) was used, which is a computational technique that uses 

a three-step including coarse-graining (CG), normal mode analysis (NMA), and elastic 



network model (ENM) to provide realistic conformations in reasonable simulation time. 

For this, the minimum energy structure obtained with mypresto at 100 ns was used to also 

calculate the root-mean-square deviation (RMSD) and root-mean-square fluctuation 

(RMSF), using the radius-guided movements (ROG) approach of the NMSim Server. The 

ROG-guided NMSim simulation is a method to search for a conformation of a given 

protein-protein complex, and allows to describe the compactness of a protein. In an ROG-

guided NMSim simulation, the trajectory is tailored towards the bound structure by 

selecting the pathway that leads to a decrease in Radius of gyration (Rg), and 

conformations are generated by structure distortion along directions of random linear 

combinations of low-frequency normal modes [40].  

Prediction of the theoretical diffusivity of the proteins of interest associated with 

cellular susceptibility in SARS-CoV-2 infection 

     It is known that the mobility of biological molecules depends not only on the 

concentration of the crowding macromolecular solutions, which is generally related to the 

viscosity η of the crowding solution, but also on the relative size between the crowded 

and the biological molecule of interest. The diffusion coefficients of the molecules of 

interest were measured as a function of the concentrations of binders (crowding solution), 

for which the viscosity of model cell lines used in this study was used as A549 

(adenocarcinomic human alveolar basal epithelial cells with a viscosity ~1.4x103 Pa/s) 

and the HeLa negative control model used (with a cytoplasmic viscosity of ~4.4x10-2 

Pa/s) [44]. Normal Swiss 3T3 cells (with a viscosity of ~2.4x10-2 Pa/s) were also 

considered in order to model the mobility of biological molecules considering solutions 

of high and normal macromolecular crowding [44,45]. Additionally, the cytoplasmic 

viscosity reported for other cell lines such as ASTC-a-1 (human lung adenocarcinoma 



with a viscosity of ~1.6x10-3 Pa/s) [46] and H1299 (lung carcinoma with a viscosity of 

~1.1x102 Pa/s) [47].  

     The translational diffusion coefficient (Dt) was determined according to the Stokes-

Einstein equation (equation 5) as recommended [44,45,48,49,50]:  

𝐷𝑡 =
𝑘𝐵𝑇

6𝜋𝜂𝑅
                              (eq. 5) 

     In this model, the only source of dissipative effects (internal friction) is the η of the 

solvent (cytoplasm) [45]. Where kB is Boltzmann's constant, T is absolute temperature, η 

is viscosity and R is the radius of the particle. The results were compared with the relative 

viscosity of the water calculated considering the friction ratio (f/f₀) [51] of the minimum 

energy structures and the molecular weight, both parameters calculated with the HullRad 

server (https://hullrad.wordpress.com/) [52] in each case, and using the module Protein 

Research for diffusion calculation from Cytiva Life Sciences 

(https://www.cytivalifesciences.com/en/us/solutions/protein-research/products-and-

technologies/diffusion-coefficient-calculator) [53].  

     On the other hand, when taking the weighted average over the distances in the equation 

described by Phillips et al., 2009 [54], which describes how a group of molecules located 

at a point extend over time (t), and taking into account several dimensions (using the 

Pythagorean theorem), we obtain according to Schavemaker et al., 2018 [55]:  

𝑡 =
𝑑2

6𝑛𝐷
                              (eq. 6) 

     Here d is the distance, n is the number of dimensions considered and D, the diffusion 

coefficient with translational contribution.  



     Likewise, a preliminary study was carried out to determine the potential theoretical 

flux of the proteins considered in this study through the cell membrane using according 

to Fick's law: 

𝐽 = −𝐷 (
∆𝐶

∆𝑋
)                      (eq. 7) 

     where J (mol m−2 s−1) is the flow, D (m2 s−1) the diffusion coefficient, and ΔC/ΔX (mol 

m−4) is the concentration gradient. According to Fick's law [56,57,58,59,60], the flux (J) 

is directly proportional to the difference in concentration (∆C) to the diffusion coefficient 

(D) and inversely proportional to the thickness of the membrane (∆X). For illustrative 

purposes only, a ∆C with a diffusion of one third of the hypothetical initial concentration 

of ≈1 mol m−4 was assumed for transmembrane flux, and dimensions reported for the 

plasma membrane (~ 5 nm) were considered for ∆X [61].  

Results and Discussion  

Theoretical propensity for cellular susceptibility depending on the type, number and 

level of expression of proteins associated with SARS-CoV-2 infection 

     No significant correlation was found between the consensus normalized expression 

(NX) levels between any of the proteins associated with possible receptors to mediate 

SARS-CoV-2 infection regardless of the type of cell line, except for a moderate positive 

correlation between the ACE2 receptor and TMPRSS2 protease (r = 0.60) as expected, 

and interestingly a moderate negative correlation between CD147 protein and TMPRSS2 

(r = 0.70) (see Figure 3).  

A B 



  

Figura 3. Proteins associated with SARS-CoV-2 infection with correlation between their 

levels of consensus normalized expression (NX). A) moderate positive correlation 

between the receptor ACE2 and TMPRSS2 protease (r = 0.60), and B) moderate negative 

correlation between CD147 protein and TMPRSS2 (r = 0.70).  

 

     On the other hand, under the conditions of this study, it was predicted that 85.42% 

(211/247) of the theorized expression systems could exhibit a susceptibility (U) of up to 

95.8% cells/mL in the case of systems proposed for the expression of proteins 

individually, with a range between 8x102 - 1x105 cells/mL potentially susceptible. While 

in multiple expression systems for 2 or more proteins, a susceptibility of up to 48.5% 

cells/mL was predicted, with a range of 6x102 - 5x104 cells/mL. In contrast, 14.57% 

(36/247) of the simulated expression systems were predicted to exhibit a theoretical 

susceptibility ≤ 2x102 cells/mL. This susceptibility was represented by 11.33% (28/247) 

of the theoretical individual expression systems, and 3.23% (8/247) in the modeled 

systems for the expression of 2 or more proteins. These results show that when 

considering the NX expression values for each protein as a factor of cellular 

susceptibility, the individual expression systems would present 49.4% more susceptibility 

compared to the expression systems of ≥ 2 proteins (Table 1-2, Figure 1-2, Figure 4). 

     In the theoretical individual expression systems, CD147 was the protein with the 

highest expression in all the cell lines considered (13/13), promoting theoretical 

susceptibility by an average of 76.26% cells/mL, being the protein with the highest 

expression among all the simulated individual systems; followed by the HSPA5 protein 



with a high expression in 76.92% (10/13) of cell lines, mediating a theoretical 

susceptibility of 36.92% cells/mL. The proteins with the lowest expression in the 

individual systems were AGTR2, ACE2 and TMPRSS2 with a frequency of 100% 

(13/13), 61.54% (8/13) and 53.85% (7/13) in the cell lines studied, respectively, 

mediating a low theoretical susceptibility of between 0.01% - 0.04% cells/mL. The cell 

line in which the highest mean individual protein expression was predicted and therefore 

the highest theoretical susceptibility was HepG2, with a mean NX = 26.82, mediating a 

mean theoretical susceptibility of ~3x104 cells/mL, followed by U-251 MG with a mean 

NX = 22.8, with a mean theoretical susceptibility of ~2x104 cells/mL. The cell line in 

which the lowest expression level was observed was SCLC-21H, with a mean NX = 12.1 

and a theoretical susceptibility of ~1x104 cells/mL (see Tables 1-2, see Figures 1-2, see 

Figure 4). 

