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The emergence of Plasmodium falciparum parasites with
delayed clearance after treatment with artemisinins (artemisi-
nin resistance), first reported in the Greater Mekong Subregion
about 15 years ago,1,2 threatens loss of our most important
drugs for treating malaria. The subsequent spread and evolu-
tion of artemisinin resistance, coupled with the acquisition of
resistance to artemisinin-based combination therapy (ACT)
partner drugs, have led to high rates of ACT treatment failure
in Southeast Asia.3 Artemisinin resistance is causally associ-
ated with mutations in the propeller domain of the P. falcipa-
rum Kelch protein (K13) on a suitable genetic background.4

Although resistance to artemisinins and partner drugs poses a
significant threat to the efficacy of first-line ACTs, its impact in
Southeast Asia has been tempered by the relatively low
malaria burden and substantial investments in improved
malaria control in this region.5

However, in sub-Saharan Africa, which bears more than
90% of the world’s malaria burden, progress in malaria control
has stalled in recent years, with gains achieved since the turn
of the century partially reversed during the COVID-19 pan-
demic.5–7 In this context, the recent de novo emergence of
artemisinin resistance in Africa is of enormous concern. The
K13 561H mutation in Rwanda and the 469Y and 675V muta-
tions in Uganda have been documented in 20% or more of
symptomatic P. falciparum infections in parts of these coun-
tries.8–13 All three mutations were previously associated with
artemisinin resistance in Southeast Asia, and they have now
been associated with resistance both clinically (delayed para-
site clearance after therapy) and in vitro (greater survival after
artemisinin exposure) in Africa.10–13 Independent emergences
of artemisinin-resistant parasites at multiple sites likely reflects
strong selective pressure from the widespread use of artemisi-
nins, as previously seen in Southeast Asia. Thus, the artemisi-
nin resistance recently seen in Rwanda and Uganda is likely
just the “tip of the spear,” with its emergence and/or spread
likely to have occurred already, or soon to occur widely across

endemic countries in sub-Saharan Africa.14,15 There is not yet
evidence that K13 mutations have been associated with loss
of ACT treatment efficacy in Africa. However, in Southeast
Asia, the rise in artemisinin resistance was followed by the
emergence and spread of resistance to ACT partner drugs
(amodiaquine, mefloquine, and piperaquine) and frequent ACT
treatment failures.16–20 A similar trajectory in sub-Saharan
Africa—in particular with loss of lumefantrine, the most widely
used ACT partner drug—would jeopardize the treatment of
hundreds of millions of patients each year, likely leading to
marked increases in malaria morbidity and mortality.21

It is imperative that we act promptly to detect and stem
the tide of resistance to artemisinins and ACT partner drugs
in Africa. This will require bold leadership and timely
evidence-based implementation of changes in malaria treat-
ment and prevention policies. Enhanced surveillance for
antimalarial resistance is essential now, but most countries
in sub-Saharan Africa only conduct therapeutic efficacy
studies every few years, and at only a few sites, and molecu-
lar studies to detect molecular markers of resistance are not
widely used. This situation risks a delay in the detection of
clinically significant artemisinin (and partner drug) resistance
until it has become established, increasing treatment failure
rates and fueling malaria transmission.
When resistance is confirmed, new strategies to mitigate the

spread and consequences of drug resistance must be consid-
ered promptly, including rotating multiple first-line treatments,
use of triple ACTs (containing two artemisinin partner drugs),
and augmenting therapy with single low-dose primaquine to
prevent parasite transmission (as currently recommended by
the WHO).22–24 These considerations are critical, as new anti-
malarial combination regimens that do not rely on artemisinins
arenotexpected tobegenerally availablewithin thenext5years.
Considering the need for increased malaria surveillance and
extensive study of new control strategies, and to accelerate
malaria elimination, sub-Saharan Africa now needs levels of
investment similar to, or greater than, those allocated in recent
years to tackle artemisinin resistance inSoutheast Asia.
Drug-resistant malaria is a critical public health emergency

