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Abstract
When studying the relationship between an individual’s location and the acquisition of
disease, the location to use is not always clear. When location at exposure is different from
that at diagnosis, the latter may not represent the relevant information. While time and
location of exposure are often unknown, residential history of cases can substantially inform
a spatial analysis. In spatial surveillance, spatial data on cases are often used to detect and
locate subareas of the study region with higher or lower risk of disease. Current literature
has adapted detection methods to incorporate residential history of cases where available.
We extend a disease mapping method to incorporate such data. Through simulations we
show that our method is more accurate at identifying a localized increased risk of disease
when compared to mapping when only location at diagnosis is considered.

Key Words: spatial surveillance, disease mapping, distance-based method, residential
history, cluster detection, incubation distribution

1. Introduction

When public health officials are to make a decision, they rely on prior information
assessing the state of health of a particular population. Such information can consist
of a health event (e.g. occurrence of female breast cancer) within a study region
(e.g. in the state of Massachusetts), a study period (e.g. during 1980-1990), as
in [1], and possibly in some subgroup (e.g. for women with age greater than 55).
Establishing this knowledge properly requires collecting accurate information and
developing precise analytical tools. In this work we consider methods that quantify
a variable across a region. Examples of such variables in the context of public
health are measures of disease occurrence, environmental exposure, access to care
or socio-economic characteristics. Knowing how the quantity varies throughout the
region allows for targeted decisions and interventions. When focusing on disease
surveillance or syndromic surveillance, the development of these methods promotes
using spatial data as an important source of information [2, 3].

Suppose we have a collection of cases diagnosed for a particular disease during
a fixed time period, with a location available for each of them. Typically, this
collected information refers to where the cases were diagnosed or where they lived
at time of diagnosis, and usually falls within a fixed study region. This collection of
points represents a sample from a spatial distribution from which to draw inference.
In public health surveillance, inference questions are usually framed to determine
whether this spatial distribution is unusual or not. Statistical methods can be
developed to answer the following questions: At a given time point, is the spatial
distribution of cases as expected? If not, are there specific areas in the region with an
excess or lack of cases? While the first can be answered globally or locally, the second
specifically calls for local approaches. Quantifying locally how unusual the spatial
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distribution of cases is compared to a known reference distribution provides an
example of a variable measured across the study region, specifically a local measure
of disease risk. We will refer to such an approach as disease risk mapping.

While a single location is often the only spatial information available, it describes
individuals as static rather than mobile. However in the same way that a person’s
age or blood pressure changes overtime, individuals change locations throughout the
course of a day or their lifetime [4]. Hence the location where individuals contract
diseases can be very different from their location at diagnosis. For some diseases
with long latency periods, the time between exposure and diagnosis can span many
years [5]. Reporting cases’ living address at diagnosis may not provide useful spatial
information for studying any geographical exposure, unless it is restricted to those
who have resided at their address at diagnosis for many years [1]. When the exposure
is related to a particular area of the study region, incorporating the residential
history in a quantitative analysis can have several consequences. First, if cases
have moved away from the area where they were exposed, the contrast between the
exposure area and the remaining part of the study region is attenuated. Second
individuals selected to represent the reference population (e.g. population at risk)
whose reported address falls in the exposure area further diminish this contrast.
Both situations will reduce any spatial method’s ability to pick up the existence of
an area at risk. Hence it is important to consider analyzing a history of residential
addresses rather than just the location at diagnosis. Furthermore, many exposures
are positively related to risk of disease, that is a longer exposure increases the risk.
Alternatively, some risks sources are only in existence for specific periods of time
[6]. Having the duration of stay along with the residential history can therefore lead
to even more informative analysis.

