1	Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes,				
2	cardiovascular disease, cancer, and mortality				
3					
4	Hong Jiang ^a , Lina Wang ^a , Duolao Wang ^b , Ni Yan ^a , Chao Li ^a , Min Wu ^a , Fan Wang ^a ,				
5	Baibing Mi ^a , Fangyao Chen, ^a Wanru Jia ^a , Xi Liu ^a , Jiaxin Lv ^a , Yan Liu ^a , Jing Lin ^{a,*} ,				
6	and Le Ma ^{a,c,*}				
7					
8	Author Affiliations:				
9	^a School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an,				
10	China;				
11	^b Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool,				
12	UK;				
13	° Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong				
14	University), Ministry of Education of China, Xi'an, China				
15					
16	*Correspondence Author. School of Public Health, Xi'an Jiaotong University Health				
17	Science Center, 76 Yanta West Road, Xi'an, China.				
18					
19	E-mail address: male@mail.xjtu.edu.cn (L. Ma), linjing0127@xjtu.edu.cn (J.Lin)				

1 Abstract:

2	Background & aims: Considerable attention has focused on the role of omega-3
3	polyunsaturated fatty acids (PUFA) in the prevention of cardiometabolic diseases,
4	which has led to dietary recommendations to increase omega-3 fatty acid intake. A
5	meta-analysis was conducted to summarize evidence from prospective studies
6	regarding associations between omega-3 PUFA biomarkers and risk of developing
7	major chronic diseases.
8	Methods: Four electronic databases were searched for articles from inception to
9	March 1, 2022. Random-effects model was used to estimate the pooled relative risk
10	(RR) and 95% confidence intervals (CIs) for the association of omega-3 PUFAs,
11	including α - linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic
12	acid (DPA), and docosahexaenoic acid (DHA), with risk of developing type 2
13	diabetes (T2D), cardiovascular disease (CVD), including coronary heart disease
14	(CHD) and stroke, cancer, and mortality. The Grades of Recommendation,
15	Assessment, Development and Evaluation assessment tool was used to rates the
16	confidence in estimates.
17	Results: A total of 67 prospective studies comprised of 310,955 participants were
18	identified. Individual omega-3 PUFAs showed divergent associations with the study
19	outcomes of interest. A significant inverse association with T2D risk was observed
20	across categories of ALA (relative risk [RR]:0.89, 95% confidence interval [CI]: 0.82-
21	0.96), EPA (RR: 0.85, 95%CI: 0.72-0.99) and DPA (RR: 0.84, 95%CI:0.73-0.96)
22	biomarkers. The marine-origin omega-3 fatty acids biomarkers but not ALA was
23	significantly associated with lower risks of total CVD, CHD, and overall mortality,
24	with RRs ranging from 0.70 for DHA-CHD association to 0.85 for EPA-CHD
25	association. A lower risk of colorectal cancer was observed at higher levels of DPA

1	(RR:0.76, 95%CI:0.59-0.98) and DHA (RR:0.80;95%CI:0.65-0.99), whereas no
2	association was noted for other outcomes. In addition, a dose-response relationship
3	was observed between an increasing level of EPA, DPA, or DHA biomarker and lower
4	risk of CVD.
5	Conclusions: Higher concentrations of marine-derived omega-3 PUFA biomarkers
6	were associated with a significantly reduced risk of total CVD, CHD, and total
7	mortality. Levels of ALA were inversely associated with a lower risk of T2D but
8	not CVD-related outcomes. These data support the dietary recommendations
9	advocating the role of omega-3 PUFAs in maintaining an overall lower risk of
10	developing cardiovascular disease and premature deaths.
11	
12	Key words: omega-3 polyunsaturated fatty acid biomarker, type 2 diabetes,
13	cardiovascular disease, cancer, mortality, meta-analysis
14	
15	Abbreviations:
16	ALA, alpha-linolenic acid, AMD, age-related macular degeneration; CIs, confidence
17	intervals; CHD, coronary heart disease; CVD, cardiovascular disease; DHA,
18	docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid;
19	PUFA, polyunsaturated fatty acids; SD, standard deviation; T2D, type 2 diabetes; RR,

20 relative risk.