     Specifically, in terms of the simulated models of individual expression, it was 

predicted that the 9-B system, represented by the individual expression of the CD147 

protein in the NTERA-2 line, was the system with the highest theoretical susceptibility, 

mediating a susceptibility of up to 1x105 cells/mL, followed by the 3-B system, 

represented by the CD147 protein in the HepG2 line, with a theoretical susceptibility of 

up to 9x104 cells/mL. On the contrary, the individual systems 1, 3, 10 and 11 (all of type 

G); 4 and 9 (types E and G), 2, 5-8 and 12 (D, E and G); and 13 (D and G) presented the 

lowest theoretical susceptibility with a range between 10 - 100 cells/mL (see Table 1-2, 

see Figure 1-2, see Figure 4).  

     All systems designated with the letters D, E and G, were represented by individual 

expression systems of the TMPRSS2, ACE2 and AGTR2 proteins, respectively. It is 

important to note that in all theoretical individual expression systems at least two cell 

lines predicted a theoretical mean susceptibility ≥ 1x104 cells/mL. Regarding the HeLa 



cell line used as a susceptibility control, it was predicted as one of the lines with the lowest 

susceptibility propensity, generally located and with respect to the rest of 12 cell lines 

below the first 5 cell lines with the best propensity to susceptibility as the case may be, 

being located in some cases between positions 7-10 (Tables 1-2, Figures 1-2, Figure 4).  

     In the specific case of the theoretical models of multiple expression, it was observed 

that one of the systems with the highest theoretical expression of proteins simultaneously 

(7 proteins) was represented by the 14-C system, in which the highest propensity was 

simulated to cellular susceptibility with ~3x104 cells/mL, this system was represented by 

the HepG2 cell line, hypothetically expressing all the proteins simultaneously (NRP1, 

CD147, FURIN, TMPRSS2, ACE2, HSPA5 and AGTR2). However, at the global level, 

the simultaneous expression system that the highest cellular susceptibility according to 

the protein arrangement was type 23, represented by the theoretical expression of only 2 

proteins (CD147 and TMPRSS2) with a global mean of 4x104 cells/mL. and a 

susceptibility range between 3x104 - 5x104 cells/mL depending on the cell type. 

Specifically, the 23-I system (NTERA-2 cell line) was the one that exhibited the highest 

propensity to cell susceptibility, and the 23-M system (SCLC-21H cell line) was the one 

with the lowest susceptibility within the group (Tables 1-2, Figures 1-2, Figure 4).  

     While the systems in which the lowest propensity for cell susceptibility was predicted 

were type 15 (joint expression of TMPRSS2 and ACE2) with a global mean of 3x103 

cells/mL, and a susceptibility range of between 10 - 2x104 cells/mL depending on the 

type of cell line. Specifically, in system 15, the 15-K subtype (cell line RT4) exhibited 

the highest propensity to cell susceptibility, unlike systems 15-B (cell line A549), 15-F 

(cell line HeLa), 15-G (U-251 MG cell line) and 15-H (CaLu3 cell line) in which the 

lowest cell susceptibility was predicted (~10 cells/mL) (Tables 1-2, Figures 1-2, Figure 

4). 
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Figure 4. Mechanistic model of the estimates of the rates of uninfected cells (U), infected 

cells (I) and death of infected cells (δ). For illustrative purposes, only a representative 

graph of the individual expression systems cited in the text is shown for each cell line 

studied using the limited target cell model. Additional graphics are shown in 

supplementary material. A) Individual expression of CD147 in the HepG2 cell line (3-B 

system), B) individual expression of FURIN in the SCLC-21H cell line (13-D system), 

C) individual expression of CD147 in the NTERA-2 cell line (9-B system), D) individual 

expression of AGTR2 in the Vero6 cell line (1-G system), E) Individual expression of 

AGTR2 in the RPTEC TERT1 cell line (10-G system), F) individual expression of 

AGTR2 in cell line RT4 (11-G system), G) Individual expression of ACE2 in the CaCo2 

cell line (4-E system), H) individual expression of TMPRSS2 in the A549 cell line (2-D 

system), I) individual expression of TMPRSS2 in the HEK293 cell line (5-D system), J) 

individual expression of AGTR2 in the U251 MG cell line (7-G system), K) individual 

expression of AGTR2 in the CaLu3 cell line (8-G system), L) individual expression of 

AGTR2 in the HBEC3-KT cell line (12-G system). The rest of the graphs are shown in 

supplementary material. 

 



     The susceptibility profiles predicted in a strict sense, for all cell lines of the systems 

type 23 (CD147 + TMPRSS2), 19 (NRP1 + CD147 + TMPRSS2 + ACE2), 18 (CD147 

+ FURIN + TMPRSS2 + ACE2), 16 ( NRP1 + CD147 + FURIN + TMPRSS2 + ACE2) 

and 14 (NRP1 + CD147 + FURIN + TMPRSS2 + ACE2 + HSPA5 + AGTR2) presented 

a theoretical mean susceptibility ≥ 1x104 cells/mL in 100% of the cell lines considered, 

respectively; while in system 24 (HSPA5 + AGTR2) it was 85%, in system 22 (CD147 + 

TMPRSS2 + ACE2) it was 77%, in system 17 (NRP1 + FURIN + TMPRSS2 + ACE2) it 

was 31%, and in systems 21 (NRP1 + TMPRSS2 + ACE2) was 23%. These results show 

that ≈ 66% (6/9) of the most prevalent expression profiles had the presence of CD147 + 

TMPRSS2 proteins (Tables 1-2, Figures 1-2).  

     Regarding the amount of virions that could theoretically be released from susceptible, 

productively infected cells, the type 23 system was predicted to have a rate (p) with a 

mean of 9.2 x105 copies/day per cell, with minimum values of 7.2 x105 and maximums 

of 1.1 x106 copies/day per cell, represented by the cell lines NTERA-2 (system 23-I) and 

SCLC-21H (system 23-M), respectively, which corresponds to the previous susceptibility 

values described. Globally, it was predicted that systems 14, 16, 18, 19, 22-24 could 

theoretically release the largest number of virions from infected susceptible cells 

(classified from AM) at a rate (p) of between 1.6 x105 - 7.6 x105 copies/day per cell. 

While in system 21 the lowest p rate was predicted with a mean of 1.2 x105 copies/day 

per cell, and minimum and maximum values of 9.1 x102 and 2.8 x105 copies/day per cell 

corresponding to the RT4 cell lines (system 21- L) and HBEC3-KT (21-K system), 

respectively (Tablew 1-2, Figurew 1-2).  

     The theoretical number of dead infected cells (δ) was also predicted and it was 

calculated that systems 18 and 19 could generate the highest number of dead cells with a 

mean of 2.5 x104 cells/mL with minimum and maximum values of 1.9 x104 and 3.0 x104 



cells/mL, in SCLC-21H cell lines (18-M system) and (19-M system) respectively. In 

general terms, systems 14, 16-19 and 22-24 (sub-classified from A-M) could generate the 

highest number of dead cells, specifically between 1.4 x104 - 3.9 x104 cells/mL. On the 

contrary, with system 21 the lowest number of dead infected cells was predicted with a 

mean of 3.0 x103 cells/mL, and minimum and maximum values of 2.7 x101 and 6.9 x103 

cells/mL corresponding in the same way to the RT4 cell lines (21-L system) and HBEC3-

KT (21-K system), respectively (Tables 1-2, Figures 1-2).  

