Piperacillin/tazobactam resistance in a clinical isolate of *Escherichia coli* due to IS26-mediated amplification of *bla*_{TEM-1B}.

Alasdair T. M. Hubbard¹, Jennifer Mason², Paul Roberts², Christopher M Parry^{1,3}, Caroline Coreless², Jon van Aartsen², Alex Howard², Issra Bulgasim¹, Emily R. Adams¹, Adam P. Roberts¹ and Thomas Edwards¹

¹Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA ²Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP ³Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP

Resistance to piperacillin/tazobactam (TZP), but susceptibility to carbapenems and cephalosporins, has been proposed to be mediated by hyperproduction of the β-lactamases Bla_{TEM-1} or AmpC due to mutations within the promoter regions¹. However, the mechanism of hyperproduction in isolates that lack promoter region mutations is not well understood but has recently been linked to the amplification of *bla*_{TEM-1}² and the presence of IS26³. Following identification of a pair of *Escherichia coli* clinical isolates displaying within-patient evolution to TZP resistance, we sought to further understand this mechanism

A TZP-susceptible and carbapenem/cephalosporin-susceptible *Escherichia coli* isolate was identified from a blood culture sample at the Royal Liverpool University Hospital in Liverpool, UK. The isolate contained a pseudocompound transposon (PTn6762) with two IS26 flanking multiple antimicrobial resistance genes, including $bla_{\text{TEM-1B}}$

The excised PTn6762 circularises forming a translocatable unit Chromosome IS26 Chromosome Translocatable Unit Figure 4: Amplification of the left and right junctions of the integrated chromosomally located transposon and the translocatable unit The translocatable unit can re-insert into the chromosome multiple times, creating a tandem array and increasing the copy number of bla_{TEM-1R} , resulting in hyperproduction of the β -lactamase PTn6762 ¥ 0.3 1526 0.2-

10 15 20

TZP-sensitive

Chemotherapy.

References

1.

2.

3.

TZP-resistan

Figure 5: Copy number of the antibiotic resistance

genes present on PTn6762/translocatable unit

compared to the housekeeping gene uidA

Time (Minutes

Figure 6: Hydrolysis of nitrocefin by bla TEM.18 in

Lartigue, et al. 2002. Promoters P3, Pa/Pb, P4, and P5 Upstream from bla_{TEM} Genes and Their Relationship to β-Lactam Resistance. Antimicrobial Agents and Chemotherapy.

Hansen, et al. 2019 Resistance to piperacillin/tazobactam in Escherichia coli resulting from extensive IS26-associated gene amplification of bla_{TEM-1}. Journal of Antimicrobial

the TZP-susceptible and TZP-resistant isolate

2. Schechter, et al. 2019. Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. Mbio.

When the isolate is exposed to TZP, PTn6762 is excised from the chromosome with a single IS26, leaving the second IS26 in the chromosome

