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Abstract: Conventional analysis of a composite of multiple time-to-event outcomes uses the time 

to the first event. However, the first event may not be the most important outcome. To address this 

limitation, generalized pairwise comparisons and win statistics (win ratio, win odds and net 

benefit) have become popular and have been applied to clinical trial practice, including supporting 

drug approval by health authorities. However, win ratio, win odds and net benefit have typically 

been used individually. In this article, we examine the use of these three win statistics jointly for 

time-to-event outcomes. First, we explain the relation of point estimates and variances among the 

three win statistics, and the relation between the net benefit and the Mann-Whitney U statistic. 

Then, we explain that the three win statistics are based on the same win proportions, they test the 

same null hypothesis of equal win probabilities in two groups; we theoretically show that the Z-

values of the statistical tests for the win statistics are approximately equal, therefore, the three win 

statistics provide very similar p-values and statistical powers. Finally, using simulation studies and 

data from a clinical trial, we demonstrate that, when there is (or little) censoring (i.e., early 

dropout), the three win statistics complement one another to show the strength of the treatment 

effect. However, when the amount of censoring is not small, and without adjustment for censoring, 

the win odds and the net benefit may have an advantage to interpret treatment effect compared to 



the win ratio; with adjustment (e.g., IPCW adjustment) for censoring, the three win statistics may 

complement one another to show the strength of the treatment effect.  We perform the calculations 

using the R package, WINS,  available on the Comprehensive R Archive Network. 
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1. Introduction 

For the analysis of prioritized multiple time-to-event outcomes in clinical trials, the common time-

to-first-event analysis does not consider the outcomes’ priorities. The first event may be due to an 

outcome of lower clinical importance (e.g., progressive disease vs. death in oncology studies, or 

heart failure hospitalization vs. cardiovascular death in chronic heart failure studies). To overcome 

this limitation, methods that incorporate the order of clinical importance among the endpoint 

components into the analysis, such as the generalized pairwise comparisons (GPC)
1
 and the win 

statistics (win ratio, win odds, and net benefit), have been proposed
1-26

. The idea of all of these 

methods is to compare each subject in the experimental arm with every subject in the control arm 

in a pairwise manner and in each pairwise comparison either a winner is declared, or the 

comparison is considered to be a tie. Each pairwise comparison starts with the highest priority 

component and only takes the second most important component into account when the pairwise 

comparison based on the highest priority results in a tie. A pairwise comparison based on a 

hierarchical composite endpoint is considered to be tied if comparisons based on each component 

result in ties. Thus, lower-priority outcomes do not “mask” more important outcomes just because 

they occur earlier. Generalized pairwise comparison method and the win statistics also have been 

applied in the design and analysis of Phase III clinical trials (e.g., NCT04157751, NCT04847557 

and NCT04510493 as registered in ClinicalTrials.gov) and in supporting drug approval by health 

authorities (e.g., tafamidis for treatment of cardiomyopathy per the ATTR-ACT trial). The 

stratified win ratio by Dong et al.
 9

 has also been applied to a Phase III clinical trial in adults who 

are in hospital for acute heart failure
27

. 

Win ratio, win odds, and net benefit have been extensively studied during the past decade. 

When there are no ties, the win odds reduces to the win ratio. There is a rich literature on their 



variance estimators and weighted and stratified analyses
5-12,19-22

. Regression analysis
22,23

, sample 

size and power calculation
21,24

, and method adjusting the win statistics for censoring
13,17,18 

have 

become available. Brunner, Vandemeulebroecke and Mütze
20

 argued that, for count, ordinal and 

continuous outcomes, and with some discussions on time-to-event outcomes, the win odds is 

preferable to the win ratio for quantifying the treatment effect in the presence of ties, because the 

win odds ties reflect that the two groups become more similar, particularly as the proportion of 

ties increases.  

For time-to-event outcomes, the censoring-induced ties do not necessarily mean that the 

two patients in a pair have the same value of such outcome (see details in Section 3). Moreover, at 

present, win ratio, win odds, and net benefit have typically been used individually; and they have 

not been compared systematically. Therefore, in this article, we examine the use of these three win 

statistics jointly for time-to-event outcomes. We explain that the three win statistics test the same 

null hypothesis of equal win probabilities in the experimental and control groups; then we compare 

the win statistics systematically for time-to-event outcomes and discuss whether the three win 

statistics complement one another to show the strength of the treatment effect, through simulation 

studies and a large randomized cardiovascular outcome trial (the CHARM study
28

). We perform 

the calculations using the R package WINS by Cui and Huang
29

, which is available on the 

Comprehensive R Archive Network. 

2. Win statistics 

2.1 Win statistics and their statistical test and power 

Following the generalized pairwise comparisons
1
, there are three possible results from the 

comparison of a pair of patients (one patient from the experimental group and one patient from the 

control group): the patient in the experimental group wins, the control patient wins, or the two 



patients are tied. Let πt, πc and πtie be the probabilities corresponding to these three results, for 

which πt + πc + πtie = 1. Here we use the subscripts t and c to denote the experimental and control 

groups, respectively. Win ratio (WR), win odds (WO) and net benefit (NB) are defined as follows.  

