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Abstract

Local information is needed to guide targeted interventions for respiratory infections such as

tuberculosis (TB). Case notification rates (CNRs) are readily available, but systematically

underestimate true disease burden in neighbourhoods with high diagnostic access barriers.

We explored a novel approach, adjusting CNRs for under-notification (P:N ratio) using

neighbourhood-level predictors of TB prevalence-to-notification ratios. We analysed data

from 1) a citywide routine TB surveillance system including geolocation, confirmatory myco-

bacteriology, and clinical and demographic characteristics of all registering TB patients in

Blantyre, Malawi during 2015–19, and 2) an adult TB prevalence survey done in 2019. In the

prevalence survey, consenting adults from randomly selected households in 72 neighbour-

hoods had symptom-plus-chest X-ray screening, confirmed with sputum smear microscopy,

Xpert MTB/Rif and culture. Bayesian multilevel models were used to estimate adjusted

neighbourhood prevalence-to-notification ratios, based on summarised posterior draws

from fitted adult bacteriologically-confirmed TB CNRs and prevalence. From 2015–19, adult

bacteriologically-confirmed CNRs were 131 (479/371,834), 134 (539/415,226), 114 (519/

463,707), 56 (283/517,860) and 46 (258/578,377) per 100,000 adults per annum, and 2019

bacteriologically-confirmed prevalence was 215 (29/13,490) per 100,000 adults. Lower edu-

cational achievement by household head and neighbourhood distance to TB clinic was neg-

atively associated with CNRs. The mean neighbourhood P:N ratio was 4.49 (95% credible

interval [CrI]: 0.98–11.91), consistent with underdiagnosis of TB, and was most pronounced

in informal peri-urban neighbourhoods. Here we have demonstrated a method for the identi-

fication of neighbourhoods with high levels of under-diagnosis of TB without the requirement

for a prevalence survey; this is important since prevalence surveys are expensive and logis-

tically challenging. If confirmed, this approach may support more efficient and effective
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targeting of intensified TB and HIV case-finding interventions aiming to accelerate elimina-

tion of urban TB.

Introduction

Despite substantial investment under global health initiatives, progress towards ending tuber-

culosis (TB) epidemics has been disappointingly slow. TB remained the leading infectious

cause of adult death in 2019, with an estimated 1.4 million deaths, and was second only to

COVID-19 in 2020 [1, 2]. Estimated incidence has been falling, but not rapidly enough to

meet the EndTB Strategy goals [1, 2]. The World Health Organization (WHO) African Region

achieved a 19% reduction in TB incidence between 2015 and 2020, mainly attributable to

improving HIV and TB prevention and treatment services [1, 2]. Early diagnosis of TB is

essential for prevention of TB deaths and new infections, as undiagnosed TB patients can

remain infectious for many years if not effectively treated [3]. In 2020, however, 4.1 million (or

41% of all incident TB patients), globally, were estimated to remain undiagnosed or unnoti-

fied–with substantial increases in these “missing millions” partly because of COVID-19 dis-

ruptions in TB diagnostic services [1, 2, 4].

Reaching the ambitious WHO EndTB Strategy targets for incidence (90% reduction from

2015) and death (95% reduction from 2015) from TB by 2035 will require innovative strategies

[2, 5]. Efficient diagnosis of self-presenting patients reporting TB symptoms at health facilities,

although critical to patient management, is unlikely to be sufficient unless accompanied by

community-based interventions [3, 6]. Active case-finding for undiagnosed TB disease (ACF),

using approaches such as door-to-door enquiry for chronic cough, can rapidly reduce undiag-

nosed TB prevalence, but is limited to very high prevalence populations by the cost and perfor-

mance of currently available TB diagnostics [3, 6–8].

Previous attempts to define “hotspots” of TB disease in urban and rural Africa and Asia

have used locally-resolved case notification rates [9] that cannot distinguish poorer access to

TB diagnostic services from true low disease burden [10, 11]. True TB burden is highly hetero-

geneous but, even in the same District or City, substantial heterogeneity in routine TB service

access [3, 12] tends to obscure hotspots, which typically represent the combined effects of

adverse social and environmental determinants with high barriers to accessing health services

[3, 13, 14].

Data from TB prevalence surveys can provide detailed neighbourhood-level data on TB

determinants and undiagnosed TB burden to guide National TB Programmes and District

Health Officers [9, 12, 15, 16], allowing neighbourhoods with delayed detection and incom-

plete detection [16, 17] of TB to be identified through high prevalence-to-notification (P:N)

ratios [17, 18]. TB prevalence surveys are, however, costly and logistically demanding. Identifi-

cation of neighbourhoods with high levels of under-diagnosis without requirement for preva-

lence surveys could be of major benefit to National TB Programmes. Here, we aimed to

develop simple, accurate models that could be used by researchers and TB Programme Manag-

ers using high-quality spatially-resolved TB neighbourhood level data from urban Blantyre,

Malawi. We used multilevel Bayesian modelling to generate neighbourhood level P:N ratios [9,

17], aiming to smooth over sparse prevalence data and borrow strength across neighbour-

hoods and make predictions beyond available prevalence data to support better prioritisation

of community-based ACF.
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Methods

Study setting

Blantyre District is in the Southern Region of Malawi, Central Africa. Blantyre City, in the cen-

tre of the District, is a major commercial centre and has several densely-populated informal

settlements, as well as more-established urban and peri-urban neighbourhoods where rates of

poverty are high and access to municipal and health services are limited [19]. In the 2018

Malawi National census the Blantyre City population was 800,264 (502,018 adults� 15y) [20]

and adult HIV prevalence was 18% in a recent population-based survey [21].

