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l1l. Results

a. lllustration with 1 simulation (q=50%)

= Based on case location, disease mapping estimates arisk of disease across a geographic region
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= Location at diagnhosis does not necessarily correspond to location at exposure o _ . . The higher risk circle is
= Some disease have long latency periods (e.g. leukemia, mesothelioma) . A identifiec?more accuratel
= Time, duration and location of exposure are unknown © | g K . . Y
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o or incubation weights, rather
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a. Example of data (4 locations)

b. Creating Weights: W, = G(D,)
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c. Adapt distance-based mapping (DBM) [2] z S = Mapping using incubation
: . : : . S 3 rather than duration weights
= Disease mapping: compares an observed CDF F to an expected F, across a 2-dimensional study region A I - & I : L dg
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= DBM adapted to residential history: replace F, and F; by averaged sums 2W,F,, and 2W,,F,, respectively

d. Simulations

= Expected spatial distribution (F;) : Uniform in unit square
= Observed spatial distribution (F ): Increased risk in small circle
= Strength: g% cases have one location in circle (Multinomial, incubation weights)

e. Evaluation
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V. Conclusion

= Disease mapping can incorporate residential history of cases by using a weighting scheme
» The accuracy at locating an increased risk improves by mapping with duration or incubation weights rather

= Estimate DBM scores across region

Number of grid points

With a high score

With a low score

= Resolution =50x50 grid points
= Dichotomize scores according to threshold *

In cluster region

a b

(*) Threshold: we draw 100 sample of size 100 including a randomly located cluster of 10 points.
Cluster radius is uniformly selected from (0.05,0.3). For each sample and a range of threholds,

Not in cluster region

we select the one that minimizes the distance between the points (1,0) and (sensitivity,1-
specificity). The median threshold across all 100 simulations is then selected for all remaining
simulations.
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than mapping with location at diagnosis only
» There are other choices for the function G: - Step function
- Weight all locations of a case equally
- Include (time varying) covariates
= A similar method can be developed when cases are available with multiple daily locations (home/work/school)
along with the proportion of the day spent at each location
= In future work, we can relax some limitations in the methods (missing spatial information) and simulations
(non-uniform population, atemporal dichotomized risk)
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