𝑊𝑅 =
𝜋𝑡

𝜋𝑐
                                              (1a) 

𝑊𝑂 =
𝜋𝑡+0.5𝜋𝑡𝑖𝑒

𝜋𝑐+0.5𝜋𝑡𝑖𝑒
=  

𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)

𝜋𝑐+0.5(1−𝜋𝑡−𝜋𝑐)
=

𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)

1−[𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)]
                               (1b) 

𝑁𝐵 = 𝜋𝑡 − 𝜋𝑐                                           (1c) 

We consider a randomized clinical trial with Nt patients in the experimental group and Nc 

patients in the control group. Let T denote event time, C denote censoring time, Y = min(T, C) be 

the observed time, and δ = I(T<C) be the event indicator, where 𝐼(∙) is the indicator function. We 

use i = 1, 2, …, Nt for patients in the experimental group and j = 1, 2, …, Nc for patients in the 

control group. We define kernel function K such as 𝐾𝑖𝑗 = 1  if a win for the experimental group 

occurs when an observed time 𝑌𝑖=min(𝑇𝑖, C𝑖) in this group is longer than an event time 𝑇𝑗 in the 

control group, namely, 

   𝐾𝑖𝑗 = 1 (win for the patient i in the experimental group), if Y𝑖 > 𝑌𝑗 and δ𝑗 = 1 

                    = 0, otherwise.           (2a) 

Similarly, a kernel function L can be defined as below, which holds 𝐿𝑖𝑗 = 1  if the patient j in the 

control group wins over the patient i in the experimental group. 

  𝐿𝑖𝑗 = 1 (win for the patient j in the control group), if 𝑌𝑗 > 𝑌𝑖 and δ𝑖 = 1 

                    = 0, otherwise.            (2b) 

The number of wins for the experimental group can be counted as 𝑛𝑡 = ∑ ∑ 𝐾𝑖𝑗
𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1  and 𝑛𝑐 =

∑ ∑ 𝐿𝑖𝑗
𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1  is the number of wins for the control group. Then the win probabilities πt and πc can 



be estimated by �̂�𝑡 = 𝑃𝑡 = 𝑛𝑡/𝑁𝑡𝑁𝑐 and �̂�𝑐 = 𝑃𝑐 = 𝑛𝑐/𝑁𝑡𝑁𝑐, respectively, where 𝑃𝑡 and 𝑃𝑐 are 

win proportions in the experimental and control groups, respectively. Therefore, win ratio, win 

odds and net benefit can be estimated by 

𝑊�̂� =
𝑃𝑡

𝑃𝑐
 ,                                            (3a) 

𝑊�̂� =
𝑃𝑡+0.5𝑃𝑡𝑖𝑒

𝑃𝑐+0.5𝑃𝑡𝑖𝑒
=  

𝑃𝑡+0.5(1−𝑃𝑡−𝑃𝑐)

𝑃𝑐+0.5(1−𝑃𝑡−𝑃𝑐)
=

𝑃𝑡+0.5(1−𝑃𝑡−𝑃𝑐)

1−[𝑃𝑡+0.5(1−𝑃𝑡−𝑃𝑐)]
 ,                               (3b) 

𝑁�̂� = 𝑃𝑡 − 𝑃𝑐 .                                          (3c) 

Hence, the win ratio is a ratio of win proportions, the win odds is an odds of win proportions, and 

the net benefit is a difference in win proportions. Because win ratio, win odds and net benefit are 

derived using the same win proportions, they test the null hypotheses: WR = 1, WO = 1 and NB = 

0, respectively, which are equivalent to the testing of the null hypothesis of equal win probabilities 

in the two treatment groups, H0: πt = πc. 

The statistics 𝑃𝑡 and 𝑃𝑐 are U-statistics and are asymptotically normally (AN) distributed. 

Therefore, 𝑛𝑡 and 𝑛𝑐 are also asymptotically normal, 

  (
𝑛𝑡

𝑛𝑐
) ~𝐴𝑁 ([

𝜃𝑡

𝜃𝑐
] , [

𝜎𝑡
2 𝜎𝑡𝑐

𝜎𝑡𝑐 𝜎𝑐
2 ]) .      (4) 

By the delta method, 𝑙𝑜𝑔(𝑊𝑅), 𝑙𝑜𝑔(𝑊𝑂) and NB are asymptotically normally distributed with 

the following variances: 

 

  𝜎𝑙𝑜𝑔(𝑊𝑅)
2 =

𝜎𝑡
2

(𝜃𝑡)2 +
𝜎𝑐

2

(𝜃𝑐)2 −
2𝜎𝑡𝑐

𝜃𝑡𝜃𝑐
       (5a) 

𝜎𝑙𝑜𝑔(𝑊𝑂)
2 = (𝜎𝑡

2 − 2𝜎𝑡𝑐 + 𝜎𝑐
2) (

1

𝛾
+

1

𝑁𝑡𝑁𝑐−𝛾
)

2
4⁄ ,                                                  (5b)             

𝜎𝑁𝐵
2 = (𝜎𝑡

2 − 2𝜎𝑡𝑐 + 𝜎𝑐
2) (𝑁𝑡𝑁𝑐)2⁄       (5c) 

where 𝛾 = 𝜃𝑡 + 0.5(𝑁
𝑡
𝑁𝑐 − 𝜃𝑡 − 𝜃𝑐).  