Blantyre enhanced TB monitoring and evaluation of TB notifications

Patients diagnosed with TB in Malawi are registered by the National TB Programme. TB regis-

tration clinics in Blantyre include a government referral hospital, free public clinics and a

small number of private health facilities [22]. TB Officers (a cadre of health workers employed

by Malawi’s Ministry of Health with responsibility for delivering TB services) [22] were sup-

ported to strengthen the TB notification surveillance system in Blantyre as part of a joint proj-

ect between the Malawi-Liverpool-Wellcome Trust Clinical Research Programme (MLW), the

Blantyre District Health Office, and the Malawi National TB Control Programme (NTP). All

TB patients are offered provider-initiated HIV testing and antiretroviral therapy if newly diag-

nosed with HIV [22].

From 2015, TB Officers have been supported to use an electronic data capture application

(ePaL) to collect additional clinical, sociodemographic, and household level data and a confir-

matory sputum for microscopy and culture as part of the citywide enhanced surveillance sys-

tem [4, 11]. ePAL supports capture of global positioning satellites (GPS) coordinates

identifying the place of residence for each TB patient, using high resolution satellite maps with

locally-captured reference locations within each neighbourhood of the city. The ePAL applica-

tion has previously been validated and described elsewhere [11, 23]. All patients starting TB

treatment were asked to provide an additional single spot sputum sample for smear micros-

copy and mycobacteria growth indicator tube (MGIT) culture, performed at the MLW/Uni-

versity of Malawi College of Medicine TB Research Laboratory. The enhanced TB surveillance

data and NTP registers were reconciled on a quarterly basis, and monthly 5% of patients were

traced to home for data validation purposes.

TB prevalence survey

In 2019, a TB prevalence survey was carried out in Blantyre City by the MLW study team at

the start of a planned cluster-randomised trial of community-based TB screening interven-

tions, subsequently interrupted by COVID-19 (ISRCTN11400592). 72 neighbourhood clusters

were defined, each comprised of several community health workers (CHW) areas, with the

goal of having approximately 4000 adults in each neighbourhood. CHW areas are the smallest

health administrative unit in the city, and each is affiliated to a primary health clinic [11, 24].

Using Google Earth, a geographical information specialist captured the GPS coordinates of all

the houses in the 72 neighbourhood clusters to be used as the prevalence survey sampling

frame. In each neighbourhood, 115 households were selected at random for participation into

the prevalence survey with the aim of recruiting 215 adults (�18 years old) per

neighbourhood.

Adults from the randomly selected households were visited and invited to attend a study

tent located at a central point within the neighbourhood for TB and HIV investigations. TB

screening was provided at the tent using a digital chest radiograph that was immediately read
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by an experienced radiographer trained in TB prevalence surveys, and with interpretation sup-

ported by computer assisted diagnostic software (Qure.ai version 2.0). Participants who had

an abnormal chest X-ray or reported cough of any duration were asked to provide two spot

sputum samples for Xpert MTB/Rif, smear microscopy, and MGIT culture. Positive Xpert

MTB/Rif and smear microscopy results were provided within two days, and culture results

within approximately six weeks; a prevalent TB case was defined as a positive result for Xpert

MTB/Rif or smear microscopy, with a positive MGIT culture result that was speciated as

Mycobacterium tuberculosis. HIV testing was offered using both OraQuick (OraSure Technol-

ogies, manufactured in Thailand) oral HIV test kits and a rapid fingerprick kits (Determine 1/

2, Alere, USA) in parallel. Positive HIV results were confirmed using Uni-Gold (Trinity Bio-

tech, Ireland). If participants verbally reported being HIV positive, only a Uni-Gold confirma-

tion test was done. All participants with newly diagnosed HIV were provided with post-test

counselling and assisted to register for HIV treatment at their nearest primary care clinic.

Neighbourhood populations

In 2015, the MLW study team conducted a population census in all of the city’s CHW areas

[11]; in an independent exercise the Malawi National Statistical Office (NSO) conducted the

Malawi Population and Household National Census in 2018 that included Blantyre City [20].

Population denominators were derived from the MLW study team’s 2015 census and the

NSO’s 2018 census. The 2018 NSO and 2015 MLW study census data were used to calculate

annual population growth rates, which were then used to estimate annual population denomi-

nators for the 72 study neighbourhoods from 2015 to 2019. The growth rates were calculated

separately for ages 0 to 4yrs, 5 to 14yrs, 15yrs or older adult males and 15yrs and older adult

females. Growth rates were assumed to be the same for all the neighbourhoods.

