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Abstract 

The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles 
funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern 
Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, avail-
able evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce 
malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, 
its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for 
reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the 
propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria trans-
mission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female 
An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees 
of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by 
the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new 
interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively pre-
fers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. 
The species is therefore well-adapted to sustain its populations even during dry months and can support year-round 
malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved 
primarily through strategic combinations of species-targeted larval source management and high quality insecticide-
based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the 
potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas 
where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual 
environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as 
continuous engagements of the resident communities and other stakeholders.
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Background
For the past twenty years, there has been increased 
international focus on improving malaria control and 
accelerating efforts towards elimination [1]. Significant 
progress was made until 2015, mainly due to the scale-
up of effective vector control interventions including 
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insecticide-treated nets (ITNs) and indoor residual spray-
ing (IRS). Universal coverage of these interventions cou-
pled with effective case management contributed most 
of the gains [2]. Yet the impact of these interventions 
appears to be flattening in sub-Saharan Africa, where 
malaria accounts for 95% of cases and 96% of deaths [1]. 
Further progress with these existing core vector control 
interventions (ITNs and IRS) is now limited by various 
mosquito adaptations notably resistance to public health 
insecticides, behavioural adaptations [3, 4]. Other chal-
lenges include low-level funding for malaria and general 
weaknesses in the health systems.

In addition to the constraints generated by evolution-
ary adaptations and socio-economic factors, the impact 
of vector control is hindered by ecological heterogeneity 
in how vectors, parasites, and human hosts interact with 
one another and the environment [5]. For instance, differ-
ent vector species require different ecological conditions 
to complete vital life cycle processes such as oviposition, 
larval development, mating, and blood-feeding. Specifi-
cally, vector species may vary in their use and preference 
of sugar sources, hosts, larval habitats, or resting sites [6].

Unfortunately, such species-specific differences are 
rarely considered when implementing vector control, 
with the two core interventions of IRS and ITNs being 
similarly recommended for all the major African vector 
species and across most settings [1]. This “one size fits 
all” approach may simplify the deployment and scale-up 
vector control programmes, but it is erroneous to assume 
that all vector species are vulnerable and respond simi-
larly to these and other interventions [7]. For example, 
indoor interventions such as ITNs and IRS are very effec-
tive against mosquitoes that mostly bite humans indoors 
and also rest indoors, but are less effective against 
exophilic and zoophagic populations [8, 9]. Given the 
increasing recognition of the role of outdoor-biting, out-
door-resting and zoophagic species in maintaining resid-
ual transmission [8], it is important that interventions 
target all relevant ecological and behavioural adaptations 
of key vector species [7].

The major malaria vectors in sub-Saharan Africa (SSA) 
include Anopheles coluzzii, Anopheles gambiae sensu 
stricto (s.s.), Anopheles funestus s.s., and Anopheles ara-
biensis, but several others also play secondary role in 
specific localities [10]. These vector species differ in bio-
nomics, vectorial capacities, and contribution to over-
all transmission, resulting in varying stability of malaria 
transmission across geographies [11]. The importance 
of An. funestus s.s. (hereafter is referred to simply as An. 
funestus) as a dominant malaria vector has been docu-
mented in many east and southern African countries 
[12–17]. In locations such as south-eastern Tanzania [12, 
18], and in some districts in northern Tanzania around 

Lake Victoria [19], this species is responsible for 85–97% 
of all malaria transmission events. In addition to having 
relatively high sporozoite prevalence and high vectorial 
capacity, An. funestus has also been shown to be highly 
resistant to insecticide [19], long survival [20], and more 
anthropophilic [21] than co-existing vector species in 
several settings. Consequently, An. funestus may have 
among highest vectorial capacity of all African vector 
species.

The disproportionate role of An. funestus reflects the 
basic Pareto distribution, with most of the transmission 
coming from this species even in areas where it has rela-
tively lower abundance in the overall vector community 
[22]. The dominance of An. funestus as a vector suggests 
that prioritizing the species for control may yield sig-
nificant suppression or even local elimination of trans-
mission in the respective settings [12]. More targeted 
strategies against An. funestus would require an improved 
understanding of the biology and ecology of the species, 
which remains challenging and relatively neglected due 
to the complexities of studying this species in the labora-
tory and in the wild [23, 24]. Together with the difficulties 
in creating laboratory colonies of the species, the above 
constraints have led to major knowledge gaps. These gaps 
are often bridged in intervention or modeling studies by 
assuming that information from other African vectors, 
for example An. gambiae sensu lato (s.l.), are broadly 
transferrable to An. funestus.