Under the null hypothesis H0: πt = πc, 𝜃𝑡 and 𝜃𝑐 can be estimated as 

 𝜃𝑡 = 𝜃𝑐 = (𝑛𝑡 + 𝑛𝑐) 2⁄ .       (6) 

Then the variances of 𝑙𝑜𝑔(𝑊𝑅), 𝑙𝑜𝑔(𝑊𝑂) and 𝑁𝐵 can be estimated under the null hypothesis by, 

�̂�𝑙𝑜𝑔(𝑊𝑅)
2 =

(�̂�𝑡
2−2�̂�𝑡𝑐+�̂�𝑐

2)

[(𝑛𝑡+𝑛𝑐)/2]2 ,       (7a) 

�̂�𝑙𝑜𝑔(𝑊𝑂)
2 =

�̂�𝑡
2−2�̂�𝑡𝑐+�̂�𝑐

2

(𝑁𝑡𝑁𝑐/2)2 ,                                         (7b)             

�̂�𝑁𝐵
2 =

�̂�𝑡
2−2�̂�𝑡𝑐+�̂�𝑐

2

(𝑁𝑡𝑁𝑐)2 .        (7c) 

The calculations for �̂�𝑡
2, �̂�𝑐

2 and �̂�𝑡𝑐 can be found in Dong et al.
8,9

 and Bebu and Lachin
7
. 

It should be noted that (2a) and (2b) are for a single time-to-event outcome. The setting for 

prioritized multiple outcomes and for inverse-probability-of-censoring weighting (IPCW) 

adjustment for censoring can be formulated similarly (see details in Dong et al.
17,18

). 

2.2 Point estimate 

From the point estimate perspective, since the win odds considers a tie as a half win for the 

experimental group and a half win for the control group as defined in (1b), the win odds is always 

closer to the null value of 1.0 compared to the win ratio as explained in Dong et al
3
 and Brunner, 

Vandemeulebroecke and Mütze
20

. When there are no ties, the win odds reduces to the win ratio. 

 It is straight forward to derive that win ratio, win odds and net benefit have the following 

relationships. We demonstrate these relationships via Simulation Study 1 in Section 4.1. 

𝑁𝐵 =  
𝑊𝑅−1

𝑊𝑅+1

𝑛𝑡+𝑛𝑐

𝑁𝑡𝑁𝑐
=

𝑊𝑅−1

𝑊𝑅+1
(1 − 𝑃𝑡𝑖𝑒)       (8a) 

𝑁𝐵 =  
𝑊𝑂−1

𝑊𝑂+1
            (8b) 

𝑊𝑂 =  
1+𝑁𝐵

1−𝑁𝐵
          (8c)  

𝑊𝑂 =  
𝑊𝑅+0.5𝑃𝑡𝑖𝑒(𝑊𝑅−1)

1+0.5𝑃𝑡𝑖𝑒(𝑊𝑅−1)
          (8d) 



2.3 Variance 

With respect to the variance, the estimated variance for the win odds (�̂�𝑙𝑜𝑔(𝑊𝑂)
2  per (7b)) is always 

smaller than or equal to that for the win ratio (�̂�𝑙𝑜𝑔(𝑊𝑅)
2  per (7a)) because the total number of wins 

is always smaller than or equal to the total number of comparisons, namely, 𝑛𝑡 + 𝑛𝑐 ≤ 𝑁𝑡𝑁𝑐 (note: 

𝑛𝑡 + 𝑛𝑐 = 𝑁𝑡𝑁𝑐 only if there are no ties). Consequently, the confidence interval for the win odds 

is always narrower than that for the win ratio, and their confidence intervals become the same 

when there are no ties. For a large clinical trial with low event rates (i.e., proportion of ties is high), 

the point estimate of the win odds can be much closer to 1.0 and its confidence interval can be 

very narrow compared to the win ratio, as also shown from CHARM application in Section 5. 

2.4 Net Benefit as a direct transformation of the Mann-Whitney U statistic 

Without ties (i.e., 𝑛𝑡 + 𝑛𝑐 = 𝑁𝑡𝑁𝑐), the number of wins, 𝑛𝑡 and 𝑛𝑐, are Mann-Whitney U 

statistics
30

. With ties, 𝑈 = 𝑛𝑡 + 0.5(𝑁𝑡𝑁𝑐 − 𝑛𝑡 − 𝑛𝑐) is a Mann-Whitney U statistic instead, and 

its variance is
31

, 

𝜎𝑈
2 =  

𝑁𝑡𝑁𝑐(𝑁+1)

12
−  

𝑁𝑡𝑁𝑐 ∑ (𝑑𝑖
3−𝑑𝑖)𝑘

𝑖=1

12𝑁(𝑁−1)
 ,      (9) 

where 𝑁 = 𝑁𝑡 + 𝑁𝑐, k is the number of distinct observations and 𝑑𝑖 is the number of times the ith 

tied observation is repeated. The expression (9) clearly shows that the variance of the Mann-

Whitney U statistic increases as the number of ties decreases. 

 Verbeeck et al.
32

 explained that the net benefit is a direct transformation of the Mann-

Whitney U statistic, 

  𝑁𝐵 =
2𝑈

𝑁𝑡𝑁𝑐
− 1,                                                                                                (10) 

 where the quantity of 
𝑈

𝑁𝑡𝑁𝑐
 is an estimator of probabilistic index. Therefore, the variance of the net 

benefit also increases as the number of ties decreases. 



2.5 Approximate equivalence of statistical tests for the three win statistics 

As shown from (7a), (7b) and (7c), by applying the delta method, the asymptotic variances 

for log(win ratio), log(win odds) and net benefit can be derived based on the asymptotic variances 

and covariance of the win proportions (or numbers of wins) for the two treatment groups, the three 

win statistics test the same null hypothesis of equal win probabilities in the experimental and 

control groups, and the z-values of the three test statistics are approximately equal as we show 

below. Therefore, the three test provide very similar p-values and powers.  