     To validate the theoretical susceptibility of the cell lines considered under the 

conditions of this study, the basic reproduction number, R0, which represents the average 

number of susceptible cells infected from a single cell infected at the beginning of the 

infection, was also calculated predicting in systems 18, 22 and 23 an R0 ≥ 21. Specifically, 

in system 18 all cell lines, except in systems 18-L (HBEC3-KT) and 18-M (SCLC-21H), 

an R0 ≥ 21 was predicted, as in 22, with the exception of system 22-M (SCLC-21H), while 

in system 23 the 23-C (HepG2) and 23-I (NTERA-2) models presented the highest basic 

reproduction value with an R0 ≥ 22. Unlike systems 2, 6, 7, 8 and 15 in which the lowest 

basic reproduction was predicted with an R0 ≤ 16, specifically the 2-D, 2-E and 2-G 

systems, as in the case of systems 6, 7 and 8 D, E and G, which are represented by the 

cell lines CaCo2, HEK293 and U251 MG, respectively (see Table 1-2, see Figure 1-2).  

     It is important to note that the type 2, 6, 7 and 8 systems subdivided into D, E and G 

correspond to the simulation of individual expression of the receptors/mediators ACE2, 

TMPRSS2 and AGTR2, respectively, as do the multiple expression systems of type 15-

B, 15-F, 15-G and 15-H, constituted by the cell lines A549, HeLa, U251 MG and CaLu3 

under each hypothetical condition of joint expression of TMPRSS2 and ACE2. The 

difference between the predicted R0 values was statistically significant (p <0.01) under 

the conditions of this study and, it seems to show a differential viral kinetic behavior 



dependent on the degree of cellular susceptibility, which is influenced to a greater extent 

by the type and expression level of potentially receptor/mediator proteins associated with 

SARS-CoV-2 infection, and to a lesser extent by the number of potential 

receptor/mediator proteins expressed (Tables 1-2, Figures 1-2). All estimates of U, δ, p 

and R0 are shown in detail in the supplementary material (Table S1).  



Table 2. Estimates of the number of susceptible cells (U), dead infected cells (δ), productive release rate of virions from cells (p) and basic 

reproduction number (R0).  

System(s) U (cell/mL) (mean [min-max]) p (copies/cell*day) (mean [min-max]) δ (cells/mL) (mean [min-max]) R0 (mean ± SD)* 

1 (A-G) 1.9 x104 [1.0 x101 - 7.3 x104] 4.4 x105 [2.3 x102 - 1.7 x106] 2.1 x104 [1.4 x101 - 7.6 x104] 19.1 ± 3.8 

2 (A-G) 2.2 x104 [1.0 x101 - 8.6 x104] 4.9 x105 [2.3 x102 - 1.9 x106] 2.3 x104 [1.4 x101 - 8.9 x104] 16.7 ± 5.5 

3 (A-G) 2.7 x104 [1.0 x101 - 9.2 x104] 6.1 x105 [2.3 x102 - 2.1 x106] 2.8 x104 [1.4 x101 - 9.5 x104] 19.2 ± 3.8 

4 (A-G) 2.0 x104 [1.0 x101 - 6.8 x104] 4.4 x105 [2.3 x102 - 1.5 x106] 2.1 x104 [1.4 x101 - 7.1 x104] 18.0 ± 4.9 

5 (A-G) 1.7 x104 [1.0 x101 - 8.9 x104] 3.8 x105 [2.3 x102 - 2.0 x106] 1.7 x104 [1.4 x101 - 9.2 x104] 17.6 ± 4.7 

6 (A-G) 1.7 x104 [1.0 x101 - 7.2 x104] 4.0 x105 [2.3 x102 - 1.6 x106] 1.8 x104 [1.4 x101 - 7.5 x104] 16.6 ± 5.4 

7 (A-G) 2.3 x104 [1.0 x101 - 8.0 x104] 5.2 x105 [2.3 x102 - 1.8 x106] 2.4 x104 [1.4 x101 - 8.3 x104] 16.8 ± 5.6 

8 (A-G) 2.2 x104 [1.0 x101 - 8.6 x104] 4.9 x105 [2.3 x102 - 1.9 x106] 2.3 x104 [1.4 x101 - 8.9 x104] 16.7 ± 5.5 

9 (A-G) 2.0 x104 [1.0 x101 - 9.6 x104] 4.6 x105 [2.3 x102 - 2.2 x106] 2.1 x104 [1.4 x101 - 9.9 x104] 18.7 ± 3.7 

10 (A-G) 2.2 x104 [1.0 x101 - 7.5 x104] 4.9 x105 [2.3 x102 - 1.7 x106] 2.3 x104 [1.4 x101 - 7.8 x104] 18.9 ± 3.8 

11 (A-G) 1.7 x104 [1.0 x101 - 4.8 x104] 3.9 x105 [2.3 x102 - 1.1 x106] 1.8 x104 [1.4 x101 - 5.0 x104] 19.1 ± 3.8 

12 (A-G) 1.9 x104 [1.0 x101 - 6.4 x104] 4.3 x105 [2.3 x102 - 1.5 x106] 2.0 x104 [1.4 x101 - 6.7 x104] 18.6 ± 5.7 

13 (A-G) 1.2 x104 [1.0 x101 - 6.3 x104] 2.7 x105 [2.3 x102 - 1.4 x106] 1.3 x104 [1.4 x101 - 6.6 x104] 18.3 ± 5.6 

14 (A-M) 2.0 x104 [1.2 x104 - 2.7 x104] 4.5 x105 [2.7 x105 - 6.1 x105] 2.1 x104 [1.3 x104 - 2.9 x104] 20.9 ± 0.1 

15 (A-M) 2.9 x103 [1.0 x101 - 1.8 x104] 6.5 x104 [2.3 x102 - 4.1 x105] 3.2 x103 [1.4 x101 - 2.0 x104] 16.7 ± 4.1 

16 (A-M) 2.1 x104 [1.4 x104 - 2.6 x104] 4.7 x105 [3.1 x105 - 5.9 x105] 2.3 x104 [1.5 x104 - 2.8 x104] 20.9 ± 0.1 

17 (A-M) 6.8 x103 [1.2 x103 - 1.3 x104] 1.5 x105 [2.4 x104 - 2.8 x105] 7.6 x103 [1.4 x103 - 1.4 x104] 20.0 ± 0.5 

18 (A-M) 2.3 x104 [1.7 x104 - 2.8 x104] 5.3 x105 [3.9 x105 - 6.4 x105] 2.5 x104 [1.9 x104 - 3.0 x104] 21.0 ± 0.1 

19 (A-M) 2.3 x104 [1.6 x104 - 3.0 x104] 5.2 x105 [3.6 x105 - 6.8 x105] 2.5 x104 [1.9 x104 - 3.0 x104] 20.6 ± 2.8 

20 (A-M) 5.7 x103 [1.5 x103 - 1.6 x104] 1.3 x105 [3.5 x104 - 3.6 x105] 3.3 x103 [9.2 x102 - 8.8 x103] 19.0 ± 0.8 

21 (A-M) 5.2 x103 [4.0 x101 - 1.2 x104] 1.2 x105 [9.1 x102 - 2.8 x105] 3.0 x103 [2.7 x101 - 6.9 x103] 17.9 ± 2.9 

22 (A-M) 2.7 x104 [2.1 x104 - 3.2 x104] 6.2 x105 [4.8 x105 - 7.3 x105] 1.5 x104 [1.2 x104 - 1.8 x104] 21.2 ± 0.2 

23 (A-M) 4.1 x104 [3.2 x104 - 4.9 x104] 9.2 x105 [7.2 x105 - 1.1 x106] 2.2 x104 [1.7 x104 - 2.6 x104] 21.4 ± 1.5 

24 (A-M) 1.7 x104 [7.2 x103 - 3.4 x104] 3.8 x105 [1.6 x105 - 7.6 x105] 9.4 x103 [4.1 x103 - 1.8 x104] 20.5 ± 0.6 

25 (A-M) 9.8 x103 [3.6 x103 - 1.8 x104] 2.2 x104 [8.2 x104 - 4.1 x105] 5.6 x104 [2.1 x103 - 1.0 x104] 19.8 ± 0.6 

The mean, minimum and maximum values of the simulated expression systems are shown, *, The mean and standard deviation values are displayed. 