A few authors have considered extending spatial methods to incorporate resi-
dential history. Jacquez [7] provides a detailed description on how to adapt global,
local and focused geographic tests for clustering, which are variations of Cuzick and
Edwards’s nearest neighbor method [8]. Recently Manjourides and Pagano [9, 10]
have developed an extension for the M -statistic, an approach originally designed as
a global test of clustering from the perspective of the distribution of distances be-
tween points [11]. Global clustering methods have an advantage in terms of power of
detection, since they consists of a single test, however they do not locate where any
clustering might occur. Focused methods on the other hand require choosing the
focus of possible clustering. Finally, the local approach extended in [7] investigates
clustering at any case location in the region, but the methods does not account for
multiple testing. As an alternative methodology to studying the spatial information
on cases, disease mapping methods focus on estimating a change in the spatial dis-
tribution of cases from a reference distribution across the study region. Currently,
however, they only apply to a single location per case.

In this work we propose to adapt a disease mapping method [12, 13] to incor-
porate residential history. In the next section, we present a detailed description
of this new approach based on the ideas of Manjourides and Pagano [9, 10]. The
method is evaluated by simulations in the unit square in the third section. We finish
with some general comments about the advantages and limitations of our proposed
approach.



2. Methods

2.1 Notation and Definition

Suppose cases are located within a fixed study region R, subset of R2, and let
∥.∥ be the Euclidean distance measure defined on R2. We assume the region R is
the support for both the locations and the domain of the mapping function. In
practice the latter is represented by a finite set of grid points {y1, . . . , yr} in R,
which are chosen by superimposing a lattice over the study region. Hence we define
the mapping function on R′ = {y1, . . . , yr} ⊂ R.

Definition 2.1. Let R′ = {y1, . . . , yr} ⊂ R be a finite collection of points in the
Euclidean space. We call any real-valued function M(.) : R′ → R a (disease)
mapping function, and we call the range of M , i.e. the set of function values
M(y1), . . . ,M(yr), the set of (disease) scores.

In the context of mapping a risk of disease, we can define the sample space and
the mapping function more precisely. Assume that the spatial data on each case
consists of a single location in R, then this location is a random point in R. In
practice, since the population from which cases arise is finite, the sample space Ω
should be a finite collection of points inR. However to allow for a flexible framework,
such as defining probability density functions (PDF) and incorporating the mobility
of individual over time, we let Ω = R.

Consider now that X is the bivariate random vector representing the location
of a case in Ω = R and let F : R2 → R be the corresponding bivariate cumulative
distribution function (CDF). We frame a disease risk mapping function as a com-
parison between F and a reference function F0 : R2 → R throughout the region R,
where the two functions represent respectively the ‘observed’ and ‘expected’ spatial
distribution of cases.

2.2 Distance-based mapping (DBM) for a single location per case

Standard risk mapping approaches are based on kernel density estimates, which suf-
fer from the curse-of-dimensionality if the methods are applied to dimensions higher
than R2 [14, 15]. The general motivation behind the mapping approach we have
proposed previously [12, 13] is to avert the curse-of-dimensionality by making a com-
parison of the observed and expected spatial distributions in one dimension. Any
potential loss of information from the projections is recovered by considering multi-
ple projections and combining the different comparisons. Similarly to tomographic
imaging, the two-dimensional space is studied as a fixed number of one-dimensional
slices.

We [12, 13] place a fixed number of ‘circle points’ along a circle circumscribed to
R. Each of the N circle points ci governs a projection, where the one-dimensional
counterpart of X is defined as the distance ∥ci −X∥, with associated CDF Fi(t) =∫
∥ci−x∥≤t dF (x). A one-dimensional CDF, F0i, is also defined based on F0. Then a
one-dimensional comparison of Fi and F0i is constructed as a function γi : R → R,

where for any real number t and a neighborhood Ni(t) =
(
t− h(t,i)

2 , t+ h(t,i)
2

)
:

γi(t) = ψ
(∫

Ni(t)
dFi,

∫
Ni(t)

dF0i

)
.