Calculation of empirical TB notification and prevalence rates and

predictors

Empirical neighbourhood-level TB case notification rates (CNR) from 2015 to 2019 and 2019

TB prevalence rates were calculated by summing the adult (�18y) TB notifications or preva-

lent cases at neighbourhood level and dividing by respective adult population denominators

and multiplying by 100,000 to scale the rate to per 100,000 population. The percentage of

adults in each neighbourhood and the percentage of male adults aged 15 years or older were

calculated using data from the 2015 study team Blantyre City census and were assumed to be

consistent from 2016 to 2019. The distance to the nearest TB clinic was estimated by calculat-

ing the cartesian (straight line) distance between the centroid of each neighbourhood and the

nearest TB clinic; this served as a proxy indicator for access to TB diagnosis and treatment

[25]. Neighbourhood HIV prevalence was calculated using prevalence survey data, and the

percentage of households whose head never finished primary school—a proxy variable for

poverty—was estimated using data from the TB prevalence study. According to the Malawi

Integrated Household Survey, household head education level was closely associated with

household poverty [26, 27].

Neighbourhood baseline characteristics

We report the neighbourhood-level percentage of adults aged 15 years or older, percentage of

male adults (15 years or older), distance to nearest TB clinic, percentage of households with

head of house who never finished primary school and HIV prevalence, summarised by their

mean, range, and standard deviation (sd). We plotted the spatial distribution of the covariates

across the 72 neighbourhood clusters on choropleth maps.
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Statistical modelling

We fitted Bayesian multilevel models to estimate neighbourhood-level adult (� 18y) annual

bacteriologically-confirmed TB case notification rates for each year between 2015 and 2019,

and separately for prevalence rates for 2019. Models were fitted using Markov chain Monte

Carlo (MCMC) sampling using the brms package as an interface to Stan in R, with inference

based on three chains of 14,000 posterior samples after discarding 1000 burn-in samples [28].

Since the notification and prevalence data were from two different and independent datasets

they were modelled separately to allow greater control in exploring covariates. The bacterio-

logically-confirmed case notification data were modelled using a Poisson response distribution

(Eq 1), we included a dummy variable for year with the reference level of 2019.The prevalence

data were modelled using a zero-inflated-Poisson distribution (Eq 2) to account for overdis-

persion and excess neighbourhoods with zero prevalent cases. Neighbourhood-level random

effects were modelled with a spatial intrinsic conditional autoregressive (ICAR) term (S1 and

S2 Equations) or a random intercept term (Eqs 1 and 2), but not with both random terms in

the same model. Possible combination of neighbourhood-level variables were derived for the

TB case notification and prevalence data. The set of variables considered for inclusion in the

model were selected based on previous research [11], ease of measurement for TB pro-

grammes, and availability within the datasets. The models’ predictive performance were evalu-

ated using leave-one-out (LOO) cross-validation [29]. The best fitting models were selected

based on their expected log pointwise predictive density (ELPD) LOO statistic [29] (S5 and S6

Tables). Weakly regularising priors were assigned to model intercepts and slopes. Model con-

vergence was assessed by visual inspection of trace plots, effective sample sizes and Gelman-

Rubin statistics [28].

Equation 1

Let Y~Pois(μ)

Pr Yij ¼ yij

� �
¼

m
yij
ij expð� mijÞ

yij!

 !

logðmijÞ ¼ aþ ai þ b1x1i þ b2x2i . . .þ bkxki þ byear2015year2015j þ byear2016year2016j

þ byear2017year2017j þ byear2018year2018j þ logðPopijÞ

a � Normalðma ¼ 0;s2

a
¼ 10Þ

bk � Normalðmb ¼ 0;s2

b
¼ 10Þ

ai � Normalð0; s2

ai
Þ

sai � HalfCauchyð0; 1Þ

The expectation of Yij = yij given by:

EðYij ¼ yijÞ ¼ mij

Where i refers to neighbourhood i for i = 1,2,3..72, and j indexes year (2015,. . .2019), (α
+αi) intercept parameters and β1, β2 . . . βk are unknown regression coefficients that are esti-

mated from the data for the cluster level covariates x1i, x2i . . . xki, and sigma (sai) is the stan-

dard deviation for the random intercept for neighbourhood i. Popij is the total population of
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neighbourhood in year j that is used as the offset. Here year2015j, year2016j, year2017j and

year2018j are dummy variables which take the value of one for that year and take the value of

zero for the other years (the baseline year was 2019).

Equation 2

To define the zero-inflated Poisson model, let Z~Bern(1−p) (so Pr{Z = 0} = p) and indepen-

dently W~Pois(μ). Then the data are modelled by the zero-inflated variable Y which is defined

as

Y ¼ ZW

Pr Yi ¼ yið Þ ¼

ðpþ ð1 � pÞexpð� miÞÞ if yi ¼ 0

ð1 � pÞ
m

yi
i expð� miÞ

yi!