 



     The ACE2 receptor is, so far, the best-known host factor for the entry of SARS-CoV-

2, but various studies have identified other essential elements. Therefore, the correlation 

found between the level of expression of the ACE2 protein and TMPRSS2 was expected 

because a positive correlation between ACE2 and TMPRSS2 has already been reported 

in most organs where they have been detected [62].  Indeed, other coronaviruses also 

utilize ACE2 and TMPRSS for viral entry, for example SARS-CoV-1 [62].  TMPRSS2 

facilitates viral entry by cleaving the SARS-CoV-2 spike protein between the S1 and S2 

subunits causing a dramatic structural change leading to endocytosis [63]. However, it is 

important to note that, although a moderate positive correlation was found between the 

expression of ACE2 and TMPRSS2 under the conditions of this study, an absence of 

correlation has been reported between the expressions of the ACE2, TMPRSS2 and the 

FURIN protein (also considered in this study) in healthy volunteers with various clinical 

characteristics [63].  

     Although we found a negative correlation between TMPRSS2 and CD147, it has been 

reported that some cell types are more likely to be infected with SARS-CoV-2 through 

the CD147 receptor and the TMPRSS2 protease than through ACE2 [64], because the 

expression of ACE2 is one of the lowest while CD147 has a higher level of expression in 

various cell lines and tissues as observed in this study, while TMPRSS2 has a constitutive 

expression in many tissues and cells [64]. In fact, it was found that receptors such as 

ACE2, TMPRSS2 and AGTR2 have the lowest levels of expression according to the 

consensus transcriptomics data of The Human Protein Atlas, which corresponds to what 

has been reported in other studies [64, 65].  

     Our observations show that the higher probability of an infection could be mediated 

by the individual expression of certain candidate receptors than by the simultaneous 

expression of several of them. This corresponds to what has been reported by some 



authors who point out that the expression of several proteins simultaneously is an event 

with considerable variation from one cell to another, and heterogeneous co-expression 

patterns have been observed including cells that do not express all genes even individually 

[23]. Similarly, to what has been described above [64] some studies have proposed as 

unlikely that differences in gene expression in cells associated, for example, with the 

respiratory and epithelial tracts of ACE2, TMPRSS2 and FURIN, confer an increased risk 

of COVID-19 [63].  

     In fact, it has been reported that the expression of ACE2 in some tissues can be 

approximately 1/3 of the level of expression of TMPRSS2 in the same tissues, which 

indicates a higher level of expression of TMPRSS2 than that observed for ACE2 [66,67]. 

Furthermore, it has been reported that ACE2 and TMPRSS2 may be upregulated in cells 

associated with the airways, while ACE2 may become downregulated in nasal epithelial 

cells simultaneously with TMPRSS2 may be upregulated in bronchial cells. Additionally, 

it has been described that some respiratory epithelia can be negative for the simultaneous 

expression of the ACE2 and TMPRSS2 protein, while at the same time they can be 

positive for CD147 and FURIN [68].  

     Although more attention has been paid to the ACE2 receptor and TMPRSS2 as well 

as to cells associated with the respiratory tract which showed important basic 

reproduction numbers in this study. Our pre- dictions show very low levels of expression 

in all the types of cells studied indicating a possible greater theoretical propensity to 

suscepti- bility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a 

lower propensity to infectivity in lines such as CaLu3, RT4, HEK293, A549 and U-251 

MG. This corresponds to the RNA sequence profiles for our proteins of interest that 

showed high levels of expression in epithelial tissues outside the respiratory tract, 

indicative that cells of another nature may be particularly susceptible to infection by 



SARS- CoV-2 [44,45]. In the case of the CD147 protein, a higher level of expression has 

been observed in brain cell lines and tissues, as was observed in this study [42].  

It has also been shown that ACE2 and TMPRSS2, in addition to being expressed in cells 

associated with the lung and esophagus, are expressed at very high levels in human 

colorectal, stomach and liver-like cell, indicating that the gastrointestinal system could 

also be a possible route of infection by SARS-CoV-2 [44,45,47]. Interestingly, the ACE2 

gene has been shown to be negatively regulated in some cells during SARS-CoV-1 

infection [45]. These variations in the susceptibility of cells associated with the 

respiratory system have already been described in other studies that have demonstrated 

topographic differences in the replication of SARS-CoV-2 in the respiratory tract and 

almost undetectable levels of subgenomic viral material at the bronchoalveolar level [48]. 

The susceptibility profiles predicted as the most prevalent and capable of 

theoretically mediating the greater propensity to infection by SARS-CoV-2 based on the 

type, number and level of expression of the potential receptors coincided in their entirety 

with the presence of the CD147 and TMPRSS2 proteins, with or without the presence of 

ACE2 and the rest of the receptor candidates. This corresponds to what has been 

previously described in brain cell lines where it has been proposed that there may be a 

greater probability of infection with SARS- The viral spike protein has also been proposed 

to bind to the extracellular protease CD147 to mediate cell invasion by SARS-Cov-2 [49]. 

However, this is debated as purified recombinant spike protein is unable to interact with 

CD147 [5]. Of note, it has been experimentally confirmed that single nucleotide 

polymorphisms (SNPs) affect expression with a level of alteration that is often enough to 

induce phenotypic changes [49,50]. Therefore, although our results are based on 

experimental and tran- scriptomic kinetic data, they must be confirmed experimentally 

due to the inherent genetic variability. 



     

Theoretical affinity of the spike protein and the proteins of interest associated with 

cellular susceptibility in SARS-CoV-2 infection 

     Thermodynamically favorable dockings were predicted between the spike protein (for 

all its conformations and regions) and the target proteins considered and described as 

potential facilitators of SARS-CoV-2 infection. As expected, the HDOCK algorithm 

predicted a thermodynamically favorable docking between the spike protein and the 

ACE2 and TMPRSS2 receptors described as the most important with a mean of ΔG = -

294.21 kcal/mol and ΔG = -300.79 kcal/mol, respectively. The most favorable docking 

was predicted between the AGTR2 protein and the spike in all its conformations and 

tested regions, with a thermodynamic mean ΔG = -380.42 kcal/mol, being only surpassed 

by ≈-1 kcal/mol by the docking between ACE2 and the S1 spike region. Specifically, the 

most favorable docking of the AGTR2 protein with the spike regions was predicted for 

the S2 portion, followed by the binding with the TMPRSS2 (-262.47 kcal/mol) for the 

same S2 region, while for ACE2 it was with the S1 region (-352.45 kcal/mol) (see Table 

3). 



Table 3. Comparative analysis of the relative macromolecular binding affinity of the spike and each of its domains (S1 and S2) with each of the 

proteins of interest using different docking methods and scoring functions. 