The comparison function ψ is usually chosen as the difference between the two
integrals, but other functions such as a weighted difference or a ratio are possible.
The width h(t, i) of the neighborhood is selected so that the integral remains fixed
under the null: for a proportion p0, we [13] define h(t, i) as the unique solution to∫
Ni(t)

dF0i = p0. The parameter p0 acts as a smoothing value and remains fixed for
any i and t. This common feature to all these projections guarantees that they all
play comparable roles. The final disease mapping function Γ : R′ → R is defined for
any point y in the finite region as the average of the one-dimensional comparisons
around ∥ci − y∥:

Γ(y) =
1

N

N∑
i=1

ψ

(∫
Ni(∥ci−y∥)

dFi, p0

)

=

(
1

N

N∑
i=1

∫
Ni(∥ci−y∥)

dFi

)
−p0 if ψ is the difference function,

(1)

=
1

N

N∑
i=1

EF
(
I
(
∥ci −X∥ ∈ Ni(∥ci − y∥)

))
− p0, (2)

where EF denotes the expected value relative to F and I(S) = 1 if S is true and 0
otherwise. Since p0 remains fixed, expressions (1) and (2) show that the mapping
function Γ is comparing a transformed version of F to p0. When the observed and
expected are the same, Γ equals a scalar throughout the region and we say the map
is flat.

To define an estimator for Γ, assume F0 remains known and suppose the loca-
tions of n cases are represented by i.i.d. random variables X1, . . . , Xn, distributed
according to F . For each projection we define the one-dimensional empirical cumu-
lative distribution function (ECDF) as F̂i(t) =

1
n

∑n
j=1 I(∥ci −Xj∥ ≤ t). Then for

fixed y ∈ R′ a consistent estimate of Γ(y) in (1) is

Γ̂(y) =
1

N

N∑
i=1

∫
Ni(∥ci−y∥)

dF̂i − p0.

2.3 Disease mapping for residential history

2.3.1 Example of data

Suppose we now allow individuals to move within the study region R over time. We
can describe the location of an individual in time by a pair (A, T ), where A is a point
in the study region and T is the first time at which the individual resides at that
location. The distribution of this three dimensional random vector is represented
by a CDF FA,T : R2 × R → R. Suppose we observe cases of a particular disease
diagnosed during a fixed time period [τs, τe], where τs and τe respectively mark the
start and end times of the collection period, and assume we know the residential
history of cases during a period of length τ before they were diagnosed. That is,
if Td denotes the time at diagnosis of a selected case, we assume that the complete
address history of that case during the time period [Td − τ, Td] is available. Define
also the random variable E on N∗ such that E − 1 denotes the number of times
a case has moved locations during (Td − τ, Td). We can represent the information



available for each case by the following random vector:

X̃ =
{
Td, E, (A1, T1), (A2, T2), . . . , (AE , TE) : T1 ≤ Td − τ < T2 < · · · < TE < Td

}
.

(3)

The CDF FX̃ of X̃ is a real valued function defined on R ×R ×P(R2 ×R). Figure
1 gives an example of such spatio-temporal information: a case is diagnosed in
2005, and its residential history is available for a period of τ = 20 years prior; this
individual has lived in E = 4 different locations, for which three of the starting
times fall during the study period [1985, 2005], but the starting time of the earliest
location is in 1980, which lies outside the study period.

1980 1990 1993 1999 2005

T1 T2 T3 T4 Td

τ= 20 years

Td − τ

D1 = τ

D2

D3

D4

Figure 1: Example of starting times
for a case with a history of four resi-
dences during the 20 years before diag-
nosis (Section 2.3.1) and corresponding
durations (Section 2.3.2).
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Figure 2: Three examples for the
CDF G: All weight given to location at
diagnosis (Red), weights based on time
spent at location (Blue), weights based
on incubation distribution (Green).

2.3.2 Creating Weights

We use the different starting times as a basis for defining weights. For each location,
define a duration:

Dk = min(τ, Td − Tk) for k = 1, . . . , E.

Except for possibly the earliest location A1, the random variable Dk measures the
length of time between the start of residence at location Ak and the time of diagnosis.
We also define DE+1 = 0. Given the ordering of the starting times, we have DE+1 =
0 < DE < DE−1 < · · · < D1 = τ . Figure 1 illustrates how to calculate the duration
for our example with four available locations during the time period [1985,2005].
Given any CDF G : R → [0, 1], we now define the following weights:

Wk = G(Dk)−G(Dk+1) for k = 1, . . . , E.