1 1. Introduction

Increasing polyunsaturated fatty acid (PUFA) consumption, especially seafood-2 3 derived omega-3 PUFAs, has been considered as a key component of prevention strategy in tackling the current epidemic of chronic disorders in the past half century 4 [1,2]. Dietary guidelines of the American Heart Association recommend a daily 5 consumption of 250 mg eicosapentaenoic acid (EPA) and docosahexaenoic acid 6 7 (DHA) for decreasing the risk of cardiac deaths among individuals with and without pre-existing cardiovascular disease (CVD) [2]. Accumulating evidence from 8 9 experimental studies has demonstrated that omega-3 PUFAs have multiple critical health benefits including inhibiting inflammation, regulating lipid metabolism, 10 reducing arrhythmias, and improving endothelial function and insulin resistance [3,4]. 11 Recently, the efficacy of marine-derived omega-3 PUFA supplementation for CVD 12 risk reduction has been demonstrated in the Reduction of Cardiovascular Events with 13 Icosapent Ethyl-Intervention Trial (REDUCE-IT) and the Vitamin D and Omega-3 14 15 Trial (VITAL) which consistently reported a beneficial effect of these fatty acids on reducing coronary heart disease (CHD) risk in the overall population or subgroups 16 [5,6]. However, whether these effects can be extrapolated to general populations with 17 lower habitual intake of omega-3 PUFAs or to other related health conditions is 18 19 unclear.

Existing prospective cohort studies have examined associations of dietary omega-3
PUFAs with the incidence of major chronic diseases and mortality in free-living
individuals, and findings of these studies were mixed [7,8]. For instance, some studies
showed that intake of plant-derived fatty acid, such as α-linolenic acid (ALA), was
associated with decreased risk of type 2 diabetes (T2D), whereas others have reported
no such association [9-11]. The conflicting results might be related to variation in

1	different background diet, measurement errors of dietary assessments, as well as
2	bioavailability of these fatty acids [12]. Meaningful amounts of omega-3 PUFAs
3	could also be obtained from various fortified foods, making an accurate assessment of
4	these fatty acids intake more challenging [13]. Biomarkers of omega-3 PUFAs are
5	valuable when evaluating the associations between the intake of these PUFAs and
6	disease risk because they are free of reporting bias and other measurement errors
7	intrinsic to questionnaire-based assessments [14,15]. Previous researches to date have
8	focused mainly on the association with CVD risk and most suggested inverse
9	associations [16-18]. Compared with the literature on CVD, less evidence exists
10	regarding the associations of omega-3 PUFA fatty acid biomarkers and other chronic
11	conditions, such as T2D, cancer or mortality. In addition, much existing evidence
12	surrounds EPA and DHA, with relatively little evidence generated for the association
13	between other omega-3 PUFAs, such as ALA or docosapentaenoic acid (DPA).
14	We therefore conducted a comprehensive meta-analysis of prospective studies to
15	evaluate associations of omega-3 PUFA biomarkers with incident of T2D, total CVD,
16	CHD, stroke, cancer and mortality.
17	2. Methods
18	This study was reported according to the Meta-analyses of Observational Studies in
19	Epidemiology (MOOSE) guideline and the protocol was registered in an international
20	prospective register of systematic reviews (www.crd.york.ac.uk/PROSPERO/;
21	identifier CRD42021297231) [19].
22	2.1 Search strategy and selection criteria
23	PubMed (www.ncbi.nlm.nih.gov/pubmed), EMBASE (www.embase.com/), Web of
24	Science (www.isiknowledge.com), and Cochrane Library

25 (http://www.thecochranelibrary.com) were searched for relevant published articles