Protein PDB 
HDOCK (kcal/mol) MM/GBSA (kcal/mol)* 

Spike (Open) Spike (Close) S1 S2 Spike (Open) Spike (Close) S1 S2 

NRP1 7JJC -274.84 -277.27 -269.17 -244.32 -61.81 -37.79 -53.60 -35.93 

CD147 3I84 -218.99 -244.20 -210.55 -183.22 -46.47 -45.17 -46.57 -27.40 

FURIN 6HZB -290.38 -289.39 -292.35 -251.20 -49.54 -39.84 -44.43 -37.58 

TMPRSS2 7MEQ -341.26 -331.70 -267.71 -262.47 -31.83 -36.36 -49.94 -47.19 

ACE2 6VW1 -304.94 -269.98 -352.45 -249.45 -21.90 -24.18 -49.53 -28.02 

HSPA5 6ZYH -266.58 -270.19 -233.86 -208.61 -40.04 -35.80 -29.75 -25.32 

AGTR2 6JOD -446.61 -366.70 -351.16 -357.21 -63.71 -60.49 -39.26 -68.29 

For the spike protein, the open (PDB: 6VYB) and closed (PDB: 6VXX) conformations of the structure are considered; *, For the energy calculation 

with the molecular mechanics approach combined with generalized Born calculations and continuous surface area solvation (MM/GBSA) 

calculations to predict the binding free energy of the protein-protein complex per residue, the HawkDock web server was used.  



Table 4. Comparative analysis of the residues called hot spots in the relative macromolecular junction of the spike domains (S1 and S2) with each 

of the proteins of interest. 

PDB Spike 

Residues determined as Binding Hot Spots* 

NRP1 

(n=30/24) 

CD147 

(n=27/18) 

FURIN 

(n=21/27) 

TMPRSS2 

(n=28/31) 

ACE2 

(n=30/35) 

HSPA5 

(n=25/28) 

AGTR2 

(n=18/23) 

7DEO S1 

Glu16(A), 

Glu21(A), 

Glu24(A), 

Glu43(A), 

Glu51(A), 

Asp128(A) / 

Glu340(B), 

Glu471(B), 

Glu484(B) 

Glu340(A), 

Glu516(A) / 

Glu49(B), 

Glu64(B), 

Glu84(B), 

Glu92(B) 

Asp23(A), 

Asp284(A), 

Asp322(A) / 

Asp405(B), 

Glu406(B) 

Glu289(B), 

Glu329(B), 

Asp359(B), 

Asp491(B) / 

Asp405(A), 

Glu406(A), 

Asp420(A), 

Glu484(A) 

Asp118(A), 

Glu122(A), 

Glu132(A), 

Asp139(A), 

Glu142(A), 

Asp274(A), 

Asp277(A), 

Asp281(A), 

Asp285(A), 

Asp317(A) / 

Glu340(B), 

Asp442(B), 

Glu465(B), 

Asp467(B), 

Glu471(B), 

GLU484(B) 

Glu44(A), 

Glu46(A), 

Glu116(A), 

Glu117(A), 

Glu128(A), 

Glu131(A), 

Asp159(A) / 

Glu471(B), 

Glu484(B) 

Glu340(B)  

  
NRP1 

(n=24/16) 

CD147 

(n=16/24) 

FURIN 

(n=19/17) 

TMPRSS2 

(n=21/31) 

ACE2 

(n=18/28) 

HSPA5 

(n=21/24) 

AGTR2 

(n=34/36) 

7COT S2 

Glu58(A), 

Asp59(A), 

Glu113(A), 

Glu151(A) / 

Glu106(B) 

Glu119(A), 

Asp123(A) / 

Asp32(B), 

Glu84(B), 

Glu92(B) 

Asp430(B) 

Glu406(B), 

Asp482(B) / 

Asp27(A), 

Glu106(A) 

Asp195(A), 

Glu417(A), 

Glu509(A), 

Glu518(A), 

Glu553(A), 

Glu571(A) / 

Asp70(B) 

Glu89(B), 

Glu121(B), 

Asp131(B), 

Asp281(B), 

Glu314(B) / 

Asp70(A), 

Asp92(A) 

Glu257(A) / 

Asp92(B), 

Glu106(B) 

*Only the residues present at the interface are shown that represent most of the binding free energy (hot spots) in the protein-protein complex 

according to the KFC (Knowledge-based FADE and Contacts) model. n (total number of residues at the interface (number of S domain 

residues/number of receptor type residues), including "no hot spots" residues).  
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Figure 5. Graphic representation of the interface between the residues called hot spots in 

the relative macromolecular junction of the spike S1 domain with each of the proteins of 

interest. A) Neuropilin 1 (NRP1), B) Basigin2 (CD147), C) FURIN protease, D) 

Transmembrane serine 2 (TMPRSS2), E) Angiotensin converting enzyme 2 (ACE2), F) 

Heat shock protein A5 (HSPA5) and G) angiotensin II receptor type 2 (AGTR2). Only 

the residues present at the interface are shown that represent most of the binding free 

energy in the protein-protein complex according to the KFC (Knowledge-based FADE 

and Contacts) model. 
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Figure 6. Graphic representation of the interface between the residues called hot spots in 

the relative macromolecular junction of the spike S2 domain with each of the proteins of 

interest. A) Neuropilin 1 (NRP1), B) Basigin2 (CD147), C) FURIN protease, D) 

Transmembrane serine 2 (TMPRSS2), E) Angiotensin converting enzyme 2 (ACE2), F) 

Heat shock protein A5 (HSPA5) and G) angiotensin II receptor type 2 (AGTR2). Only 

the residues present at the interface are shown that represent most of the binding free 

energy in the protein-protein complex according to the KFC (Knowledge-based FADE 

and Contacts) model. 

 



     It is important to highlight that according to the HDOCK algorithm, the S1 portion 

was the most favored spike region to establish thermodynamically feasible interactions 

with all the potential receptors considered, compared to the S2 region with a statistically 

significant difference (p <0.05) at the energy level. These results correspond to the 

MM/GBSA measurements using the HawkDock method where it was predicted that for 

the S1 region a favorable docking was observed in a similar way with TMPRSS2 (-49.94 

kcal/mol) and ACE2 (-49.53 kcal/mol). While for the S2 region the most 

thermodynamically favorable docking with the MM/GBSA approach was predicted with 

AGTR2 (-68.29 kcal/mol) followed by TMPRSS2 (-47.19 kcal/mol). In relation to the 

open and closed conformation of the spike protein, the most favorable interaction at the 

thermodynamic level was predicted with the AGTR2 protein with MM/GBSA values of 

-63.71 kcal/mol and -60.49 kcal/mol, respectively. It is important to note that the AGTR2 

protein presented the most favorable docking with all the conformations and tested 

regions of the spike, except for the affinity for the S1 region and in comparison with the 

rest of the potential receptors, exhibiting a thermodynamic mean ΔG = - 57.94 kcal/mol 

(Table 3).  

     To study the contribution of the residues in the predicted interactions, the subset of 

residues designated as binding hot spots was determined, which constitute a small fraction 

of the interface residues in the protein-protein complexes that are determinants in the 

binding affinity calculated. In this sense, after calculating the binding hot spots 

considering characteristics such as interface solvation, atomic density and plasticity, the 

highest number of hot spots between the spike protein and the ACE2 receptor was 

predicted, which corresponds to the energy values of binding previously calculated, 

specifically more than 20% of the residues present in the interface correspond to residues 

located at a distance <4 Å (Table 4, Figures 5-6).  



     The highest number of residues with important interactions were predicted between 

the ACE2 receptor and the S1 region of the spike, contributing to the interface with ≈28% 

(10/35) and ≈20% (6/30) of residues with the most interaction probable, respectively, 

unlike the interaction between the ACE2 receptor and the S2 region in which ≈21% (6/28) 

and ≈5% (1/18) of binding hot spots were predicted, respectively. These results 

correspond to the highest affinity calculated between ACE2 and S1, compared to S2. The 

largest contribution in the interaction between the potential NRP1 receptor and the S1 

region was predicted with ≈25% (6/24) and ≈10% (3/30) of binding hot spots, 

respectively. What is important considering that according to the Hawkdock algorithm 

the interaction between the receptor potential NRP1 and the S1 region was the most 

favorable energy level (ΔG = -292.35 kcal/mol) according to the MM/GBSA approach. 