Since G is a CDF, the sum of the weights is
∑E

k=1Wk = G(D1) = G(τ) = 1.
Examples We can define the CDF as G(v) =

∫ v
0 g(u)du and choose one the

following functions g : R+ → R:



• Diagnosis: g(u) = 1
DE

I
(
u ∈ [0, DE ]

)
. This gives all weight to the location at

diagnosis.

• Sojourn: g(u) = 1
τ I

(
u ∈ [0, τ ]

)
. This defines the weights as the proportion of

time spent at each location.

• Incubation: g(u) = gI(u)/
∫ τ
0 gI(u)du where gI is the incubation PDF of the

disease. This defines the weights as the probability that the lag between
exposure and diagnosis falls between two successive durations Dk+1 and Dk.

Figure 2 illustrates how these three examples impact the resulting weights. The
first example gives a positive weight only for the most recent location and disregards
all others. The function depends on the duration DE , hence it will vary from one
case to another. The second and third examples on the other hand give a non-zero
weight to all locations.

2.3.3 How is DBM adapted to residential history?

As defined in Section 2.1, a disease mapping function assigns a value to each point
{y1, . . . , yr} in the study region. It aims to assess whether the risk of being diag-
nosed during the period [τs, τe] varies across the region based on individual’s spatial
locations over the last τ time units (e.g. years).

To characterize the mapping for multiple locations, we make two assumptions
about the components of X̃. First, the number E of pairs (A, T ) recorded for a
case only depends on the time of diagnosis and τ . Furthermore, given Td, τ and
E, these pairs of location and starting time are independent of each other, except
for the time ordering in (3). In particular, the durations between starting times are
independent. Hence, we can write the probability density function (PDF) of X̃ as

fX̃(td, e, a1, t1, . . . , ae, te|τs, τe, τ) = fX̃(td, e, a1, t1, . . . , ae, te)

= α−1fTd
(td)fE|Td

(e)

{ e∏
k=1

fA,T (ak, tk)

}
I[t1 ≤ td − τ < t2 < . . . < te ≤ td], (4)

where fTd
: [τs, τe] → R is the PDF of Td and fE|Td

: N∗ → R is the probability mass
function (PMF) of E|Td. The scalar α is a normalizing constant that guarantees
fX̃ integrates to one.

Based on Section 2.3.2 we now have a weightWk attached to each Ak and X̃ has
been transformed as Ỹ = {E, (A1,W1), . . . , (AE ,WE)} with CDF FỸ : R ×P(R2 ×
R) → R. The starting times are now encoded in the weights.

We propose to define our mapping for multiple locations as a comparison of FỸ
to a pre-specified reference population F0Ỹ : R ×P(R2 ×R) → R whose associated
PDF f0X̃ can be decomposed in a similar fashion to (4). The one-dimensional
comparisons are now constructed as weighted sums. Based on (2), for y ∈ R′, we
define:

Γ(y) =
1

N

N∑
i=1

EFỸ

( E∑
k=1

WkI
(
∥ci −Ak∥ ∈ Ni(∥ci − y∥)

))
− p0. (5)

The width of the intervals Ni are determined so that for any i,

EF0Ỹ

( E∑
k=1

WkI
(
∥ci −Ak∥ ∈ Ni(∥ci − y∥)

))
= p0. (6)



2.4 Simulations

To evaluate the performance of our adapted mapping function in Section 2.3, we
consider simulated data for cases with residential history in the unit square [9, 10].
Individuals are allowed to move within the square during a fixed time study period
[0, τ ]. For simplification, we assume all individuals are recruited at time Td = τ . A
certain proportion of cases have their disease status linked to a small portion of the
square via one of their locations, hence dichotomizing the study region in a high
risk area and a low risk area. We give further details in the sections below.