From (7a) and (7c), we can obtain �̂�𝑁𝐵
2 =

(𝑛𝑡+𝑛𝑐)2

4(𝑁𝑡𝑁𝑐)2 �̂�𝑙𝑜𝑔(𝑊𝑅)
2 . By applying (8a), we can 

calculate the Z-value of the statistical test for the net benefit as 

𝑍𝑁𝐵 =
𝑁𝐵

�̂�𝑁𝐵
=  

𝑊𝑅−1

𝑊𝑅+1

𝑛𝑡+𝑛𝑡𝑐

𝑁𝑡𝑁𝑐

1

�̂�log (𝑊𝑅)
 

2𝑁𝑡𝑁𝑐

𝑛𝑡+𝑛𝑡𝑐
=

𝑊𝑅−1

𝑊𝑅+1
 

2

�̂�log (𝑊𝑅)
.     

Following the Taylor expansion, log(𝑥) = 2 [
𝑥−1

𝑥+1
+  

1

3
(

𝑥−1

𝑥+1
)

3
+

1

5
(

𝑥−1

𝑥+1
)

5
+. . . ] for x > 0. 

Therefore, log(𝑥) ≈
2(𝑥−1)

𝑥+1
. This means log(𝑊𝑅) ≈

2(𝑊𝑅−1)

𝑊𝑅+1
. Hence, the Z-values of the statistical 

tests for net benefit and log(WR) are approximately equal as shown below. 

𝑍𝑁𝐵 ≈   
log(𝑊𝑅)

�̂�log (𝑊𝑅)
=  𝑍𝑊𝑅.        (11a) 

Similarly, since 𝑁𝐵 =  
𝑊𝑂−1

𝑊𝑂+1
  and  �̂�𝑁𝐵

2 =
1

4
�̂�𝑙𝑜𝑔(𝑊𝑂)

2  per (7b), (7c) and (8a), the Z-values of the 

statistical tests for net benefit and log(WO) are also approximately equal. 

 𝑍𝑁𝐵 ≈   
log(𝑊𝑂)

�̂�log (𝑊𝑂)
=  𝑍𝑊𝑂.        (11b) 

3. Censoring for time-to-event outcomes 

When ideally there are no censoring, the win probabilities at time x can be calculated by 𝜋𝑡(𝑥) =

− ∫ 𝑆𝑡𝑑𝑆𝑐
𝑥

0
 and 𝜋𝑐 = − ∫ 𝑆𝑐𝑑𝑆𝑡

𝑥

0
, where 𝑆𝑡 and 𝑆𝑐 are the survival functions of time to event in 

the experimental and control groups, respectively, and the true value of the three win statistics can 



be calculated accordingly based on 𝜋𝑡(𝑥) and 𝜋𝑐(𝑥). In practice, 𝑆𝑡 and 𝑆𝑐 are unknown, Kaplan-

Meier estimators of 𝑆𝑡 and 𝑆𝑐, can be used to estimate the win statistics
4
. 

As seen from the kernel functions defined in (2a) and (2b), censoring for time-to-event 

outcomes could impact the win statistics. Censoring can be caused by (a) some patients dropped 

out without experiencing an event of interest (i.e., early dropout) and (b) at the time of the data 

cutoff for the analysis, some patients have not experienced an event (i.e., administrative censoring 

or end-of-study censoring). For illustration of censoring bias, assume that both patients A and B 

had a death event (Figure 1a). Patient B is the winner because Patient A died earlier. However, if 

Patient A was censored (Figure 1b), or Patient B was censored (Figure 1c) or both patients were 

censored before the death of Patient A (Figure 1d), a “win” cannot be determined for this pair of 

patients. In the calculation of win statistics, this situation is typically considered a “tie”, which 

obviously introduces a bias. In fact, for time-to-event outcomes, the censoring-induced ties do not 

necessarily mean that the two patients in a pair have the same value of such outcome. 

Figure 1 Illustration of censoring bias 

 



Therefore, censoring has an impact on the win statistics. As demonstrated by Dong et al
16

, 

the win probabilities can be calculated by 𝜋𝑡(𝑥) = − ∫ 𝐹(𝑡)𝐺(𝑡)𝑥

0
𝐺(𝑐)𝑑𝐹(𝑐) and 𝜋𝑐(𝑥) =

− ∫ 𝐹(𝑐)𝐺(𝑐)𝑥

0
𝐺(𝑡)𝑑𝐹(𝑡), where 𝐺(𝑡) and 𝐺(𝑐) are survival function of time to censoring in the 

experimental and control groups, respectively. Statistical methods adjusting the win statistics for 

censoring are available. For example, Péron et al.
13

 suggested an adaptation of Efron’s scoring to 

adjust the win statistics, and Dong et al.
17,18

 applied the inverse-probability-of-censoring weighting 

(IPCW) approach to adjust the win statistics for independent censoring (i.e., IPCW-adjusted win 

statistics) and dependent censoring (i.e., CovIPCW-adjusted win statistics).  

 For time-to-event analyses using the win statistics, censoring can cause ties. The ties due 

to administrative censoring, in general, mean that the two patients of a pairwise comparison are 

similar at the data cutoff for the analysis, hence they are less of a concern. Therefore, in this article, 

we focus on the censoring caused by early dropout. To ease the writing, we refer censoring to early 

dropout in this article. 

4. Simulation studies 

We extend the simulation studies presented in Dong et al.
17

 to investigate win ratio, win odds and 

net benefit in the setting of time-to-event outcomes.  