1	from inception to March 1, 2022, using the search terms: "polyunsaturated fatty
2	acids", "omega-3 fatty acids", "eicosapentaenoic acid", "docosahexaenoic acid",
3	"docosapentaenoic acid", "alpha linolenic acid", AND "type 2 diabetes",
4	"cardiovascular disease", "heart disease", "stroke", "cancer", "mortality", AND
5	"serum", "plasma", "blood", "erythrocytes", "cholesteryl esters", "phospholipids",
6	"triacylglycerol", "adipose tissue", AND "observational", "prospective", "follow-up",
7	"cohort", "case-cohort", "nested case-control" (see Table 1 in Supplementary
8	Appendix 1 for details). No restrictions for language were applied. Reference lists of
9	retrieved articles, review articles, and meta-analyses were also hand searched for
10	additional eligible studies. Authors of included studies and consulted experts were
11	also contacted for any further published or unpublished work.
12	Studies were eligible for inclusion if they met the following criteria: (1) study
13	design was prospective (including prospective cohort, nested case-control, and case-
14	cohort study) with a follow-up more than 1 year; 2) the exposures of interest were
15	omega-3 PUFA concentration (ALA, and total or individual marine-derived omega-3
16	fatty acids [EPA, DPA, and DHA]) in any type of tissue (circulating blood [whole
17	blood/serum/plasma/erythrocyte] or adipose tissue); (3) the endpoints of interest
18	included incident T2D, total CVD, CHD, stroke, cancer, all-cause mortality, and
19	cause-specific mortality; (4) the risk estimate with corresponding 95% confidence
20	intervals (95% CIs) or standard error was presented. In the case of overlapping
21	reports, only the one with the most updated data was retained to eliminate potential
22	duplicates. Three investigators (HJ, LNW, and MW) independently searched and
23	further assessed the eligibility of all identified citations, and disagreements were
24	resolved through discussion.

2.2 Data extraction and quality assessment

For each included article, three authors (HJ, NY, and MW) independently extracted
lata using a piloted data-extraction form that collects information on relevant study
details, including study characteristics (the name of the first author, year of
publication, geographical location, study design, follow-up year, study name and
population size), participant characteristics (age and proportion of men), exposure
comega-3 PUFAs type, exposure source, and assessment method), outcome (type and
number of cases or deaths), covariates adjusted in the analysis, and the risk estimate
with 95% CIs for all categories of each biomarkers. When studies provided estimates
with different degrees of statistical adjustment for confounding, the fully adjusted
associations were extracted and considered in the analysis.
Study quality was scrutinized by the same authors following the validated
Newcastle-Ottawa scale, which awards 0-9 points and incorporates information on
selection (range 0-4 points), comparability (range 0-2 points), and outcome
assessment (range 0-3 points). We defined studies as low, moderate, and high quality
for those scored 0-3, 4-6, and 7-9, respectively [20]. Any discrepancies in data
extraction and quality assessment were resolved by discussion or it would be deferred
to a senior independent reviewer (LM), if any uncertainty remained.
The Grades of Recommendation, Assessment, Development and Evaluation
(GRADE) was used to rate the overall quality and the strength of each outcome [21].
The GRADE approach basically categorizes the quality of observational studies as
ow-quality evidence. The following five criteria downgraded the quality of evidence:
ncluded study design and execution limitations, inconsistency,
ndirectness, imprecision, and publication bias.