� �

if yi � 1

8
>><

>>:

logitðpiÞ ¼ W

W � Normalðm ¼ 0;s2

W
¼ 10Þ

logðmiÞ ¼ aþ ai þ b1x1i þ b2x2i . . .þ bkxki þ logðPopiÞ

a � Normalðma ¼ 0;s2

a
¼ 10Þ

bk � Normalðmb ¼ 0;s2

b
¼ 10Þ

ai � Normalð0; s2

ai
Þ

sai � HalfCauchyð0; 1Þ

The expectation of Yi = yi is given by:

EðYi ¼ yiÞ ¼ ð1 � pÞ mi

Where i refers to neighbourhood i for i = 1,2,3. . .72 (note we only have prevalence data for

one year, 2019). ϑ, (α+αi) intercept parameters and β1, β2 . . . βk are unknown regression coeffi-

cients that are estimated from the data for the covariates x1i, x2i . . . xki, and sigma (sai) is the

standard deviation for the random intercept for neighbourhood i. Popi is the total population

of neighbourhood that is used as the offset.

The intercept, mean rate ratios and 95% credible intervals (CrI) of the selected models are

presented in a model summary table. We drew 42,000 posterior samples of the prevalence and

notification rates from the selected models. The posterior bacteriologically-confirmed P:N

ratios were calculated by dividing the posterior prevalence rates by the posterior notification

rates (Eq 3). We obtained the posterior mean of the P:N ratios and their 95% posterior Crl,

and summarised their distribution in a choropleth map and a caterpillar plot [30]. Analysis

was conducted using R version 4.0.3 (R Foundation for Statistical Computing, Vienna).
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Equation 3

Posterior notification rateij ¼ expðaj þ aijÞ � 100; 000 ðFrom Equation 1Þ

Posterior prevalance rateij ¼ ð1 � pjÞ � expðaj þ aijÞ � 100; 000 ðFrom Equation 2Þ

Where j indexes the posterior sample j = 1,2,3, . . . 42,000 and i is for neighbourhood

i = 1,2,3 . . . 72.

The P:N ratio posterior was calculated by first drawing a sample of 42,000 posterior

samples of the posterior notification and prevalence rates per 100,000. The jth posterior P:N

ratio was calculated by dividing the jth posterior prevalence rate by the jth posterior notification

rate.

Sensitivity analysis. Neighbourhood-level TB prevalence was post-stratified according to

age-sex groups in neighbourhood populations from WorldPop in order to correct for under-

participation of some age-sex groups in the prevalence survey [31]. WorldPop population esti-

mates were used because they had more granular age-sex groups than our census-based

denominators. The post stratified TB prevalence was used to reproduce P:N ratios. We addi-

tionally undertook sensitivity analysis to estimate neighbourhood P:N ratio for all adult forms

of TB, including both bacteriologically-confirmed and clinically-diagnosed cases.

Ethical considerations

Ethical approval was granted by the London School of Hygiene and Tropical Medicine (16228)

and the College of Medicine, University of Malawi Research Ethics Committee (P.12/18/2556).

Participants in both the prevalence survey and MLW study census provided written informed

consent.

Results

Neighbourhood characteristics

From 2015 to 2019, the estimated total population of the 72 study neighbourhoods increased

from 612,792 to 905,419, with 60.90% (range: 54.80–70.60, sd: 3.00) adults (�15 years). There

was substantial neighbourhood-level variability in the mean percentage of adults who were

men (51.54%, range: 46.89–55.23, sd: 1.55), living in households headed by someone who had

not completed primary education (low education: 16.90%, range 4.30–32.40%, sd: 6.10) and

HIV prevalence 13.80% (range: 4.21–27.44%, sd: 4.32). The mean distance from the centroid

of the neighbourhoods to the nearest TB clinic was (1.74 km, range: 0.36–3.68 km, sd: 0.89)

Table 1. Neighbourhoods located near the centre of the city had higher population density,

and higher proportions of adults and male residents (Fig 1). The more peripheral and peri-

urban neighbourhoods tended to have higher distance to the nearest TB clinic, HIV prevalence

and percentage of household heads without primary education were generally higher in the

more peripheral (peri-urban) neighbourhood.

Empirical neighbourhood adult bacteriologically-confirmed TB cases

notification and prevalence rates

During 2015–19 there were a total of 2,078 adults aged 18 years or older with bacteriologically

-confirmed TB registered for treatment from the study neighbourhoods. CNR’s declined dur-

ing this period; neighbourhood mean adult bacteriologically-confirmed TB CNR’s from 2015

to 2019 were 131 (range: 0–383, sd: 77), 134 (range: 32–328, sd:70), 114 (range: 28–291, sd:57),

56 (range: 0–167, sd:38) and 46 (0–144, sd:29) per 1000,000 adults Table 1. HIV prevalence
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Table 1. Neighbourhood-level summary data for the 72 neighbourhoods.