4.1 Simulation study 1 

In this simulation study, we analyze a single time-to-event outcome without censoring. We use 

three scenarios that arise in practice: (a) proportional hazards in the two groups, (b) delayed 

treatment effect in the experimental group, and (c) cross-over treatment effect between the two 

groups. For all three scenarios, following Huang and Kuan
33

, we use exponential or piecewise 

exponential functions to generate 1000 simulated datasets with 200 patients per group. Figure 2 

shows the hazard rates and survival curves for each scenario. 



Figure 2 Assumed hazard rates (λ) and survival curves for simulations

 

For Scenario (a), proportional hazards in the two groups (Table 1a), the win ratio is the 

reciprocal of the hazard ratio
4,15,16,20

. Therefore, the estimated win ratio (the median over the 1000 

simulated datasets) is close to the true value of 1.67 at all timepoints. The width of the estimated 

95% confidence interval is 2.68 at Month 1, which is relatively wide because few events are 

observed and the evidence of the treatment effect is not yet strong. The estimated 95% confidence 

interval narrows to width 0.81 at Month 18, as most events have been observed and the evidence 

of the treatment effect has become very strong. In contrast, the point estimates of the win odds and 

the net benefit increase over time as the evidence of the treatment effect becomes stronger. The 

widths of their 95% confidence intervals also increase over time. For example, the estimated win 

odds is 1.08 at Month 1, reflecting that a considerable proportion of pairwise comparisons results 

in ties and as such provide little evidence for an effect of the treatment. Similarly, at Month 1, the 

95% confidence interval is narrowest. As more events are observed and the evidence of the 

treatment effect becomes stronger over time, the point estimate of the win odds and the lower limit 

of the confidence interval move more away from the null value of 1.0. Although the 95% 

confidence interval becomes wider over time, the significance level (i.e., p-value, not shown in the 

tables) becomes smaller.  



 These results make sense. For this scenario of proportional hazards in the two groups, 

WR = 1/HR is constant and proportion of ties, 𝑃𝑡𝑖𝑒, decreases as more events are observed over 

time. As expressed in (8a) and (8c),  𝑁𝐵 =  
𝑊𝑅−1

𝑊𝑅+1
(1 − 𝑃𝑡𝑖𝑒) increases with decreasing ties over 

time, and 𝑊𝑂 =  
1+𝑁𝐵

1−𝑁𝐵
 also increases over time.  

For Scenario (b), delayed treatment effect in the experimental group (Table 1b), because 

the survival curves start to separate at Month 4, with hazard ratio = 0.60, all three win statistics 

increase over time after Month 4 as the evidence of the treatment effect increases. The 95% 

confidence interval for the win ratio becomes narrower over time, and those for the win odds and 

the net benefit become wider.  

For Scenario (c), cross-over treatment effect between the two groups (Table 1c), before 

Month 3, the experimental group performs better, with hazard ratio = 0.60; after Month 3, the 

control group performs better, with hazard ratio = 2.0. Therefore, the point estimates of the win 

ratio, the win odds and the net benefit first increase and then decrease from Month 3. The 95% 

confidence intervals for the win ratio become narrower over time, whereas those for the net benefit 

become wider. Interestingly, the width of the 95% confidence intervals for the win odds increase 

first, then decrease from Month 9. 

For all three scenarios, at Month 18, the win ratio and the win odds get closer to each other 

since majority of events have been observed and there are few ties; consequently, their confidence 

intervals also get closer to each other. 

Table 1a Win statistics and 95% confidence intervals for Scenario (a) 

Time 
 

Win proportion (%) WR WO Net benefit (%) 

Treatment Control Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Month 1 10.2    6.1  1.67 (0.86, 3.54) 2.68 1.08 (0.97, 1.22) 0.25   4.1 (-1.3,  9.9) 11.2 

Month 3 25.9  15.7  1.68 (1.11, 2.50) 1.39 1.22 (1.04, 1.45) 0.41 10.0 ( 2.2, 18.3) 16.1 

Month 6 41.3  24.9  1.66 (1.21, 2.32) 1.11 1.40 (1.13, 1.71) 0.58 16.5 ( 6.2, 26.2) 20.0 

Month 9 50.2  30.3  1.66 (1.27, 2.19) 0.92 1.50 (1.21, 1.85) 0.64 20.0 ( 9.6, 29.7) 20.1 

Month 12 55.3  33.3  1.67 (1.28, 2.16) 0.88 1.58 (1.25, 1.98) 0.73 22.2 (11.0, 32.9) 21.9 



Month 18 60.0 36.1 1.66 (1.31, 2.12) 0.81 1.63 (1.30, 2.06) 0.76 23.9 (12.9, 34.7) 21.9 
95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile) from 1000 simulations. 

 

Table 1b Win statistics and 95% confidence intervals for Scenario (b) 

Time 
 

Win proportion (%) WR WO Net benefit (%) 

Treatment Control Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Month 1 10.0 10.0 1.00 (0.63, 1.55) 0.91 1.00 (0.92, 1.09) 0.17 0.0 (-4.4,  4.3)   8.7 

Month 3 24.6 24.7 1.00 (0.78, 1.29) 0.52 1.00 (0.88, 1.14) 0.25 0.0 (-6.2,  6.4) 12.6 

Month 6 37.4 34.5 1.08 (0.88, 1.33) 0.45 1.06 (0.91, 1.23) 0.32 2.9 (-4.5, 10.4) 14.9 

Month 9 44.8 39.0 1.14 (0.96, 1.38) 0.42 1.12 (0.97, 1.31) 0.34 5.7 (-1.6, 13.5) 15.1 

Month 12 49.2 41.6 1.18 (1.00, 1.40) 0.41 1.16 (1.00, 1.36) 0.36 7.5 ( 0.0, 15.4) 15.4 

Month 18 52.8 43.9 1.21 (1.02, 1.42) 0.40 1.20 (1.02, 1.40) 0.38 9.0 ( 1.0, 16.8) 15.8 
95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile) from 1000 simulations. 