This article challenges this assumption of generaliz-
ability with other African vector species by synthesiz-
ing the existing knowledge on the life history, behaviour, 
and ecology (larval and adult) of An. funestus. The article 
highlights key knowledge gaps in the current understand-
ing of this species and highlight areas of its ecology that 
may generate differential responsiveness to key interven-
tions. Based on these insights, plausible strategies are 
presented for significantly disrupting malaria transmis-
sion in areas where An. funestus dominates through the 
implementation of combined interventions tailored to its 
ecology.

Distribution and importance of Anopheles funestus in the 
east and southern Africa
The An. funestus group consists of at least 11 known 
African species whose distribution extends across sub-
Saharan Africa [10]. The members of this group include 
Anopheles funestus (s.s.), Anopheles vaneedeni, Anopheles 
parensis, Anopheles aruni, Anopheles confusus, Anopheles 
rivulorum, Anopheles fuscivenosus, Anopheles leesoni, 
and Anopheles brucei [25, 26]. Additional species recently 
included are An. funestus-like, which were identified in 
Malawi [27] and An. rivulorum-like, identified in Cam-
eroon [26, 28]. Other studies from different locations 
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suggest a further subdivision of An. funestus into three 
geographically distinct molecular types (M, W, MW), 
with the M- type found in eastern Africa, W in western 
and central Africa and MW present in southern Africa 
[29]. However, more than one molecular form has been 
reported in some locations [29]. For example, all three 
types have been found in Malawi, both M and MW-types 
in Tanzania, and the M and W-type in Kenya [29]. Fur-
thermore, recently two more types have been described: 
Y from Malawi and type Z from four locations of Angola, 
Malawi, Ghana, and Zambia [30].

The sibling species in the An. funestus group appear to 
have different biology and a role in malaria transmission. 
They are also morphologically similar at the adult stage, 
making differentiation difficult thus requiring molecu-
lar identification [31]. Although highly-skilled taxono-
mists can separate species based on immature aquatic 
stage morphology [32, 33]. Given the limited capacity for 
molecular identification in many settings, many members 
in the group can be easily be misidentified [25], poten-
tially leading to the potential role of other species within 
the funestus group being misunderstood.

However, to date An. funestus remains the most signifi-
cant vector in this group. Data from east Africa, where 
An. funestus is now highly resistant to common public 
health insecticides [34], indicates very high sporozoite 
infection rates compared to other Anopheles vector spe-
cies [12, 19]. In these locations, it is evidently responsible 
for most of the transmission as measured by entomologi-
cal inoculation rates (EIR). Higher infection prevalence 
has also been reported in Zambia [35], Malawi [13], and 
the Islands of Madagascar [36]. Beyond East and south-
ern Africa, An. funestus is also an important vector in 
Central and West Africa. In west African countries such 
as Ghana [37], Côte d’Ivoire [38], and Benin [39], An. 
funestus has been reported alongside other species such 
as An. gambiae and An. coluzzii. Table 1 provides exam-
ples of selected studies from different African countries, 
where the species has been investigated, and its impor-
tance in malaria transmission described. These studies 
broadly show that An. funestus typically has among the 
highest infections rates (Table 1).

Many other species in the An. funestus group are not 
known to be malaria vectors. However, An. rivulorum 
has been incriminated in some locations in Tanzania and 
Kenya [12, 40, 41]. In South Africa, both An. vaneedeni 
and An. parensis have been shown to contribute to resid-
ual malaria transmission [42]. Another study in Kenya did 
not provide evidence of An. parensis supporting trans-
mission, although this species was commonly found rest-
ing indoors, it was mainly feed on cows and uninfected 
with malaria parasites [43]. In South Africa, indoor den-
sities of An. parensis outnumbered An. funestus following 

extended IRS campaigns [42] and thus, their role in sus-
taining residual malaria transmission needs to be deter-
mined. Another member of An. funestus group previously 
incriminated in transmission was An. leesoni in eastern 
Tanzania [44]. Overall, there are very limited investiga-
tions of these other sibling species or their involvement 
in malaria transmission, and rarely they are identified or 
screened during routine entomological surveillance.

Larval ecology of Anopheles funestus
Even though there has only been a small number of 
studies that specifically focused on the larval habitats of 
An. funestus, there are several field investigations that 
have revealed that An. funestus larvae can co-exist with 
other malaria vectors [45]. In the early work done in the 
1930s, An. funestus was observed to breed in clear per-
manent water bodies including swamps, streams, ditches 
and ponds [46]. Aquatic habitats containing the larvae 
were characterized as being shaded by hanging trees, 
bushes, or emergent vegetation [46]. Another early study 
from Malindi in the east coast of Kenya reported the 
rare occurrence of An. funestus as a domestic mosquito 
breeding in wells and domestic water containers [47].

