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I. Motivation
Background
 Based on case location, disease mapping estimates a risk of disease across a geographic region
 Location at diagnosis does not necessarily correspond to location at exposure
 Some disease have long latency periods (e.g. leukemia, mesothelioma)
 Time, duration and location of exposure are unknown
 Residential history has already been incorporated in tests for cluster detection [1,3]

Questions
 How can residential history be incorporated in disease mapping?
 Can location at exposure be identified more accurately?

 Disease mapping can incorporate residential history of cases by using a weighting scheme
 The accuracy at locating an increased risk improves by mapping with duration or incubation weights rather 

than mapping with location at diagnosis only
 There are other choices for the function G: - Step function

- Weight all locations of a case equally
- Include (time varying) covariates

 A similar method can be developed when cases are available with multiple daily locations (home/work/school) 
along with the proportion of the day spent at each location

 In future work, we can relax some limitations in the methods (missing spatial information) and simulations 
(non-uniform population, atemporal dichotomized risk)

b. Evaluation of 1000 simulations

a. Illustration with 1 simulation (q=50%)

a. Example of data (4 locations) b. Creating Weights: Wk = G(Dk)

c. Adapt distance-based mapping  (DBM) [2]

 Disease mapping: compares an observed CDF F to an expected F0 across a 2-dimensional study region
 DBM consists of four steps:

1. Project the data to one dimension: Observed distribution of distances to one chosen fixed point (Fi)
2. Compare the observed distribution to that expected under the null (F0i) 
3. Repeat 1 and 2 for a selection of fixed points (i =1,...,N)
4. Average the measure across projections to compute a risk-like score at each point in the region 

 DBM adapted to residential history: replace Fi and F0i by averaged sums ΣWkFik and ΣW0kF0ik respectively

d. Simulations
 Expected spatial distribution (F0) : Uniform in unit square
 Observed spatial distribution (F ): Increased risk in small circle
 Strength: q% cases have one location in circle (Multinomial, incubation weights)

IV. Conclusion

II. Methods

III. Results

e. Evaluation
 Estimate DBM scores across region
 Resolution = 50x50 grid points
 Dichotomize scores according to threshold *

Number of grid points With a high score With a low score

In cluster region a b

Not in cluster region c d

Sensitivity = a/(a+b)              Specificity = d/(c+d)

(*) Threshold: we draw 100 sample of size 100 including a randomly located cluster of 10 points.
Cluster radius is uniformly selected from (0.05,0.3). For each sample and a range of threholds,
we select the one that minimizes the distance between the points (1,0) and (sensitivity,1-
specificity). The median threshold across all 100 simulations is then selected for all remaining
simulations.

 The higher risk circle is 
identified more accurately 
by mapping using duration 
or incubation weights, rather 
than by mapping using only 
location at diagnosis
 The color cutoffs are 
determined by resampling
from the reference 
population F0

 Mapping using duration 
weights rather than only 
location at diagnosis  
improves sensitivity and 
specificity
 Mapping using incubation 
rather than duration weights 
improves sensitivity and 
specificity mostly when less 
than 50% cases are exposed
 Sensitivity and specificity 
tend to increase as the 
percentage of exposed 
cases increases
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