  

Table 1c Win statistics and 95% confidence intervals for Scenario (c) 

Time 
 

Win proportion (%) WR WO Net benefit (%) 

Treatment Control Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Month 1 10.2    6.1  1.67 (0.86, 3.54) 2.68 1.08 (0.97, 1.22) 0.25   4.1 (-1.3,  9.9) 11.2 

Month 3 25.9  15.7  1.68 (1.11, 2.50) 1.39 1.22 (1.04, 1.45) 0.41 10.0 ( 2.2, 18.3) 16.1 

Month 6 31.4 26.0 1.21 (0.88, 1.69) 0.81 1.11 (0.93, 1.35) 0.42 5.5 (-3.7, 14.8) 18.5 

Month 9 35.3 33.6 1.04 (0.79, 1.45) 0.66 1.03 (0.85, 1.29) 0.44 1.5 (-8.2, 12.5) 20.7 

Month 12 38.0 39.2 0.96 (0.74, 1.30) 0.56 0.97 (0.80, 1.22) 0.43 -1.5 (-11.4, 10.2) 21.5 

Month 18 41.5 46.1 0.90 (0.71, 1.18) 0.47 0.91 (0.74, 1.16) 0.41 -4.8 (-14.6, 7.3) 22.0 
95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile) from 1000 simulations. 

  

In summary, as follow-up time increases, more events are observed, and evidence of the 

treatment effect becomes stronger. For all three scenarios the win proportions in both groups 

increase over time, and the 95% confidence interval for the win ratio becomes narrower. With 

respect to the net benefit, its 95% confidence interval becomes wider over time. This is not 

surprising since increase in variance when the number of ties decreases is a well-known property 

of the Mann-Whitney statistic
31,32

, and the net benefit is a direct transformation of the Mann-

Whitney U statistic as explained in Section 2.3. For Scenario (c), however, the width of the 95% 

confidence intervals for the win odds may first increase and then decrease, corresponding to the 

cross-over pattern of the treatment effect.  

Nevertheless, from this simulation without censoring, it looks that the three win statistics 



complement one another to show the strength of the treatment effect. Therefore, it may be helpful 

to present three win statistics together when there is no (or little) censoring (i.e., early dropout). 

This makes sense as explained in Section 3 because the win probabilities at time x can be calculated 

by 𝜋𝑡(𝑥) = − ∫ 𝑆𝑡𝑑𝑆𝑐
𝑥

0
 and 𝜋𝑐 = − ∫ 𝑆𝑐𝑑𝑆𝑡

𝑥

0
 when ideally there is no censoring for a single 

time-to-event outcome. In practice, 𝑆𝑡 and 𝑆𝑐 are replaced with their corresponding Kaplan-Meier 

estimators to estimate the win statistics
4
, or equivalently the U-statistics approach described in 

Section 2.1 can be used. The latter (i.e., the U-statistics approach) can be applied regardless of 

whether there is censoring. 

4.2 Simulation study 2  

As described in Dong at al.
 17

, we selected 800 patients from clinical trials in cardiovascular (CV) 

disease with the composite of death and hospitalization as the primary endpoint. We used the data 

up to 3 years, and excluded patients who dropped out prior to Year 3, so that we could estimate 

the win statistics without bias from censoring (i.e., we considered these estimated values as true 

win statistics) up to Year 3. Then we applied independent exponentially distributed censoring, 

Exp(0.0004) and Exp(0.001), corresponding to 25% and 50% censoring, respectively, at Year 3. 

As discussed in Dong at al.
17

, the experimental group performs better over time than the control 

group, and the hazards in the two groups are nonproportional without a particular pattern. We 

apply the inverse-probability-of-censoring weighting approach to adjust win statistics for 

independent censoring (i.e., IPCW-adjusted win statistics).   

Figure 3 Unadjusted vs IPCW-adjusted win proportions and win statistics 



 

 This simulation study produces the same findings as scenarios (a) and (b) in Simulation 

study 1. Figure 3 presents unadjusted vs IPCW-adjusted win proportions and win statistics. As 

also shown in Table 2a and Table 2b, regardless of censoring and adjustment (unadjusted vs IPCW-

adjusted), the 95% confidence interval for the win ratio becomes narrower over time, and those 

for the win odds and the net benefit become slightly wider over time. The win statistics decrease 

slightly from Year 1 to Year 3. This pattern means that the evidence for a slightly larger treatment 

effect is stronger early in the study.  

In the presence of censoring, the number of events becomes less and the variability in the 

unadjusted win ratio becomes larger (i.e., the 95% confidence interval becomes wider, Table 2a). 

However, the 95% confidence intervals for the unadjusted win odds and net benefit become narrow 

as the amount of censoring increases. For example, at Year 3, the width of the 95% confidence 

interval for the unadjusted win odds is 0.34, 0.29 and 0.26 corresponding to 0%, 25% and 50% 

censoring. This indicates that, in presence of censoring particularly when the proportion of 

censoring is not small, the win odds and the net benefit may have an advantage to interpret 



treatment effect compared to the win ratio, as also reported in Brunner, Vandemeulebroecke and 

Mütze
20

.  