A distinct feature of An. funestus larval ecology is that 
this species typically occupies larger and more permanent 
or semi-permanent water bodies than other malaria vec-
tors; often characterized with emergent or floating veg-
etation [46]. These habitats generally do not have direct 
sunlight exposure [46]. Anopheles funestus is indeed 
rarely found in completely open waters or in small sun-
lit puddles [61], contrary to other African vector species, 
such as Anopheles arabiensis and An. gambiae, which 
frequently use small or temporary habitats such as foot-
prints [49, 50]. The differential use of larval habitats has 
been associated with seasonality in malaria transmission 
patterns, with An. gambiae s.l. driving the large transmis-
sion peaks in the rainy season, while An. funestus being 
more able to sustain high levels of malaria transmission 
throughout the year [12]. Indeed, field observations in 
eastern Africa have shown that the adult population of 
this species often peak shortly after the rains [12, 51].

The permanent habitats of An. funestus include slow-
moving waters along the edges of rivers, especially on 
tributaries found on rising altitudes [46, 52]. In Tanzania, 
Nambunga et al. [46] categorized larval habitats used by 
An. funestus into 3 types: (i) small ponds and spring-fed 
wells found at low altitudes (150–200 m), (ii) slow-mov-
ing waters along rivers and streams at higher altitudes 
above 300  m, and (iii) large open ponds that maintain 
water for most of the year in both low and high altitude 
areas. The most prolific of these habitats were the rivers 
and streams [46]. Elsewhere in east Africa, An. funes-
tus has also been observed breeding in lakeshore pools 
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during periods of low water [53], while in west Africa this 
species has mostly been described as breeding in river 
tributaries [54] (Fig. 1). These larval habitat descriptions 
are mostly specific to An. funestus. However, other sib-
ling species such as An. rivulorum, An. leesoni, and An. 
parensis have been observed to share aquatic habitats 
with An. funestus [31], though there can be differences 
in their level of tolerance to salinity [55]. Consequently, 
larval source management (LSM) targeted An. funestus 
could potentially also impact other secondary vector spe-
cies in this group.

The overall survival and development of Anopheles lar-
vae are influenced by several biotic and abiotic factors 
including the availability of nutrients, larval densities, and 

predation [56]. For instance, mosquito larvae developing 
in crowded habitats often have reduced body size, as well 
as reduced lipid, glycogen, and protein contents due to 
increased intra-specific competition for resources [57]. 
Larval development is also very sensitive to climatic con-
ditions; with varying sensitivity to temperatures and rain-
fall [58] as well as salinity [55]. In particular, An. funestus 
larvae tend to be more sensitive to fluctuations in water 
temperatures than other vector species [59], which partly 
explains why the species often occupies larger perennial 
habitats with minimal microclimate fluctuations [58, 
59]. The optimum temperature for An. funestus is 27 °C, 
however survival declines when temperature approach 
32  °C and lower to 18  °C. Rainfall tend to refill habitats 

Fig. 1  Examples of common aquatic habitat types for Anopheles funestus in Kenya, Cameroon, and southern Tanzania. Pictures were adapted from 
published articles by Kweka et al. [49] and Nambunga et al. [46]
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and perpetuates vector populations whereas the cumula-
tive lag (two weeks) rainfall increases survival. However, 
excessive downpours and flooding can destroy habitats 
and flush out the larvae, eggs, and pupae [24].

Adult ecology of Anopheles funestus: behaviour, 
important life‑history traits, and survival strategies
The behaviours of adult Anopheles have a direct impact 
on their vectorial capacity, a measure that describes the 
transmission potential of a vector in terms of its abun-
dance, survival, ability to transmit pathogens and rate 
of feeding on humans [60]. Vector species that adapted 
to specialize on humans are more efficient transmit-
ters of human malaria than those with opportunistic or 
generalist feeding behaviours [61]. Anopheles funestus is 
usually highly endophilic (refers to a tendency of indoor 
resting) and anthropophilic (refers to a tendency of feed-
ing on humans), giving rise to its high vectorial capac-
ity amongst African vectors [21]. Field records of the 
proportion of blood meals that mosquitoes obtain from 
humans as opposed to other vertebrates, i.e., the human 
blood index (HBI) suggest that An. funestus and An. 
gambiae s.s. have the highest HBI values among African 
malaria vectors. This explains their competency as vec-
tors of malaria, and the stability of malaria in tropical 
Africa where these species are present [11, 62].