Characteristic Mean (sd) Range n N

2015 bacteriologically-confirmed adult TB notification rate (per 100,000) 131 (77) 0–383 479 371,834

2016 bacteriologically-confirmed adult TB notification rate (per 100,000) 134 (70) 32–328 539 415,226

2017 bacteriologically-confirmed adult TB notification rate (per 100,000) 114 (57) 28–291 519 463,707

2018 bacteriologically-confirmed adult TB notification rate (per 100,000) 56 (38) 0–167 283 517,860

2019 bacteriologically-confirmed adult TB notification rate (per 100,000) 46 (29) 0–144 258 578,377

2019 adult bacteriologically-confirmed TB prevalence rate (per 100,000) 215 (335) 0–1,415 29 13,490

2015 adult TB notification rate† (per 100,000) 242 (119) 23–639 884 371,834

2016 adult TB notification rate† (per 100,000) 273 (128) 47–629 1,106 415,226

2017 adult TB notification rate† (per 100,000) 251 (101) 42–451 1,157 463,707

2018 adult TB notification rate† (per 100,000) 127 (66) 13–287 642 517,860

2019 adult TB notification rate† (per 100,000) 150 (65) 28–349 849 578,377

Percentage of adults (�15y) (%) 60.90 (3.00) 54.80–70.60 371,834 612,792

Percentage of male adults (%) 51.54 (1.55) 46.89–55.23 191,855 371,834

Household head without primary education (%) 16.90 (6.10) 4.30–32.40 2,700 15,897

Distance to TB clinic (km) 1.74 (0.89) 0.36–3.68 NA NA

HIV prevalence (%) 13.80 (4.32) 4.21–27.44 1631 11705

km, kilometre; n, numerator; N, denominator; NA, (not applicable); range, minimum—maximum; sd, standard deviation. Numerator and denominators for TB

notifications and TB prevalence limited to adults.

†All forms of TB

https://doi.org/10.1371/journal.pone.0268749.t001

Fig 1. Choropleth maps all covariates considered in predictive models of TB case prevalence and notification rates.

https://doi.org/10.1371/journal.pone.0268749.g001
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among TB cases was 65.45% (3394/5260) and 64.56% (1864/5260) of registered patients were

men.

A total of 29 (range: 0–3, sd: 0.6) bacteriologically-confirmed previously undiagnosed adult

TB patients were identified during the prevalence survey, with an empirical neighbourhood

mean of bacteriologically-confirmed TB prevalence rate of 215 (29/13,490) per 100,000 (range:

0–1,415, sd: 335). The rates of empirical TB notifications were higher in the city centre and

were lower in the city’s outskirts, whereas empirical TB prevalence rates were higher on the

outskirts of the city Fig 2.

Neighbourhood-level predicted TB prevalence and notifications rates

For analysis of microbiologically-confirmed adult TB CNRs, the model that was selected

included a neighbourhood-level random intercept, and neighbourhood-level covariates

including the percentage of adults (�15y), distance to the nearest TB clinic, and percentage of

household heads who had not completed primary school education (S2 and S6 Tables).

There was an overall trend of a reduction in rates of annual adult bacteriologically-con-

firmed TB notification rates. In comparison to 2019, the years 2015 (rate ratio [RR]: 2.89, 95%

CrI: 2.48–3.37), 2016 (RR: 2.91, 95% CrI: 2.51–3.38), 2017 (RR: 2.51, 95% CrI: 2.16–2.92) and

2018 (RR: 1.23, 95% CrI: 1.03–1.45) had substantially higher CNRs (Table 2).

For the prevalence rates, the model with a random intercept for neighbourhood and neigh-

bourhood percentage of adults (�15y), was selected (S1 and S5 Tables). In this model, there

was no association between the neighbourhood TB prevalence rate and the percentage of

neighbourhood adults (�15y) (Table 2).

Fig 2. Empirical bacteriologically-confirmed adult TB case notification rates (CNR) 2015–2019 (A-E), and TB case prevalence rates (CPR) 2019 (F); both

per 100,000.

https://doi.org/10.1371/journal.pone.0268749.g002

PLOS ONE Neighbourhood tuberculosis hotspots of underdiagnosis in Blantyre, Malawi

PLOS ONE | https://doi.org/10.1371/journal.pone.0268749 May 23, 2022 9 / 19

https://doi.org/10.1371/journal.pone.0268749.g002
https://doi.org/10.1371/journal.pone.0268749


Neighbourhood level hotspots of TB underdiagnosis, ratio of prevalence to

notifications

The mean neighbourhood posterior P:N ratios for adult bacteriologically-confirmed TB varied

considerably between neighbourhoods (range: 1.70–10.40, sd: 1.79), with the mean posterior

P:N ratio of the 72 neighbourhoods being 4.49 (95% CrI: 0.98–11.91) Fig 3.

Overall, P:N ratios were higher in neighbourhoods in the outskirts of the city, characterised

by rapidly-growing informal settlements (Fig 4).