Table 2a Unadjusted win statistics and 95% confidence intervals for CV example 

 
Time 

Censor- 
ing (%) 

Win proportion (%) WR WO Net benefit (%) 

Treat- 
ment 

Control Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Year 1 0% 26.3 17.7 1.49 (1.12, 1.97) 0.85 1.19 (1.05, 1.35) 0.30 8.6 (2.4, 14.8) 12.4 

 12% 23.8 15.9 1.50 (1.14, 2.02) 0.88 1.17 (1.05, 1.32) 0.27 7.9 (2.5, 13.8) 11.3 

 26% 21.1 13.4 1.56 (1.17, 2.12) 0.95 1.16 (1.06, 1.29) 0.23 7.6 (2.9, 12.7)   9.8 

Year 2 0% 34.1 26.1 1.30 (1.04, 1.65) 0.61 1.17 (1.02, 1.35) 0.33 8.0 (1.0, 15.0) 14.0 

 20% 28.8 21.4 1.34 (1.07, 1.72) 0.65 1.16 (1.03, 1.32) 0.29 7.4 (1.6, 13.7) 12.1 

 41% 23.8 16.4 1.44 (1.11, 1.88) 0.77 1.16 (1.04, 1.28) 0.24 7.2 (2.1, 12.5) 10.4 

Year 3 0% 38.4 31.1 1.23 (1.00, 1.52) 0.52 1.16 (1.00, 1.34) 0.34 7.3 (0.0, 14.6) 14.6 

 25% 31.0 23.9 1.30 (1.03, 1.64) 0.61 1.15 (1.02, 1.31) 0.29 7.0 (0.9, 13.4) 12.5 

 50% 24.4 17.5 1.40 (1.07, 1.83) 0.76 1.15 (1.03, 1.29) 0.26 7.0 (1.8, 12.6) 10.7 
95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile) from 1000 simulations. 

 

Table 2b IPCW-adjusted win statistics and 95% confidence intervals for CV example 

 
Time 

Censor- 
ing (%) 

Win proportion (%) WR WO Net benefit (%) 

Treat- 
ment 

Control Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Median 
(95% CI) 

Width of 
95% CI 

Year 1 0% 26.3 17.7 1.49 (1.12, 1.97) 0.85 1.19 (1.05, 1.35) 0.30 8.6 (2.4, 14.8) 12.4 

 12% 26.3 17.8 1.48 (1.12, 1.98) 0.86 1.19 (1.05, 1.35) 0.30 8.5 (2.5, 15.0) 12.5 

 26% 26.7 17.7 1.51 (1.14, 2.03) 0.89 1.20 (1.06, 1.37) 0.31 9.1 (2.9, 15.5) 12.6 

Year 2 0% 34.1 26.1 1.30 (1.04, 1.65) 0.61 1.17 (1.02, 1.35) 0.33 8.0 (1.0, 15.0) 14.0 

 20% 34.4 26.6 1.29 (1.02, 1.65) 0.64 1.17 (1.01, 1.36) 0.35 7.7 (0.5, 15.3) 14.8 

 41% 34.7 26.6 1.30 (1.03, 1.70) 0.65 1.18 (1.02, 1.38) 0.36 8.1 (0.8, 15.9) 15.1 

Year 3 0% 38.4 31.1 1.23 (1.00, 1.52) 0.52 1.16 (1.00, 1.34) 0.34 7.3 (0.0, 14.6) 14.6 

 25% 39.1 31.5 1.24 (1.00, 1.55) 0.55 1.17 (1.00, 1.36) 0.36 7.7 (0.1, 15.3) 15.2 

 50% 39.6 31.3 1.26 (1.00, 1.63) 0.63 1.18 (1.00, 1.42) 0.42 8.0 (0.3, 17.5) 17.2 
95% CI (confidence interval) is constructed as the 95% percentile interval (2.5th percentile, 97.5th percentile) from 1000 simulations. 

 

With IPCW-adjustment (Table 2b), both the point estimates and the width of the 95% 

confidence intervals for the win odds and the net benefit are generally more strikingly stable over 

time than with the unadjusted win statistics as shown by the range of both the point estimates and 

interval widths. This indicates that the IPCW adjustment may be more effective at correcting bias 

due to censoring. The correction is especially evident for the more variable win ratio (Table 2b): 

after the IPCW adjustment the width of the 95% confidence interval at Year 3 is 0.55 with 25% 

censoring and 0.63 with 50% censoring, much closer to 0.52 with no censoring than the 0.61, 0.76 



without the adjustment. Therefore, the IPCW adjustment corrects for bias, and it also aligns the 

confidence interval width to the width under no censoring. This indicates that, with an adjustment 

(e.g., IPCW adjustment) for censoring, the three win statistics may complement one another to 

show the strength of the treatment effect. 

 

5. Application to CHARM studies  

The CHARM trial
28

 was a randomized, double-blind, placebo-controlled study comparing 

candesartan with placebo in patients with chronic heart failure. The primary endpoint was a 

composite of cardiovascular death or hospitalizations due to chronic heart failure. A total of 7599 

patients were randomized to the two groups. 

Because only a small number of patients dropped out prior to Year 3, the unadjusted and 

IPCW-adjusted win statistics are very similar. Table 3 and Figure 4 present the IPCW-adjusted 

win proportions and win statistics. As in scenarios (a) and (b) of Simulation study 1, the width of 

95% confidence intervals for the win ratio becomes narrower over time, and those for the net 

benefit become wider. Very interestingly, for this study as a large clinical trial, the point estimate 

of the win ratio declines with the follow up-time, whereas the point estimates of the win odds and 

the net benefit vary little with the follow-up time. Moreover, the 95% confidence interval for the 

win odds is very narrow; its width increases from 0.06 to 0.10, whereas the width for the win ratio 

decreases from 0.44 to 0.20. This may indicate that, compared to the win ratio, the win odds may 

have an advantage of narrow confidence interval when the proportion of ties is not small. 