With regard to their blood-feeding and resting hab-
its, An. funestus is often assumed to be most similar An. 
gambiae s.s. [63], but there are specific instances where 
this species has been reported biting outdoors [51], rest-
ing outdoors [68], and being attracted to cattle [64, 65]. 
Modest levels of zoophagy have been documented in 
some cattle-keeping communities [61]. As molecular 
identification was not performed to confirm species iden-
tity in past literature, other morphologically cryptic spe-
cies within the An. funestus s.l. might be responsible for 
these reports of exophily and zoophily. Consequently, the 
existence and potential importance of outdoor biting in 
this species may have been underexplored and may need 
to be updated. For example, An. rivulorum is a species 
that is morphologically similar to An. funestus, but more 
associated with exophilic and endophilic behaviours 
[40]. However, in the most recent study, after molecular 
characterization, it was confirmed that An. funestus were 
attracted to both humans and cattle [65], suggesting that 
some degree of zoophagy may occur in this species [64].

Anopheles funestus, like other Anopheles species, mates 
in aerial swarms. In comparison to An. gambiae s.l. the 
swarms of An. funestus tend to be smaller and more diffi-
cult to locate [66, 67]. Anopheles funestus is refractory to 
mating in confined spaces, and instead appear to require 
large open spaces to mate [6, 68]. In Tanzania [66] and 
Mozambique [69], where An. funestus swarms have been 

characterized, males were observed to congregate close 
to human dwellings inside villages, unlike swarms of An. 
arabiensis that are generally found at the edges of the 
village. While An. funestus is thought to primarily mate 
outdoors, new evidence indicates that significant propor-
tions of mating in both An. funestus and An. arabiensis 
can occur inside homes [70], corroborating previous 
observations of An. gambiae s.l. mating inside experi-
mental huts in west Africa [71]. While the ecological sig-
nificance of such indoor mating remains to be elucidated, 
the observation of large densities An. funestus males rest-
ing inside houses suggests it might be a common occur-
rence [70]. Furthermore, because of the apparent high 
degree of eurigamy, inducing mating in the laboratory 
is very difficult. As a result, there have been relatively 
few successful efforts to colonize An. funestus, with just 
two well-established colonies in existence from Angola 
(FANG) [72] and Mozambique (FUMOZ) [73]. Given the 
complexity associated with mating behaviours, further 
research should be conducted to address this challenge 
[23]. There are currently ongoing attempts in Tanzania 
towards these objectives, though this has initially focused 
on assessing key fitness and survival parameters of An. 
funestus [23, 24].

The survival of adult female mosquitoes is a crucial 
determinant for their vector capacity since the mosquito 
must survive for at least 10–12 days to be able to transmit 
malaria parasites [6]. Unfortunately, direct measurement 
of adult mosquito survival in the field are difficult, and 
only a small number of methods are available to estimate 
through indirect measures such as mark-recapture or 
ovarian dissection [6]. Such estimates can vary depend-
ing on factors such as variations in the technical skill 
of the personnel and the widespread use of insecticidal 
interventions such as ITNs in the field. Nonetheless, the 
limited amount of available evidence suggests that An. 
funestus has greater adult survival than other malaria 
vectors such as An. arabiensis [69, 74]. In Tanzania, the 
daily survival probabilities estimated before wide-scale 
ITNs use were consistently greater than 80% [75]. More 
recent estimates of age structure based on parity dissec-
tions suggest An. funestus survival is greater than An. 
arabiensis in some settings [76]. This greater longevity 
of An. funestus and combination with anthropophilic 
behaviours provide multiple opportunities for this vector 
to become infected and transmit malaria.

Lastly, changes in climatic conditions may also have a 
substantial influence on the survival and longevity of An. 
funestus. For instance, very low and high temperatures 
influence their development and survival [77]. Unfor-
tunately, there has been little research examining the 
direct effect of temperature on An. funestus life-history 
characteristics.
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Exploiting the ecology of Anopheles funestus to improve 
malaria control in areas where the species dominates
Larval source management (LSM)
There are four main strategies for LSM; (1) habitat modi-
fication; refers to alterations made to the environments to 
limit vector breeding, (2) habitat manipulation; refers to 
repeated activities that remove the larvae, such as flush-
ing streams, (3) larviciding; refers to regular application 
of insecticides to water bodies where mosquitoes breed, 
and (4) biological control; refers to the introduction of 
natural predators such as larvivorous fish into aquatic 
habitats. The suitability of each approach depends on the 
local ecology of the main malaria vector, as well as the 
environmental conditions. For example, the temporary, 
small, and scattered larval habitats of An. gambiae s.s. 
could perhaps be simply dried up, covered, or removed 
(i.e., habitats modification). On the other hand, the larger, 
more permanent habitats used by An. funestus (e.g., large 
ponds and streams) may be suitable for direct environ-
mental modification and manipulation.