Sensitivity analysis. The model coefficients were mostly similar to that in the primary

analysis (S7 and S8 Tables). The mean posterior P:N ratio of the 72 neighbourhoods was 5.04

(95% CrI: 1.86–10.26) and was 1.39 (95% CrI: 0.30–3.58) for the post stratified TB prevalence

base analysis and the analysis based on all notified TB cases respectively. Overall, the distribu-

tion of the P:N ratios was similar to the primary analysis (S1–S5 Figs). The sensitivity analysis

of all TB case notifications classified 14 neighbourhoods into the 4th quartile of the 18 neigh-

bourhoods that were classified as having 4th quartile P:N ratios by the primary analysis, while

the analysis based on post-stratified TB prevalence classified 16 neighbourhoods into 4th quar-

tile of the 18 neighbourhoods that were classified as having 4th quartile P:N ratio by the pri-

mary analysis (S9 Table). Similar to the primary analysis, the P:N ratios were higher in the

outskirts of the city in the informal urban settlements that were located in the rapidly-growing

informal settlements on the periphery of the city (S3 and S5 Figs).

Discussion

Our main finding was that urban Blantyre in Malawi, a city with free health services and high

coverage of treatment for HIV but high rates of poverty, has a significant burden of delayed

and undiagnosed TB, with an overall estimated mean neighbourhood TB P:N ratio of 4.49:1.

The 18/72 neighbourhoods with P:N ratios in the highest quartile were likely to be “hotspots”

of delayed diagnosis or missed diagnosis of TB cases. Most neighbourhoods with high P:N

ratios were located in the rapidly-growing informal settlements on the periphery of the city

and were adjacent to forest reserves or mountainous terrain where the city is expanding.

Table 2. Parameter estimates for selected regression models for predicting neighbourhood level TB prevalence and notifications.

Adult bacteriologically-confirmed TB

notification model

Adult bacteriologically -confirmed TB

prevalence model

Fixed effects
Parameters

Mean rate ratio 95% CrI Mean rate ratio 95% CrI

Percentage of adult residents (�15y)a 0.96 (0.93, 1.00) 0.94 (0.80, 1.10)

Distance to nearest TB clinic (km)a 0.78 (0.69, 0.88)

Percentage of household heads that did not complete primary schoola 0.98 (0.96, 0.99)

Year: 2019 Reference

Year: 2015 2.89 (2.48, 3.37)

Year: 2016 2.91 (2.51, 3.38)

Year: 2017 2.51 (2.16, 2.92)

Year: 2018 1.23 (1.03, 1.45)

Intercept 50.88�10−5 (42.99�10−5, 60.00�10−5) 232.08�10−5 (132.05�10−5, 404.96�10−5)

Zero inflation intercept 0.18 (0.01, 0.46)

Random effects SD: cluster 0.31 (0.24, 0.39) 0.33 (0.01, 0.90)

Crl, Credible interval; Km, kilometre; sd, standard deviation.
aPercentage of adults was centred by subtracting by its mean (60.90%), Distance to nearest TB clinic (km) was centred by subtracting by 1km, Percentage of household

head that did not complete primary school was centred by subtracting by its mean (16.90%).

https://doi.org/10.1371/journal.pone.0268749.t002
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However, we did not directly capture informality, and further research is required to quantita-

tively define “the degree of formality of settlement”; these are residential areas that are not reg-

istered by the authorities or have makeshift housing structures and are likely to be important

areas of focus for TB case finding activities. Our approach, which uses data that can be col-

lected by District Health Officers in urban African cities (neighbourhood distance to clinic,

Fig 3. Neighbourhood level TB prevalence to notification ratios (with 95% Crls) using final models. The

neighbourhoods were ordered according to prevalence to notification ratio size. The dashed line is the mean

prevalence to notification ratio. Crl Credible interval.

https://doi.org/10.1371/journal.pone.0268749.g003
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percentage of male residents, and percentage of households where the head has not completed

primary education), could be used to prioritise neighbourhoods for community-based TB

ACF and prevention interventions, potentially a more efficient and effective way of delivering

TB screening and prevention interventions [32].

A major strength of this analysis was that we used data from an enhanced TB surveillance

system and a well-conducted subdistrict area prevalence survey. We used a systematic model-

ling strategy to identify a parsimonious model with variables that are predictive of

Fig 4. Map of TB prevalence to notification ratios predicted from final models including estimated neighbourhood random effects (inset map

of Malawi with Blantyre in red). Mosdels include neighbourhood random effects. Neighbourhoods outlined in blue are in the highest quartile for P:

N ratios. Inset map of Malawi with Blantyre District in red. Map tile data from OpenStreetMap.

https://doi.org/10.1371/journal.pone.0268749.g004
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neighbourhood TB notification and prevalence rates. Our strategy of combining notification

and prevalence data offers important improvements in identifying high-burden areas com-

pared to approaches based solely on notification rates [11, 12]. When only notifications are

used, we might erroneously identify areas with easier access to TB diagnosis as hotspots and

miss areas with a high burden of undiagnosed TB that have more limited access to TB diagno-

sis [17]. By using both notification and prevalence we can identify areas where the underlying

notification of TB cases misses a higher proportion of undiagnosed TB cases [17]. But, by

using the covariates identified in our models, our hope is that a new setting with similar char-

acteristics to Blantyre might successfully rank its neighbourhoods to identify areas likely to

have underdiagnosis. Hence our approach may reduce the need to carrying out a relatively

expensive across-the-board prevalence survey [33].