71% (5/7) of the dockings with the highest number of residues with important interactions 

were predicted in the S1 region, compared to ≈29% (2/7) in the S2 region (Table 4; 

Figures 5-6).  

     The only interfaces in which a larger subset of residues designated as binding hot spots 

was predicted in the S2 region were betweenthe potential CD147 receptor and the S2 

region with ≈8% (2/24) and ≈19% (3/16) of binding hot spots, correspondingly, and 

between HSPA5 and the S2 region with ≈21% (5/24) and ≈10% (2/21) of binding hot 

spots, correspondingly. Similarly, ≈10% (2/21) of important residues in the S2 region 

were predicted with the TMPRSS2 protein. The interfaces with the least favorable 

interactions were predicted between the FURIN protease and the S2 region, and between 

AGTR2 and the S1 region in which, under the conditions of this study, it was not possible 

to determine more than 6 relevant binding hot spots (Table 4; Figures 5-6).
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Figure 7. The mean squared deviations (RMSD) of Cα during each 10ns of MD 

simulation for each complex (total time 100ns). A) NRP1, B) CD147, C) FURIN, D) 

TMPRSS2, E) ACE2, F) HSPA5 and G) AGTR2. The gray lines represent the free 

receptor proteins, and the blue and orange lines the complexes with the S1 and S2 region, 

respectively. 
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Figure 8. The root mean square deviations (RMSD) of Cα and root mean square fluctuations (RMSF) 

of individual amino acid residues relative to the starting frame during 100ns MD simulation of each 

complex using NMSim. NRP1 (A and B), CD147 (C and D), FURIN (E and F), TMPRSS2 (G and 

H), ACE2 (I and J), HSPA5 (K and L), AGTR2 (M and N). The gray lines represent the free receptor 

proteins, and the blue and orange lines the complexes with the S1 and S2 region, respectively. 



     The calculation of RMSD and RMSF allowed predicting that the complexes 

constructed were stable during the simulation period, exhibiting fluctuations ≤ 2.5 Å in 

all cases and with respect to the proteins proposed as possible free receptors of the S1 or 

S2 portions of the viral spike, except for the RMSD values of the CD147 + S1, FURIN + 

S1 and HSPA5 + S2 complexes. Specifically, the systems that presented the lowest 

fluctuations were the complexes formed by the S1 region of the spike and the TMPRSS2, 

NRP1 and ACE2 proteins with an RMSD and RMSF ≤ 0.5 Å, as well as the predicted 

RMSD and RMSF values for the complex made up of the S2 region and the ACE2 protein 

(RMSD and RMSF ≤ -0.6 Å). The complexes of the two regions of the spike with the 

proteins AGTR2, TMPRSS2, CD147, and of the S2 region with NRP1 were the systems 

in which the lowest fluctuations were predicted, with RMSD and RMSF values lower 

than those calculated from the free proteins (Figure 7; Figure 8).  

     In the case of the CD147 + S1 and CD147 + S2 complexes, the lowest fluctuations 

were predicted compared to those observed for their corresponding free protein with a 

difference of RMSD ≈ 3.5 Å and RMSD ≈ 1.5 Å, respectively, and a difference in terms 

of RMSF ≈ 1 Å and RMSF ≈ -0.01 Å, correspondingly. These results show that the 

docking with the portions of the viral spike protein studied can stabilize the trajectories 

of the complexes formed with the CD147 protein, unlike the free protein, which shows 

high flexibility and potential conformational deformability. On the contrary, the 

complexes formed by FURIN and HSPA5 with each of the regions of the viral spike 

showed a greater fluctuation with respect to the free proteins both in terms of RMSD and 

RMSF, specifically a difference was observed between the FURIN + S1 complex and the 

FURIN + S2 complex with respect to the control represented by values of RMSD ≈ -4 Å 

and RMSD ≈ -1 Å, respectively, and values of RMSF ≈ 2 Å and RMSF ≈ -0.1 Å, 

correspondingly. While the complex HSPA5 + S1 and HSPA5 + S2 with respect to the 



control showed an RMSD ≈ -2 Å and RMSD ≈ -5 Å, respectively, as well as values of 

RMSF ≈ -1 Å and RMSF ≈ -2 Å, correspondingly. Although the trajectories calculated 

for the complexes built between the spike and the FURIN or HSPA5 proteins show 

greater fluctuation and, therefore, less stability, the RMSD and RMSF values show 

slightly favorable dockings throughout the simulation, especially between FURIN and 

the S2 region, and HSPA5 with the S1 region (Figure 7; Figure 8).  

     It is important to note that the ACE2 protein with which a stable and favorable binding 

energy was predicted, as well as the greater number of determining residues in the binding 

affinity in the complexes formed with any of the regions of the viral spike protein, is 

possibly expressed under the conditions of this study in a concentration of between 1-3% 

of the cells and only in ≈23% (3/13) of the cell models studied, specifically in the HepG2, 

RT4 and Vero6 lines, so their theoretical affinity and its level of expression could favor 

the infection of the cell types associated with the urinary and hepatic systems.  

     While due to its thermodynamically stable and favorable affinity, as well as due to a 

significant number of determining residues in the binding affinity for spike, the 

TMPRSS2 protein could be expressed depending on the cell type between 1-33% of the 

cells, and in the ≈ 38% (5/13) of the cell models considered, specifically in the CaCo2, 

RT4, Vero6, HepG2 and NTERA-2 lines, which would possibly also contribute to a better 

infection of the cell types associated with the urinary and liver systems, including to the 

gastrointestinal system. The NRP1 protein expressed in ≈31% (4/13) of the cell lines 

tested in a concentration of between 1-34% of the cells, depending on the cell type, 

presented a significant number of key residues for binding, as well as a stable and 

thermodynamically favorable interaction with the S1 region, which could facilitate 

infection in all cell lines considered except for NTERA-2, RPTEC-TERT1, RT4, 

HBEC3-KT and SCLC-21H, in this sense, these predictions would translate into a 



susceptibility mediated by this receptor in only 50% and 25% of the cell types studied 

associated with the pulmonary and urinary systems, respectively.  

     Although HSPA5 was one of the candidates with the highest level of theoretical 

expression in all cell models considered (between 14-67% of cells) and presented one of 

the largest subsets of key residues for binding with a thermodynamically favorable 

affinity, the molecular dynamics was represented by junctions with many fluctuations in 

time for the S2 region, which could compromise the stability of said cross, although 

conditions for a stable affinity with the S1 portion were predicted. Although the FURIN 

protease presented a low number of residues considered as keys for the interaction under 

the conditions of this study, which corresponded to one of the least stable predicted 

junctions, it presented thermodynamically favorable junctions and important levels in all 

cell lines (between 4-27% depending on the cell type). Interestingly, although the AGTR2 

protein presented the best values in terms of the relative affinity energy mean, as well as 

a stable binding throughout the simulation time, it established complexes with both the 

spike regions with the least number of hot spots of relevant binding, and presented the 

lowest level of detectable expression reported in all cell lines considered in this study, 

which could limit their participation as a determinant in the medication of cell 

susceptibility to infection. 