There may however be some notable challenges for 
the control of An. funestus in aquatic habitats. For exam-
ple, the spring-fed pools used by the species may also 
be a source of clean water for local communities. Thus, 
removal of these habitats would not be appropriate. 
Instead, specific larvicides that pose no safety risk for 
humans and animals may be considered. Fortunately, 
it has been shown that, the use of biolarvicide formula-
tions for example Bacillus thrungiensis var. israeliensis 
(Bti), Bacillus sphaericus (Bs) and some insect growth 
regulators (IRGs) such as pyriproxyfen are effective in 
controlling malaria vectors. This strategy is cost-effec-
tive, feasible, widely accepted by communities, and are 
safe for use even in domestic water sources and non-
target organisms [78]. However, its applications for 
large habitats such as river streams may need additional 
investigations.

Current WHO guidelines indicate that larviciding is 
most appropriate where larval habitats are fixed, few, and 
findable; and less feasible where habitats are abundant 
and scattered [79]. While the terms, fixed, few, and find-
able are often considered finite, it may be better to define 
them on gradients. This would allow for the determina-
tion of the degree to which larval source management 
may be applicable in different settings. For instance, the 
findability of habitats, including small or more temporary 
types could be significantly enhanced by using satellite 
imagery or unmanned aerial vehicles (UAVs), which ena-
ble greater visibility and operational efficiencies [80]. A 
significant advantage for LSM for An. funestus is its reli-
ance on permanent and large aquatic habitats, which are 
often less numerous than those of other vector species 
and can persist even in dry seasons [79]. Once identified 

and characterized, the unique characteristics of these 
habitats make them potentially easier to target by LSM 
even in rural areas than the more numerous or expansive 
habitats of other vector species such as An. arabiensis. 
The relative scarcity and ecological uniqueness of An. 
funestus larval habitats therefore offers excellent oppor-
tunities for targeted control. In Tanzania, Nambunga 
et  al. showed that after initial surveys to characterize 
aquatic water bodies, An. funestus habitats in rural set-
tings can fit the description of fixed, few, and findable 
[46]. In Mexico, where the malaria vector, Anopheles 
pseudopunctipennis also breeds along the river streams 
like An. funestus, the mosquito densities were signifi-
cantly reduced after implementing an LSM programme 
involving clearing the vegetation in the sides of the river 
to expose mosquitoes to sunlight [81]. Controlling An. 
funestus using such an approach, will require defining a 
comprehensive implementation strategy that integrates 
community participation to provide the effective work-
force needed to operationalize the initiative with maxi-
mum impact.

Larval source management was historically one of the 
most effective malaria control methods but has since 
been deprioritized in Africa, where methods that target 
adults, namely ITNs and IRS are now preferred. This was 
because LSM was considered impractical in African set-
tings due to the abundance of small and temporary lar-
val habitats typically occupied by An. gambiae s.l. Such 
habitats can be difficult to comprehensively locate, char-
acterize and treat promptly. Moreover, the Ross-Mac-
donald model had further emphasized the significance of 
reducing adult survival as a more effective approach than 
reducing vector population size [82]. However, Fillinger 
& Lindsay have argued against this concept by showing 
the significance and success of LSM [83]. Some of the 
best-known examples of historic successes with LSM 
include the elimination of An. gambiae from Brazil and 
Wadi Haifa, Egypt in the mid-20th century, both of which 
depended primarily on comprehensive LSM programmes 
[84]. In recent years, there have been renewed interests in 
LSM as a supplementary control tool, and many African 
countries are now including it in their malaria elimina-
tion agendas [83]. For example, In Tanzania, following 
the successful demonstration of LSM impact in urban 
areas in the mid-2000s [85]), this approach is being pro-
moted in both rural and urban councils to enhance other 
vector control efforts [85, 86].