on a global scale. In sub-Saharan Africa, policy change, and
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its implementation in particular, has been far too slow in the
past, exemplified by the notoriously delayed replacement of
failing first-line regimens (chloroquine and then sulfadoxine–
pyrimethamine) with ACTs.21 This delay was driven as much
by financing concerns as hesitancy regarding the strength of
the evidence of antimalarial monotherapy resistance. To
facilitate rapid policy change and prevent an unnecessary
rise in malaria morbidity and mortality, there is an urgent
need to characterize the extent and severity of artemisinin
and partner drug resistance on the continent. Information
must be shared promptly and equitably with local and
regional policymakers, the WHO, and the scientific commu-
nity to help inform public health responses and related
research. Many funders and publishers now rightly insist that
academic groups make individual participant data accessi-
ble, especially in the context of public health emergencies
when this information is required urgently to inform public
health responses. The same should be required of other
organizations that generate these critical data. We urge the
malaria scientific community to break from academic
“business as usual” and embrace prompt generation and
sharing of data concerning antimalarial drug resistance,
building on recent experience with the widespread sharing
of global SARS-CoV-2 surveillance data.
Traditional scientific processes generally work well to facil-

itate knowledge generation and advance public health.
Incentives to be the first to publish high-impact papers, and
competition among academic groups, encourage prompt col-
lection, analysis, and sharing of information in the scientific
literature. However, this process is slow, delaying communica-
tion of important results to key stakeholders. Peer-reviewed
manuscripts on artemisinin resistance are often outdated
upon publication; for example, the median time between arte-
misinin resistance data collection in Southeast Asia and publi-
cation was almost 4 years (range, 1–25 years).25 The ongoing
COVID-19 pandemic has demonstrated clearly that sharing
results can be faster and more open, with obvious benefits to
public health.
Data-sharing initiatives have shown the power of broad

global collaboration to accelerate the understanding and
mitigation of novel threats, while simultaneously ensuring
appropriate confidentiality and equitably recognizing data
providers as global partners and scientific contributors.26–28

The COVID-19 response has also highlighted the importance
of sharing research results early through open-access pre-
print platforms. Although there are risks associated with
these platforms, including potential promotion of con-
founded and/or poor-quality studies,29 the benefits have
been immense, facilitating the dissemination of evidence for
public health measures, effective vaccines, and antiviral regi-
mens at an unprecedented speed. The COVID-19 pandemic
has also shown that the global community can unite to
inform and optimize public health interventions when the
need is great. A similarly bold approach is well within the
grasp of the researchers, organizations, and governments
grappling with the threats of antimalarial drug resistance.
In recognition of the advancing public health emergency

of artemisinin resistance in sub-Saharan Africa, we propose
the following actions to facilitate prompt collection, collation,
interpretation, and dissemination of data to inform rapid and
effective public health responses.

First, surveillance for artemisinin resistance in sub-Saharan
Africa should be strengthened, including increased technical
and financial investment, and policies to support the rapid
generation and dissemination of surveillance data. Such sur-
veillance should include molecular and parasitological charac-
terization of isolates collected in endemic countries across the
continent, clinical evaluations of responses to artemisinins,
and studies of the therapeutic efficacy of ACTs, all based on
standardized protocols and procedures. As seen with the
COVID-19 pandemic, facilitation of access to sequencing facil-
ities through regional or international initiatives is helpful, as
many African countries do not yet have this capacity.
Second, all investigators should share results and dissemi-

nate key findings rapidly through regional networks, pre-
publication platforms, presentation at scientific meetings, and
peer-reviewed publication. Peer-reviewed journals should
expand their capacity for fast-track publication ahead of print
for manuscripts reporting evidence of immediate public health
importance, such as clinically significant artemisinin resistance.
Third, all investigators should share de-identified individual

patient data from antimalarial therapeutic efficacy studies
with local and regional policymakers, the WHO, and the sci-
entific community.
Fourth, platforms for data access and dissemination

should be used and enhanced, including linkage between
parasite genotype, phenotype, and clinical data. Several
established platforms including ClinEpiDB, MalariaGEN,
PlasmoDB, WHO Malaria Threat Maps, and the WorldWide
Antimalarial Resistance Network (or WWARN) offer expertise
in data collation and analysis, and tools to enhance analysis
and dissemination of results.30–34

This is a call for cooperation and transparency across the
malaria research community, national malaria control pro-
grams, the WHO, and international funding bodies, with the
goal of preventing a disastrous reversal in the substantial gains
made in combatting malaria in sub-Saharan Africa since the
turn of the century. Action is needed now. We call on the
malaria community to learn from recent COVID-19 pandemic
experiences and facilitate prompt, open communication of
results, and responsible sharing of data on artemisinin and
partner drug resistance from Africa, where artemisinin resis-
tance is now emerging.
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