     The results of the predicted interactions correspond to those reported by other 

investigations that have shown that the S1/S2 complex of the viral spike protein adheres 

to the host cell membrane through the ACE2 enzyme and its interaction with the spike 

prior to priming of the transmembrane protease TMPRSS2, which cuts the S2 region to 

expose the viral fusion peptide that allows entry of the SARS-CoV2 virus into the cell 

[70,72,73] an affinity of ACE2 for the S1 domain and of TMPRSS2 for the S2 region also 

predicted in energy terms in this study. Simulations of the protein-protein interaction 



based on the 3D structure have also revealed that AGTR2 shows a higher binding affinity 

with the spike protein of SARS-CoV-2 than ACE2, as observed in this study [74]. 

Furthermore, experimental and clinical findings also suggest that CD147 could act as a 

receptor that mediates the entry of SARS-CoV-2 through its interaction with the protein 

S of the viral spike [64,70]. Additionally, the predicted thermodynamically favorable 

dockings between the spike protein and FURIN have been associated with the presence 

of a unique motif in SARS-CoV-2-S that is easily recognized and hydrolyzed by FURIN, 

therefore, FURIN has been proposed as a therapeutic target. [75,76].  

     In the case of the controversial protein CD147 for which its participation in the 

infection by SARS-CoV-2 is still debated, the interaction between the candidate receptor 

CD147 and the peak protein of SARS-CoV-2 has been reported by surface plasmon 

resonance (SPR), enzyme-linked immunosorbent assays (ELISA), co-

immunoprecipitation (Co-IP) and optimized negative staining electron microscopy 

(OpNS-EM). It has been noted that loss or blockade of CD147 in cell lines (such as those 

considered in this study) can inhibit the amplification of SARS-CoV-2, even proposing it 

as a new route of entry of virus independent of ACE2 [77]. These observations correspond 

to our results in which we predicted a thermodynamically favorable interaction between 

spike protein and CD147. A later study reported that it could not find evidence to support 

the role of CD147 as a spike-binding receptor, using specialized assays designed to detect 

even weak interactions for the proposed CD147-spike binding using various 

conformations of the CD147 protein [21]. However, a recent study that used cell lines 

similar to those considered in this study, demonstrated that the silencing of CD147 could 

reduce viral entry into cells, directly or indirectly through the reduction of ACE2 

expression levels and therefore affected even spike protein levels, although apparently at 

the post-translational level [1]. And as with ACE2, it was demonstrated that at the RNA 



level, the SARS-CoV-2 viral infection reduces both CD147 and ACE2, a phenomenon of 

negative regulation that, although not considered in this study, would further affect 

susceptibility cell mediated by this type of receptors as has been reported [1,67].  

     Similarly, the favorable energetic docking between the spike protein and the HSPA5 

protein has been reported because this protein is considered a possible route for the 

adhesion and entry of SARS-CoV-2. Indeed, it has been described that the binding site in 

the SARS-CoV-2 peak is found in the C-terminal domain of the S1 region, as predicted 

in this study as its most favorable docking, and although they are required even 

experimental validations, other authors have pointed out that this receptor potential is key 

in endogenous coronaviruses and, due to its conservation, could mediate both the 

infectivity of SARS and a certain degree of cross-immunity against SARS-CoV-2 

[78,79,80].  

     Therefore, as observed in this study and as suggested by other authors, binding free 

energy may support that the conformation and domain type of the SARS-CoV-2 spike 

protein leads to a stronger or weaker binding . However, a stronger receptor binding still 

cannot fully explain the high infectivity of this particular type of coronavirus. Therefore, 

it has been proposed that part of this infectivity may be mediated by the binding of the 

virus to other predominant receptors in other organs and that the lung may not be the 

earliest site of infection, as observed previously [75].  

Theoretical diffusivity of the proteins of interest associated with cellular susceptibility 

in SARS-CoV-2 infection 

     The ability of the proteins considered to move in artificial cellular environments was 

studied simulating various types of cytoplasmic congestion, with the interest of seeing 

the impact of macromolecular congestion on the diffusion of proteins and finding out 



whether there is any theoretical relationship with their levels of expression and relative 

affinity described above for the spike protein. In this sense, and after studying 5 

conditions of cell-type cytoplasmic congestion and an aqueous model, a minimum 

translational diffusion coefficient (Dt) of 7.9x10-27 cm2 s-1 and a maximum of 6.7x10-21 

cm2 s-1 was predicted for the cellular models, in contrast to a minimum Dt of 4.6x10-11 

cm2 s-1 and a maximum of 6.5x10-11 cm2 s-1 for the aqueous model. Specifically, although 

all the diffusion values between the proteins studied were very close, it was predicted that 

under conditions of cytoplasmic congestion the NRP1 protein presented the best diffusion 

coefficient (Dt = 1.9x10-21 cm2 s-1) followed by CD147 (Dt = 1.8x10-21 cm2 s-1). 

Interestingly, the ACE2 protein (Dt = 1.2x10-21 cm2 s-1) presented the lowest diffusion 

coefficient in the cell models tested. In cell models, a mean diffusivity time of ≈3x10-10 

sec was predicted, with a minimum time of ≈2x10-10 sec for TMPRSS2 and a maximum 

time of ≈5x10-10 sec for ACE2 (see Table 5).  

     In relation to the diffusion model in aqueous medium, the results were close and also 

showed CD147 as one of the proteins with the best diffusion coefficient (Dt = 8.3x10-11 

cm2 s-1) followed by TMPRSS2 (Dt = 7.5x10- 11 cm2 s-1) and FURIN (Dt = 7.1x10-11 cm2 

s-1), keeping ACE2 as the protein with the lowest diffusivity (Dt = 4.6x10-11 cm2 s-1). 

Diffusivity in aqueous medium allowed predicting that a mean diffusion time of ≈13 sec, 

with a minimum and maximum time of ≈10 sec and ≈18 sec, respectively, diffusion rates 

that correspond to the CD147 and ACE2 proteins, respectively. The cell lines considered 

with experimental viscosity data in which the lowest and highest diffusion coefficients 

were predicted were A549 (Dt = 7.9x10-27 cm2 s-1) and ASTC-a-1 (Dt = 6.7x10-21 cm2 s-

1) (the latter not considered in this study for the susceptibility analyzes), respectively. The 

HeLa cell line used in this study as a negative control for SARS-CoV-2 infectivity assays 



presented a better diffusion coefficient (Dt = 2.5x10-22 cm2 s-1) than that predicted in A549 

(line also considered in this study) (Table 5).  

     After making a preliminary approximation of the transmembrane flux (J) of these 

proteins under the various types of cytoplasmic congestion tested, similar results were 

predicted, with a mean of J = 9.9x10-16 mol cm2 s-1 where the value minimum was 

predicted for ACE2 (J = 8.0x10-16 mol cm2 s-1) and the maximum for NRP1 (J = 1.3x10-

15 mol cm2 s-1) followed by the predicted values for CD147 (J = 1.2x10-15 mol cm2 s-1). 

The cell lines considered in which the lowest and highest transmembrane flux was 

predicted were therefore A549 (J = 5.2x10-21 mol cm2 s-1) and ASTC-a-1 (J = 4.5x10-

15 mol cm2 s-1), respectively. The HeLa control presented a better transmembrane flux (J 

= 1.6x10-16 mol cm2 s-1) than that calculated for A549 (see Table 6). Together with these 

results, a high correlation was found between the proteins studied with the lowest 

expression levels that presented the thermodynamically more favorable binding energy 

towards the viral spike protein with the lowest diffusion times and coefficients, as well as 

with the lowest hypothetical flux transmembrane (r = 0.80), these proteins being ACE2, 

AGTR2 and TMPRSS2, so the proteins described as potential receptors that presented 

the least thermodynamically favorable affinity and that are described with the highest 

expression levels had a high correlation with the best times and diffusion coefficients. 