The strategic advantage of LSM over IRS and ITNs is 
that it controls mosquitoes at source [87], and can effec-
tively reduce the population densities of malaria vectors 
in several settings [83]. LSM could therefore be effective 
even in areas where mosquitoes are resistant to insecti-
cides used to control adults, or where the adult vector 
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populations are adapted to bite outdoors and/ or on non-
human hosts. Effective targeting of habitats used by An. 
funestus is likely to provide a long-term and cost-effec-
tive solution, especially if done alongside an adulticiding 
campaign.

Despite the high potential of LSM in malaria elimina-
tion, this approach has some limitations. Larviciding, for 
example, is currently only recommended in areas where 
larval habitats are ‘few,‘ ‘fixed,‘ and ‘findable’; often limit-
ing its practical applicability to just the dry seasons since 
rainfall creates abundant cryptic habitats that may be dif-
ficult to treat [79]. On the other hand, habitat modifica-
tion and manipulation may be unacceptable in certain 
areas since communities rely on the same habitats for 
domestic needs (Kahamba et al., unpublished).

Targeting adult Anopheles funestus using 
insecticide‑treated nets and indoor residual spraying
Insecticide-treated nets (ITNs) and indoor residual 
spraying (IRS) have been a major contributor to malaria 
control since 2000 [2]. Both strategies are increasingly 
threatened by factors such as insecticide resistance, 
which affect An. funestus as well as other malaria vectors. 
Studies in Zambia and Tanzania have shown that An. 
funestus populations can survive exposure to pyrethroids 
at doses up to ten-fold higher than the standard WHO 
resistance insecticides [88]. Both studies also indicated 
that the resistance levels in An. funestus may be stronger 
than in the other major vector, such as An. arabiensis, in 
the same locations [88]. Another study in Uganda also 
showed that An. funestus populations were fully resistant 
to pyrethroids but susceptible to carbamates [89]. It has 
also been reported in Cameroon that the species is resist-
ant to a range of insecticide classes, including pyrethroids 
[90]. Resistance in An. funestus populations has also been 
described in west African countries such as Burkina Faso 
against dieldrin and Benin against DDT [91–93].

Despite having fewer studies on insecticide resistance 
in An. funestus than in An. gambiae s.l. [89, 94], a major-
ity of the pyrethroid resistance appears to be of meta-
bolic origin, where the expression of key enzymes such 
as cytochrome P450 mixed-function oxygenases or glu-
tathione transfereses (GSTs) increase to detoxify pyre-
throids and organochlorides such as DDT [95, 96]. So 
far, no kdr mutations have been detected in An. funestus. 
Despite there being significant geographic gaps and rela-
tively limited data on resistance in An. funestus, but avail-
able information indicates that this vector is extremely 
resistant to pyrethroids except when co-formulated 
with PBO synergist; though it is less resistant to non-
pyrethroids such as carbamates and organophosphate 
[34]. The species can also develop multiple resistance 

mechanisms, and may be more resistant than other 
malaria vectors [34].

Sustaining the public health value of ITNs and IRS in 
areas where An. funestus dominates, therefore requires 
improved formulations of existing insecticides or the 
use of new insecticide classes against which vectors are 
still susceptible. While these requirements for better 
insecticide strategies are also needed for other vector 
species [97], the higher resistance levels in An. funestus 
suggests greater urgency. A range of new vector control 
have recently become available or are under develop-
ment with the aim of overcoming resistance in malaria 
vectors. This includes nets incorporating the synergist, 
piperonyl butoxide (PBO), and nets with multiple actives 
including non-pyrethroids which may yield greater ben-
efits if deployed at scale in areas of pyrethroid resistance 
[98, 99]. In line with current WHO guidelines on PBO 
nets, most of the east and southern Africa region already 
have moderate to strong resistance and would qualify for 
PBO net distribution [100]. Unfortunately, the majority 
of these new products have so far been evaluated against 
only An. gambiae s.l, thus there is need to understand 
how they might affect An. funestus populations. How-
ever, in northern Tanzania districts where An. funestus 
was the dominant malaria vector, ITNs with multiple 
actives have recently demonstrated superior performance 
over pyrethroid-only ITNs, clearly illustrating the poten-
tial of such innovations [101].

Similarly, the efficacy of IRS for An. funestus control 
could be improved through the use of longer lasting for-
mulations based on non-pyrethroid insecticides. Unlike 
ITNs, which are primarily dependent on pyrethroids, IRS 
campaigns have largely phased out pyrethroids and are 
now done using either carbamates, organophosphates, 
or neonicotinoids [102]. IRS impact depends on consist-
ent application of high-quality insecticides, with spraying 
done at preferably twice yearly, and repeated for several 
years until malaria transmission intensities drop below 
locally acceptable thresholds [100]. IRS has been par-
ticularly effective against indoor resting malaria vectors 
including An. funestus [103], with the highest impact for 
malaria control occurring in rural Africa. For instance, 
early evidence from Tanzania indicated that after a 
period of spraying in Pare and Taveta region, IRS effec-
tively eliminated local populations of An. funestus with 
no re-colonization for at least eight years [104].