The End TB goal of 90 percent reduction in TB incidence between 2015 and 2035 is difficult

to track in the majority of high-TB settings where TB incidence cannot be estimated directly

from notifications but is estimated through inference methods that can produce imprecise esti-

mates [1, 2, 34]. Developing methods for identifying areas of TB underdiagnosis is therefore

critical to guide targeted intervention [12, 35, 36], which will be more important as epidemics

become more concentrated. CNRs in Blantyre Malawi declined between 2015 to 2019, reflect-

ing the general trend in other African countries in this period [1, 2]. Blantyre has also achieved

high coverage of HIV treatment and isoniazid preventive therapy [21, 37].

The P:N ratio, which is used to assess TB burden in this study, is a proxy for the time

between onset of TB infectiousness and diagnosis, and it is typically given the unit of years in

mathematical modelling studies; its inverse is known as the patient diagnostic rate [17, 38].

While the P:N ratio does not directly measure incidence, it can be used as an indicator of

neighbourhood delayed TB case diagnoses or missed diagnosis [17]. We found overall across

Blantyre that the P:N ratio was high (4.49:1), indicating substantial underdiagnosis and

delayed diagnosis of TB.

Our data suggests that the efficiency of selecting communities for community-based inter-

ventions, such as those based on poverty and population density, could be improved by incor-

porating neighbourhood-level prevalence survey and notification data which allows a more

granular understanding of TB epidemiology [3, 9, 32, 39]. District TB programmes benefit the

most when they have information that enable them to prioritise their efforts, because they usu-

ally operate under resource constraints [3, 35. 39]. TB programmes must collect additional

data to what is routinely collected through national TB case notification systems at the time of

registering patients to gain a better understanding of the local TB epidemiology and guide

public health interventions [15, 32, 36]. The majority of people who are disproportionately

affected by TB, live in informal urban settlements that lack postal or zip codes [1, 11, 19]. Col-

lecting of neighbourhood location of TB patients’ households may provide additional epidemi-

ological insights for planning spatially-targeted interventions of TB hotspots [11–13, 35, 36].

Community-based TB ACF interventions have been shown to be most effective when con-

ducted intensively, through repeated screening of communities over a short period of time [7,

8]. For example, the ACT3 trial in Vietnam, conducted between 2014 and 2016, demonstrated

reductions in TB prevalence through community ACF by offering annual Xpert MTB/Rif

screening in 60 intervention neighbourhoods with approximately 54,000 adults over three

years [8]. In a post intervention prevalence survey the intervention clusters showed a 44%

reduction in TB prevalence [8]. TB screening interventions such as those tested in the ACT3

study would be logistically and financially challenging in a setting like urban Blantyre, where

health systems budgets are severely constrained [20, 22]. Mathematical modelling work in Rio

de Janeiro demonstrated that reducing TB transmission within TB hotspot neighbourhoods

could reduce the city-wide TB incidence [13].
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Both the distance to the nearest TB clinic and the percentage of household heads who did

not finish primary school were positively associated with lower case notification rates. Both

the notification and prevalence rate models had random intercept standard deviations with

lower bounds of their 95% credible intervals that were well away from zero, indicating that TB

epidemiology varied by city neighbourhood even after adjusting for covariates. We considered

modelling neighbourhood random effects with the spatial ICAR term (S1 and S2 Equations

and S3 and S4 Tables), but models with random intercept terms gave a better description of

the data because the spatial proximity of neighbourhoods with very different historical levels

of interventions caused the ICAR model to over-smooth the data (S5 and S6 Tables). In addi-

tion, we did not have enough data to support both random effects in the same model.

Our analysis had some limitations. The prevalence survey detected a low number of prevalent

cases in the city. This meant that the models for prevalence had less power for identifying predic-

tive covariates. Other work modelling regional TB prevalence has also found most potential covar-

iates were unable to improve predictions [33]. The prevalence survey was also just done once; it is

possible that if we had a repeat prevalence survey, we could have found a different distribution of

TB prevalence than what was captured in this study [40]. Some groups were also under sampled

by the prevalence trial, particularly men; we accounted for this in our post-stratified sensitivity

analysis, showing similar results. In addition, P:N ratios based on microbiologically-confirmed

notified TB had higher mean rate ratios than in the sensitivity analysis that included all forms of

TB, although the neighbourhoods identified with high P:N ratios were similar. The lower bound

of the 95% CrI of some of the neighbourhood P:N ratios were less than one (Fig 3), although this

represents low statistical power rather than a possibility of “overdiagnosis” of TB. More details on

the goodness of fit of the models have been provided in the supplementary section (S3 Equation),

which suggests that our models sufficiently describe the data well. Antiretroviral therapy (ART)

coverage data was also not included in the model but there was a high percentage coverage of

ART for people living with HIV across all neighbourhoods (mean: 95.41%, range: 84.01–95.41, sd:

0.03); we instead included HIV prevalence as people living with HIV are still at an increased risk

of TB compared to HIV negative individuals even when they are on ART [1].

Countries in WHO Africa region need to accelerate the rate of TB incidence reduction

from the current rate of about 4% per year to at least 10% by 2025 in order to meet the End TB

goals [1, 2, 41]. For this to be achievable it is important that we have effective methods for

prioritising communities for TB interventions to efficiently use the available resources [3].