 



Table 5. Comparative analysis of the theoretical translational diffusion coefficient and the diffusion time of the proteins of interest associated with 

cellular susceptibility in SARS-CoV-2 infection.  

 

Protein 

 

MW (kDa) r (Å) 

 

Dt (cm2 s-1) 

 

t (seg)  

HeLa 

 

3T3 H1299 A549 ASTC-a-1 Water 

NRP1 79.20 15.33 3.2x10-22 5.8x10-22 1.3x10-25 1.0x10-26 8.6x10-21 6.3x10-11 13.2 

CD147 21.15 16.06 3.0x10-22 5.6x10-22 1.2x10-25 9.6x10-27 8.2x10-21 8.3x10-11 10.0 

FURIN 53.70 21.78 2.2x10-22 4.1x10-22 8.9x10-26 7.1x10-27 6.0x10-21 7.1x10-11 11.7 

TMPRSS2 44.50 20.28 2.4x10-22 4.4x10-22 9.6x10-26 7.6x10-27 6.5x10-21 7.5x10-11 11.2 

ACE2 192.75 24.29 2.0x10-22 3.7x10-22 8.0x10-26 6.4x10-27 5.4x10-21 4.6x10-11 18.0 

HSPA5 84.75 21.38 2.3x10-22 4.2x10-22 9.1x10-26 7.2x10-27 6.2x10-21 6.0x10-11 13.8 

AGTR2 92.57 21.94 2.2x10-22 4.1x10-22 8.9x10-26 7.0x10-27 6.0x10-21 5.6x10-11 14.8 

Dt, translational diffusion coefficient. Neuropilin 1 (NRP1), Basigin2 (CD147), FURIN protease, Transmembrane Serine 2 (TMPRSS2), 

Angiotensin Converting Enzyme 2 (ACE2), Protein of Thermal shock A5 (HSPA5), Angiotensin II receptor type 2 (AGTR2).  

 

 



Table 6. Comparative analysis of the theoretical transmembrane flux of the proteins of 

interest associated with cellular susceptibility in SARS-CoV-2 infection.  

Protein 

 

J (mol m−2 s−1) 

 

 

HeLa 

 

3T3 H1299 A549 ASTC-a-1 

NRP1 2.1x10-16 3.9x10-16 8.5x10-20 6.7x10-21 5.7x10-15 

CD147 2.0x10-16 3.7x10-16 8.1x10-20 6.4x10-21 5.5x10-15 

FURIN 1.5x10-16 2.7x10-16 6.0x10-20 4.7x10-21 4.0x10-15 

TMPRSS2 1.6x10-16 2.9x10-16 6.4x10-20 5.1x10-21 4.3x10-15 

ACE2 1.3x10-16 2.5x10-16 5.3x10-20 4.2x10-21 3.6x10-15 

HSPA5 1.5x10-16 2.8x10-16 6.1x10-20 4.8x10-21 4.1x10-15 

AGTR2 1.5x10-16 2.7x10-16 5.9x10-20 4.7x10-21 4.0x10-15 

J, diffusion flow. Neuropilin 1 (NRP1), Basigin2 (CD147), Protease FURIN, 

Transmembrane Serine 2 (TMPRSS2), Angiotensin Converting Enzyme 2 (ACE2), 

Protein of Thermal shock A5 (HSPA5), Angiotensin II receptor type 2 (AGTR2).  

 

 



     Analysis to establish diffusivity parameters such as the diffusion coefficient of 

structures associated with SARS-CoV-2 infection have focused on isolated regions of the 

spike protein [81,82], as well as of the viral particle [83]. Interestingly, there are few 

reports that consider the comparison between diffusivity parameters such as diffusion 

coefficient and speed, as well as the transmembrane flux of candidate receptors for SARS-

CoV-2 infection, despite the fact that it has been described that membrane proteins such 

as the receptors studied can be affected by crowding effects similar to those of the solution 

phase [84,85]. Although the predicted diffusivity reports for these viral structures allow 

us to infer in general terms that all the simulated structures in this study in congested 

environments show a comparatively slow diffusion as a result of confined environments 

[86], it is important to note that transcription tends to be significantly improved by 

macromolecular crowding as a result of increased effective concentrations of enzymes 

and biomolecular reagents associated with transcription. In this sense, there may be a 

trade-off between the diffusion coefficient of the transcript and the transcription 

efficiency in congested environments [87,88]. However, this phenomenon is complex, 

because it has also been reported that increasing the viscosity of solutions can drastically 

reduce the diffusion coefficients of protein-type biomolecules by factors of up to 10 times, 

as predicted in this study by comparing the dynamics in aqueous medium and cytoplasmic 

medium [87].  

     Therefore, it is recommended to experimentally measure the effects of 

macromolecular crowding on the performance of transcription and diffusivity of the 

transcripts described as candidate receptors for SARS-CoV-2 infection, as has been 

suggested for other protein systems. For example, using strategies such as the 

construction of de novo designed in vitro protein expression systems, in which the 

macromolecular concentration could be varied by adding compatible solutes, or inert 



polymers. Alternatively, one could take a diluted cytoplasmic cell extract and study the 

importance of crowding under physiological conditions by adding congestive agents as 

has been proposed to study the effect of crowding on protein signaling. The challenge of 

in vivo assays is represented in part by controlling the intracellular crowding 

concentration by manipulating extracellular conditions such as osmotic pressure with 

compatible solutes [85,89,90]. Additionally, it is recommended to validate the predictions 

made in this study with available scRNA-seq data from healthy humans, including a 

greater number of cell types and using other alternative databases such as Gene 

Expression Omnibus (GEO) and the Tissue Stability Cell Atla [36], as well as considering 

other factors or external stimuli [36,91].  

CONCLUSIONS 

     Our predictions based on experimental and transcriptomic data indicate differential 

viral kinetic behavior dependent on the degree of cellular susceptibility, which is 

influenced to a greater extent by the type and level of expression of potentially 

receptor/mediator proteins associated with SARS-CoV-2 infection, and to a lesser extent 

by the number of potential receptor/mediator proteins expressed. In addition, a 

relationship was evidenced between lower expression levels and less favorable diffusivity 

parameters (diffusion coefficient, diffusion speed and transmembrane flux) with the 

thermodynamically more favorable interactions observed between the studied proteins 

and the viral spike, and vice versa, and we can conclude that part of the explanation for 

cellular susceptibility to infections caused by SARS-CoV-2 could be mediated by the 

ability of virus to stably bind to low-expression receptors in lung, which would suggest 

other potential sites for the earliest infection events.  

     Since this comparative research used previously published experimental data to be 

able to design expression systems and calculations of the effect of molecular crowding, it 



is expected that it will stimulate quantitative analysis in future experiments and promote 

systematic investigation of the effect of phenomena such as crowding presented here. 

Especially as cancer cell lines naturally present a high degree of cytoplasmic congestion, 

which could affect the expression levels of the receptors considered. Additionally,  the 

cells would affect the diffusivity of said receptors and the infection mediated by them, 

due to the increase in cytoplasmic viscosity, as already mentioned. To these limitations, 

we need to consider other factors such as healthy cells, polymorphisms or external stimuli 

(ethnic groups, age, sex, pathologies, exposure to pollutants, among others) in order to 

incorporate more factors that could alter the expression of the receptors studied and thus 

impact on susceptibility to SARS-CoV-2 infections, a viral mechanism that should 

continue to be further explored for the optimization of therapeutic approaches.  
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