This sustained impact was achieved because of the 
highly endophilic behaviour of An. funestus, coupled 
with the scarcity and dispersed nature of suitable lar-
val habitats which slowed local re-colonization once 
the vector populations started dwindling. Similarly, evi-
dence from southern Africa where IRS with DDT was 
widely implemented indicates this approach successfully 
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contained transmission by An. funestus over five decades 
[3, 96]. When the programme transitioned to pyrethroids 
instead of DDT between 1997 and 1999, populations of 
An. funestus carrying pyrethroid-resistance reinvaded 
the areas causing new malaria epidemics in 2000 and 
prompting the reinstatement of DDT [105, 106].

Taken together, this evidence suggests that a consistent 
programme of adulticiding with carefully selected insec-
ticides against which the vector is susceptible could dra-
matically crash malaria transmission in areas where An. 
funestus is dominant. Based on this hypothesis, a simpli-
fied approach for high-quality and high-coverage IRS or 
other forms of adulticiding would have a disproportion-
ately impact and perhaps result in reducing An. funestus 
populations in a given area. The impacts would be ampli-
fied if the intervention targeting adults is accompanied by 
an effective LSM programme that targets the right kind 
of aquatic habitats, hence reducing the likelihood of re-
colonization of the areas and sustaining the gains.

Other than insecticide resistance, another impor-
tant concern regarding IRS is that it can be logistically 
difficult and expensive to implement in large scale. In 
fact, while the number of countries adopting IRS has 
increased since 2000, the number of people protected 
appears to stagnate, as the countries adopt more targeted 
and small-scale operations. Other challenges include the 
high quantities of insecticides necessary, the need for 
large spray teams that are well-trained, challenges with 
disposal of unused pesticides and pesticide wastes and 
the need to remove household belongings during spray-
ing. It is important, therefore, that future efforts should 
target improved formats for delivering IRS or its equiva-
lents in ways that do not compromise the public health 
value.

Other interventions with potential against Anopheles 
funestus adults
In addition to the proposed strategic use of IRS, ITNs, 
and LSM, vector control against An. funestus could ben-
efit from additional interventions targeting adults during 
different life-history stages or behaviours. To be most 
efficacious, selection of the complementary interventions 
must be informed by basic understanding of the natural 
attributes of the vector species. One example could be 
the use of attractive targeted sugar baits (ATSBs), which 
kill mosquitoes during sugar feeding. This intervention 
has the benefit of being usable both indoors and out-
doors, and being able to target both male and female 
mosquitoes [70]. Recent field observations of An. funes-
tus males occurring at high frequencies indoors suggest 
that males could be readily targetable by ATSBs or other 
indoor approaches [107].

Other options that could effectively reduce exposure 
to An. funestus are house improvements such as house 
screening [108] and eave-based interventions, which tar-
get mosquitoes when entering houses through the eave 
spaces. In particular, the eave-based interventions may 
include insecticide-treated eave ribbons [109], eave baf-
fles [110] and eave tubes [111]. These interventions have 
the additional advantage of being less cumbersome than 
IRS and requiring far lower quantities of insecticides. 
Importantly, because the eave spaces are distally removed 
from human contact, a much wider range of insecticide 
classes could be used on these interventions, preferably 
those which have no cross-resistance with pyrethroids. 
Such house-based approaches are anticipated to be par-
ticularly effective against An. funestus given its highly 
endophilic and endophagic nature.

There are also non-insecticidal interventions that may 
be effective for An. funestus control. For example, mass 
deployment of odor-baited traps on Rusinga Island in 
western Kenya resulted in more than 40% reduction in 
malaria incidence, primarily by targeting An. funestus 
[107]. Mathematical simulations suggest that odor baited 
traps used alongside ITNs could significantly improve 
control and potentially lead to local elimination in multi-
ple settings across Africa [112, 113].