National TB programmes that need to prioritise neighbourhood areas for TB interventions

such as ACF, can collect the variables identified by our method which will be used by the

model to predict the P:N ratios. By focusing on underserved communities, this will ensure uni-

versal health coverage for communities that are underserved by facility-based health care. The

P:N ratios should be interpreted alongside the CNRs to obtain the full nature of the epidemic

i.e., Fig 3. There is also a need to externally validate the model, as well as to investigate the

effectiveness of spatially targeted interventions in randomised controlled trials [36].

Conclusion

Using citywide enhanced surveillance data and prevalence survey data, we developed a predic-

tive model to prioritise neighbourhoods for TB case detection and prevention activities based

on readily available local data. In most low-resource settings, current active case-finding strate-

gies are inefficient and resource-intensive. We have demonstrated a method for identifying

neighbourhoods with high rates of underdiagnosis. Researchers and programme managers

could prioritise identified TB hotspots for TB control and prevention interventions to focus

efforts on urban TB elimination.
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Supporting information
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S2 Equation.

(PDF)

S3 Equation. Model goodness of fit assessment.

(PDF)

S1 Fig. Neighbourhood level TB prevalence to notification rate ratios (with 95% CIs) using

final models. The neighbourhoods were ordered according to prevalence to notification ratio

size. Analysis based on post stratified TB prevalence with microbiologically-confirmed TB

notifications kept the same as in the primary analysis. The dashed line is the mean prevalence

to notification ratio. Crl Credible interval.

(PDF)

S2 Fig. Differences of neighbourhood level TB prevalence to notification rate ratios (P:N

rate ratios), the P:N rate ratio based on post stratified prevalence TB subtracted by the P:N

ratio based on the primary analysis.

(PDF)

S3 Fig. Map of TB prevalence to notification ratios predicted from final models (Inset map

of Malawi with Blantyre in red). Analysis based on post stratified TB prevalence and with

microbiologically-confirmed TB notifications kept the same as in the primary analysis. Models

include neighbourhood random effects. Neighbourhoods outlined in blue are in the highest

quartile for P:N ratios. Map tile data from OpenStreetMap.

(PDF)

S4 Fig. Neighbourhood level TB prevalence to notification rate ratios (with 95% CIs) using

final models. The neighbourhoods were ordered according to prevalence to notification ratio

size. Analysis based on microbiologically-confirmed TB and clinically-diagnosed cases and

with TB prevalence kept the same as in the primary analysis. The dashed line is the mean prev-

alence to notification ratio. Crl Credible interval.

(PDF)

S5 Fig. Map of TB prevalence to notification ratios predicted from final models (Inset map

of Malawi with Blantyre in red). Analysis based on microbiologically-confirmed TB and clin-

ically-diagnosed cases and with TB prevalence kept the same as in the primary analysis. Models

include neighbourhood random effects. Neighbourhoods outlined in blue are in the highest

quartile for P:N ratios. Map tile data from OpenStreetMap.

(PDF)

S6 Fig. Observed versus predicted mean CNRs (95% Crls). Analysis based on microbiologi-

cally-confirmed TB as in the primary analysis. Crl Credible interval.

(PDF)

S7 Fig. Observed versus predicted mean prevalence rates (95% Crls). Analysis based on

microbiologically-confirmed TB as in the primary analysis. Crl Credible interval.

(PDF)

S1 Table. Table of all the TB prevalence neighbourhood level models with a random inter-

cept of clinic of treatment registration. Coefficients (mean rate ratio) were exponentiated
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and intercepts were multiplied by 100,000.
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S2 Table. Table of all the TB notified neighbourhood level models with a random intercept

of clinic of treatment registration. Coefficients (mean rate ratio) were exponentiated and

intercepts were multiplied by 100,000.
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S3 Table. Table of all the TB prevalence neighbourhood level models with spatial random
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S4 Table. Table of all the TB notified neighbourhood level models with spatial random

effect. Coefficients (mean rate ratio) were exponentiated and intercepts were multiplied by

100,000.
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S5 Table. Table of top ten prevalence models using the ELPD LOO statistic, comparing the

models in S1 and S3 Tables.
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S6 Table. Table of top ten notification models using the ELPD LOO statistic, comparing

the models in S2 and S4 Tables.

(PDF)

S7 Table. Parameter estimates for final regression models for predicting neighbourhood

level TB prevalence and notifications. Analysis based on post stratified TB prevalence and

with confirmed TB notifications kept the same as in the primary analysis.

(PDF)

S8 Table. Parameter estimates for final regression models for predicting neighbourhood

level TB prevalence and notifications. Analysis based on both microbiologically-confirmed

TB and clinically-diagnosed cases and with TB prevalence kept the same as in the primary

analysis.

(PDF)

S9 Table. Comparing model results of prevalence to microbiologically confirmed notifica-

tion rations primary analysis, compared to analysis based on post stratified TB prevalence

and based on all TB case notifications. Only neighbourhoods that were included in the 4th

quartile were included in the table.

(PDF)
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