2.4.1 Reference population F0X̃

The residential history distribution of a reference population depicts the underlying
distribution from which we want to distinguish the distribution of the residential
history of cases. The fixed period for which it is available is also [0, τ ]. For this
underlying distribution, conditional on the total numbers of locations per individual
during the study period, we assume that location and starting time at that location
to be independent. Locations are distributed uniformly in the unit square R =
[0, 1] × [0, 1]. Starting times are generated such that the time length between two
successive starting times follows an exponential distribution Exp(λ). More precisely
we define the starting times the following way:

T1 = 0

T2 = T1 +min(Exp(λ), τ − T1)

...

TE = TE−1 +min(Exp(λ), τ − TE−1)

TE+1 = TE +min(Exp(λ), τ − TE) = τ,

so that TE+1 marks the end of the available residential history. The parameter 1/λ
is the average length of time between successive address changes.

2.4.2 Case population FX̃

The residential history of cases is distributed in a similar fashion to the reference
population, however we create an association between one of the locations and the
duration spent at that location. First we select a proportion q0 of cases for which
this association will occur. We also select a circular region C in the unit square,
where the center is drawn uniformly in R and the radius is fixed to 0.1 units. This
subregion will be the portion of the study region where some of the cases will have
resided during part of the study period. More precisely, for all cases we generate the
starting times as in Section 2.4.1. Then for q0 of the cases, one location is drawn
uniformly in C and the remaining E − 1 locations are drawn uniformly in the unit
square. Which location gets chosen in C is based on a function GI : R+ → [0, 1],
the CDF of a lognormal distribution with median mI and dispersion factor σI .
This function represents the distribution of the time length between exposure and
diagnosis. Given the starting times, we use it to define the probability that exposure
has occurred at each of the location:

pk =
GI(τ − Tk)−GI(τ − Tk+1)

GI(τ)
for k = 1, . . . , E.



We then select one rank based on a multinomial distribution of size 1 and proba-
bilities (p1, . . . , pE) and assign the location with that rank to be drawn uniformly
in C. The starting times and shape of GI determine at what period exposure most
likely occurred. However the multinomial may select another rank.

2.5 Evaluation

We represent the unit square by a regular grid {y1, y2, . . . , yr} of r = 50×50 = 2500
points. At each grid point, we implement our disease mapping function Γ from
Section 2.3 using N = 40 and p0 = 0.1, with one of the three weighting schemes
described in Section 2.3.2 (Diagnosis, Sojourn, Incubation). This is performed for
1000 samples of n = 100 cases drawn from FX̃ . To evaluate our mapping method we
use the metric proposed in Jeffery et al. [12, 13]. The residential history distribution
of the cases is based on a spatial distribution that dichotomizes the risk of disease
across the region. That is, q0 of the cases are more likely to have partly resided in
C than in the rest of the region. If a disease mapping function performs well, the
disease scores Γ(y1), . . . ,Γ(yr) should have high values in C and low values outside
of C. Thus, given a threshold γ, the grid points belong to one of four categories:
{y ∈ C,Γ(y) > γ}, {y /∈ C,Γ(y) > γ}, {y ∈ C,Γ(y) ≤ γ}, {y /∈ C,Γ(y) ≤ γ}.
We [12, 13] define two metrics based on these categories, sensitivity and specificity.
The former is the proportion of grid points in C that are given a ‘high’ disease
score, while the latter is the proportion of grid points not in C that are given a
‘low’ disease score. To choose the threshold γ, we draw 100 samples of size 100
from a distribution similar to FX̃ , where, instead of fixing the radius of C at 0.1, we
select it uniformly in (.05,.3). For each sample and a range of thresholds, we select
the threshold that minimizes the sum (1− sensitivity)2+(1− specificity)2, which
corresponds to the distance between a point on the ROC curve and (0,1). Finally
we define γ as the median of these 100 optimal thresholds.

3. Results

To apply our simulations, we choose some of the remaining parameters based on
results published by Armenian and Lilienfeld [16]. We select the median and disper-
sion factor for leukemia after radiotherapy for ankylosing spondylitis, (mI = 6.4,
σI = 1.71) and fix τ = 20 years. Also we choose the average time between locations
as 1/λ = 4 years. This value relates to a study published on duration of residence
in the United States [4]. Finally we select several values for q0: 10%, 25%, 35%,
50%, 75% and 100%.