It has been proposed that genetically modified mos-
quitoes carrying the gene drive technology could also 
eventually be an alternative to broadly address current 
challenges with vector control. However, current gene 
drive developments for malaria control are primarily 
focused on An. gambiae s.s. [114, 115] and have no imme-
diate applications in areas dominated by An. funestus. 
However, recent work has suggested that certain types of 
gene drives, which employ homology-directed repairs to 
ensure their proliferation in the genomes may be suitable 
for use in An. funestus [116]. Along with further advance-
ments in genetic technology, a deeper knowledge of the 
mating behaviour and gene flow trajectories in this spe-
cies will be critical for evaluating the potential for such 
genetic approaches in controlling An. funestus. Since the 
public health value of the above alternative tools has not 
yet been confirmed, additional research is necessary to 
determine their true potential and cost-effectiveness.

Community engagement to enhance the control of 
malaria in areas dominated by Anopheles funestus
To ensure the success of existing or novel interven-
tions for An. funestus control, it is crucial to engage 
community members and other key stakeholders when 
planning the implementation of these interventions 
[117]. Early and continuous community engagement 
is vital in guaranteeing usability, acceptability, sustain-
ability, and overall effectiveness of the interventions 
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[117]. Community members generally have significant 
levels of knowledge and experiences, which can be val-
uable in ensuring success of malaria control interven-
tions. Detailed qualitative surveys may be necessary 
to understand these community views and the poten-
tial acceptability of any treatment or manipulation of 
the aquatic habitats. For best results, the community 
engagement initiatives should go beyond simply rais-
ing awareness about a particular intervention. Instead, 
the initiatives should also build partnerships with the 
communities to create and/or improve their sense of 
ownership of the interventions; and to encourage their 
participation in the success of the interventions [118].

There are numerous documented ways to engage 
the communities in malaria control efforts in Africa. 
In southern Tanzania, Mwangungulu et  al. demon-
strated that community members could be relied upon 
to identify areas with the highest densities of malaria 
vectors, a useful means for low-cost community-based 
planning of malaria control [119]. Other studies in 
Tanzania and Burkina Faso have also demonstrated 
that community members can be relied upon to iden-
tify and spray Anopheles mosquito swarms with insec-
ticides [66, 120]. Additionally, household members 
were recruited to monitor human activities and behav-
iours that increase the risk of contact with malaria 
vectors [121].

It has been observed that important An. funes-
tus habitats, such as spring-fed pools, ponds, and 
streams, often also serve as water sources for domes-
tic uses, irrigation, or livestock use (Kahamba et  al., 
pers. commun.). In this regard, local communities can 
be involved to integrate LSM into their daily prac-
tices. Such strategies have already been demonstrated 
on a small scale in rural Tanzania, where pastoralists 
were recruited to identify and treat aquatic mosquito 
habitats during the dry season [122]. A related exam-
ple is where larvicides have been mixed with fertiliz-
ers so that farmers could apply these to their farms 
to provide the added advantage of mosquito control. 
Such programmes could be expanded and improved 
by training selected members of local communities to 
identify and treat potential habitats for An. funestus.

Lastly, for community members to have meaningful 
involvement in malaria control efforts, they must have 
good awareness and understanding of the risk, bur-
den, and severity of malaria. Improving a community’s 
knowledge and awareness needs to go beyond merely 
explaining scientific knowledge to the community 
members. It must also consider important cultural val-
ues, experiences, practices and interests in the respec-
tive communities [117].

Conclusions
 Anopheles funestus is widely distributed and accounts 
for a higher proportion of malaria transmission in East 
and South African countries. While research on this 
species has been limited partly due to difficulties in cre-
ating laboratory colonies, available evidence suggests 
it possesses several distinct ecological characteristics 
which may render it amenable to certain high-impact 
interventions approaches targeting both its immature 
and adult stages. Its preferred aquatic habitats tend 
to be few and non-temporary and may include rivers, 
streams, large ponds, and spring-fed pools. This spe-
cies is mostly endophilic and anthropophagic though 
both outdoor-feeding and animal-biting populations 
have also been reported, especially where residents 
keep a lot of livestock. The existence and magnitude of 
these “atypical” behaviours need to be considered when 
designing complementary interventions. Considering 
the dominance and ecological distinctiveness of An. 
funestus, it is hypothesized that combining targeted 
larval source management and at least one method that 
effectively target adults (including insecticide-resist-
ant populations) could be both operationally feasible 
and highly impactful. In areas where An. funestus is 
the dominant vector, the approach could cause major 
reductions in malaria transmission by drastically reduc-
ing the local populations of the species and limiting the 
likelihood of its re-colonization. For best results, the 
programme may be followed by gradual house screen-
ing to maintain a low-level transmission and cultivating 
strong community engagement to guarantee sustain-
ability. It should also be recognized that the broader 
goal of malaria elimination would require a much more 
expansive operation targeting all important vectors 
beyond An. funestus.
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