Table 3 IPCW-adjusted win statistics and 95% confidence intervals for the CHARM program 

 
Time 

Win proportion (%) WR WO Net benefit (%) 

Treat- 
ment 

Control WR 
(95% CI) 

Width of 
95% CI 

WO 
(95% CI) 

Width of 
95% CI 

NB 
(95% CI) 

Width of 
95% CI 

Month 6 10.4 7.1 1.46 (1.26, 1.70) 0.44 1.07 (1.04, 1.10) 0.06 3.3 (2.0, 4.6) 2.6 

Year 1 15.8 11.7 1.35 (1.20, 1.52) 0.32 1.09 (1.05, 1.12) 0.07 4.1 (2.5, 5.7) 3.2 

Year 2 23.5 18.9 1.25 (1.14, 1.37) 0.23 1.10 (1.06, 1.14) 0.09 4.7 (2.7, 6.6) 3.9 

Year 3 28.9 24.2 1.19 (1.10, 1.29) 0.20 1.10 (1.05, 1.15) 0.10 4.7 (2.5, 6.8) 4.4 

 



 

Figure 4 IPCW-adjusted win proportions and win statistics over time 

 

6. Conclusions and Discussions 

The generalized pairwise comparisons and win statistics (win ratio, win odds and net benefit), in 

particular, win ratio and net benefit, have received increasing attention in methodological research. 

They also have been applied in the design and analysis of Phase III clinical trials and in supporting 

drug approval by health authorities. However, win ratio, win odds and net benefit have been 

typically used individually.  

The three win statistics test the same null hypothesis of equal win probabilities in the 

experimental and control groups, and they provide similar p-values and statistical powers since the 

Z-values of the their corresponding statistical tests are approximately equal as proved in Section 

2.5. Therefore, in this article, we target to show whether the three win statistics complement one 

another for analyzing the strength of the treatment effect.  In the setting of time-to-event outcomes, 

we use simulation studies and data from a clinical trial to explain their behavior in relation to 

proportionality of hazards and in relation to the Mann-Whitney test. In our view, in the absence of 

censoring or when the amount of censoring is small, presenting win proportions, win ratio, win 

odds and net benefit together can give a more detailed picture of an analysis. Specifically, the win 



ratio and win odds are relative quantitative measures (similar to the hazard ratio) to evaluate the 

relative strength of one treatment group versus the other, while the net benefit is an absolute 

quantitative measure (similar to difference in response rates) that is bounded by -1.0 and 1.0 to 

evaluate the absolute strength of one treatment group versus the other. In the presence of a positive 

treatment effect (i.e., win proportion for the treatment group is higher than that for the control 

group), the win ratio is always greater than the win odds (they are equal in the absence of ties). 

In the case of continuous, ordinal and binary outcomes, the win odds may be preferable to 

the win ratio to handle the ties more appropriately20, because a tie implies that the two patients in 

a pair had the same value of an outcome. For time-to-event outcomes, however, the censoring-

induced ties do not necessarily mean that the two patients in a pair have the same value of such 

outcome (see details in Section 3). As noted in Oakes
4
 and Dong et al.

16
, unless the proportional 

hazards assumption holds, the win ratio can be impacted by censoring and follow-up time. The 

same issue also applies to the win odds and the net benefit which are sensitive to censoring-induced 

ties. Handling of ties caused by censoring is quite complex because of various censoring 

mechanisms (non-informative administrative censoring, informative censoring owing to drop-out 

or confounding intercurrent event). For example, when the censoring is primarily due to 

administrative censoring (i.e. follow-up time), the win ratio may have more meaningful clinical 

interpretation compared to the win odds. This is because the win ratio can be viewed as a special 

version of the win odds, by imputing 100 ∗ πt/( πt+ πc)% and  100 ∗ πc/( πt+ πc)% of the ties as 

win proportions for the experimental and control groups, respectively, instead of 50% of ties for 

each group as used in the win odds. This imputation approach assuming missing-at-random is 

analogous to the conditional power approach based on observed data at the interim analysis in 

group sequential designs. However, when censoring is primarily due to dropout or informative 

intercurrent events, without an adjustment for censoring, the win odds and the net benefit may 



have an advantage to interpret treatment effect as this type of censoring may cause the observed 

win ratio greatly away from the true value in either positive or negative direction; with an 

adjustment (e.g., IPCW adjustment) for censoring, the three win statistics may complement one 

another to show the strength of the treatment effect.  

In general, for time-to-event outcomes, comparisons among the three win statistics is 

subtle. Nevertheless, the Z-values of the statistical tests for the three win statistics are 

approximately equal and their test provide similar p-values. Therefore, the three win statistics may 

complement one another to show the strength of the treatment effect, and presenting win 

proportions, win ratio, win odds and net benefit together can give a more detailed picture of an 

analysis. On the other hand, one may just use and present one statistical measure (win ratio, win 

odds, or net benefit) for clinical trial design and analysis because the three win statistics are 

complementary. It is also advisable to graphically display the win statistics over follow-up time 

following Finkelstein and Schoenfeld
15

 to assess the variability and robustness of the win statistics 

since censoring-induced ties decrease over time. 

 

Data availability statement  

The simulated data that support the findings of this study are available from the corresponding 

author upon reasonable request. 
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