3.1 One simulation

Figure 3 shows an application of DBM for residential history to one simulation
when q0 = 50%. The color cutoffs are determined by resampling from the reference
population F0. The higher risk circle is identified more accurately with higher scores
when mapping using Sojourn or Incubation weights rather than by mapping using
only location at diagnosis (Diagnosis).

3.2 One thousand simulations

Figures 4 and 5 show the respective distribution of sensitivity and specificity from
1000 simulations. Sensitivity and specificity both tend to increase as the percentage
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Figure 3: 50% of the cases have at least one location in the circle (N = 40, p0 =
0.1). Each panel corresponds to one of the function G from Section 2.3.2. Addi-
tionally the left panel show the 100 locations at time of diagnosis.

of exposed cases increases. In terms of both measures, mapping with Sojourn weights
improves the identification of the high risk circle compared to using only location
at diagnosis, mostly when up to 50% cases are exposed. In fact the mapping with
this weighting approach gives similar results to mapping with Incubation weights.

4. Conclusion

This work presents an extension of disease mapping which incorporates the residen-
tial histories of cases, adjusting each of the multiple locations by a weight. This
new method allows us to explore association between disease status and past ge-
ographical exposure. These types of relationships are important to measure when
particular areas of a region are linked to the disease. Simulations show that the
accuracy in mapping a dichotomized risk in the unit square varies on whether or
how the residential histories of individuals are taken into account by the weighting
scheme. The method performs best when weights are based on accurate information
about the time between exposure and diagnosis.

The weights are constructed as a finite partition of the interval [0, 1] defined by
a CDF G, and sum to one within an individual. Although the time information
was used with two continuous example for G, one could also define it as a step
function. The function G can also be chosen depending on which locations are most
informative, recent ones or older ones. The incubation distribution of disease or an
estimate of it is a reasonable choice, if available. One can imagine other weighting
schemes if we relax the constraint that G is increasing. If no time information is
available for example, all locations can be assigned the same weight (G(u) = 1/E).
If the disease has short incubation period, mobility of individuals during the course
of day can also act as a basis for weighting scheme, such as the proportion of
time spent at each location (work/home). Alternatively, the weights could relate to
covariates that vary from location to location, like age, and be adjusted to emphasize
or deemphasize particular strata, in the case of diseases that affect individuals only
during specific periods of their lifetime.

Future work should address some of the limitations present in this work, both
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Figure 4: Sensitivity to locate high risk
area (Y axis) for several percentage of cases
exposed (X axis): median (colored dot),
mean (black dot) and 95%CI (black line) ac-
cording to weighting scheme (Red=Diagnosis,
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Figure 5: Specificity to locate high risk
area (Y axis) for several percentage of cases
exposed (X axis): median (colored dot),
mean (black dot) and 95%CI (black line) ac-
cording to weighting scheme (Red=Diagnosis,
Blue=Sojourn, Green=Incubation), from 1000
simulations.

relative to the simulations and the assumptions made in the methods. The results
of our simulations mostly show very high sensitivity regardless of the percentage
of cases exposed, thus it is difficult to clearly distinguish the weighting schemes
as well as for specificity. A large exposure radius might give a clearer contrast,
although possibly at the expense of increased specificity.We also limited this study
both to a uniform distribution in the unit square and an atemporal dichotomized
risk. However, both aspects allow us to understand the methodology in a simple
setting, and focus on the impact of a small number of already important parameters.
The methodology presented in this work has been developed under the assumption
that the reference population is known. In practice, it is estimated from a sample
of individuals chosen to represent the null distribution. Aside from the difficulty
in accessing a second dataset with residential history, the method so far does not
take into account possible bias or variability occurring from this second selection.
Finally, we have not explored how missing spatial information on individuals impacts
our method. One possible approach is to redistribute the missing locations equally
among the known ones, assuming the missingness pattern is ignorable [9, 10].
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