25 Methods previously described were used to derive estimates of associations

corresponding to the comparison between the top and bottom thirds of omega-3 PUFA 1 distributions [22]. This strategy was to harmonize different comparison groups used in 2 3 individual studies, such as quartiles, quintiles, or other categorizations, or per standard deviation [SD] change. In brief, for studies that provided relative risks [RR] per SD 4 change of omega-3 PUFAs, we applied a factor of 2.18 to the log RR to derive the RR 5 comparing extreme thirds, assuming a normal distribution. Similarly, the factor of 6 7 2.54 or 2.80 was applied to convert estimates for comparing extreme quartiles or quintiles, respectively. The standard error (SE) of the transformed log RR was 8 9 calculated after applying the same factors [23]. When studies used multiple measures as biomarker (phospholipids, plasma, cholesterol esters, and adipose tissue), the 10 overall risk estimate was based on different duration of intake reflection according to 11 12 the following list: adipose tissue, erythrocyte phospholipids, plasma phospholipids, total plasma or serum, and cholesterol esters. For each included study, the most fully 13 adjusted estimates of rate, hazard, or odds ratios from prospective studies were all 14 15 valid estimates of the RR. Studies that reported results by sex or other subgroups separately were pooled to derive a single effect size for the study by using fixed-16 effects model. When CHD and stroke outcomes were separately provided in the same 17 study, we did not combine it to obtain total CVD risk estimates, and therefore, the 18 19 CVD analysis only considered studies that examined total CVD incidence. 20 Random effects model, which allows consideration of interstudy variation, was used to pooled data across studies because the expected heterogeneity in varying 21 factors (i.e., ages, ethnicities, and methods) making it difficult to assume identical true 22 23 effect size in every study. Heterogeneity across study effects was assessed using Q test and I² statistic. A Cochran's Q P < 0.10 and $I^2 > 50\%$ were considered as the threshold 24 of presence of statistically significant heterogeneity. If ≥ 10 studies were available, 25

1	prespecified subgroup and meta-regression analyses were carried out, with the
2	following variables: study design (prospective cohort study, or prospective nested
3	case-cohort study, nested case-control study), sex (men, women, or both),
4	geographical location (America, Australia, Asia, or Europe), duration of follow-up (<
5	10 or \geq 10 years), assessment method (gas chromatography [GC] or gas-liquid
6	chromatography [GLC]), biological sample type (total plasma, phospholipids,
7	cholesterol esters, or adipose tissue), number of cases (< 300, 300-500, or \geq 500), and
8	study quality (moderate or high) [24].
9	Dose-response analyses were assessed using the method proposed by Greenland
10	and Longnecker to calculate study linear trends and 95% CIs from the natural logs of
11	the RRs and CIs across categories of omega-3 PUFA exposure [25]. The dose-
12	response outcomes were limited to studies that reported circulating omega-3 PUFA
13	due to the small number of included studies with other exposures. The reported
14	midpoint (median/mean level extracted from the original articles) or estimated
15	midpoint (the average of the upper and the lower cut-off point reported in the original
16	articles) of omega-3 PUFA markers level for each category was assigned to
17	corresponding risk estimate [26]. When the highest category did not have an upper
18	bound, the midpoint of the category was set at 1.5 times the lower boundary. If the
19	lowest categories were open ended, the lower boundary was set to zero [27]. For
20	studies without data on number of participants for each category, we then used the
21	average participants number by categories (total participants divided by the number of
22	categories). The method proposed by Bekkering et al., which considering the numbers
23	of cases and the reported risk estimate, was used to impute missing data when the
24	number of cases in each category was not available [28]. Furthermore, only studies
25	that reported RR with 95% CIs for at least three exposure categories were included in

the dose-response estimation. In addition, restricted cubic spline regression model 1 with three knots at 10th, 50th, and 90th percentiles of the biomarkers were used to 2 3 examine any potential non-linear dose-response relationships [29]. The dose-response outcomes were presented on the basis of per SD increment for the concentration of 4 circulating omega-3 PUFA. When the mean (SD) for per category was not available, a 5 method proposed by McGrath et al. was used to impute category specific mean (SD) 6 7 based on median, quartile, or extreme values [30]. Sensitivity analyses were carried out by excluding one study at each turn and recalculating the pooled estimates for the 8 9 remainder of the studies (i.e., the "leave one out" approach) to test the impact by individual studies on the pooled study estimates. A study was considered as being 10 influential when the significance level of the overall association changed (such as 11 12 from < 0.05 to ≥ 0.05) or the combined risk estimates changed by 10% or more upon its removal. Potential publication bias was examined by Begg's and Egger's tests, as 13 well as the trim and fill method. In addition, we depicted this graphically with a 14 15 funnel plot if the analysis including 10 or more studies. All analyses were performed using Stata, version 10.2 (Stata Corp, Texas). P < 0.05 was considered statistically 16 significant for all analyses unless otherwise specified. 17

18 3. Results

19 **3.1 Study characteristics**

Fig. 1 summarizes the literature search and selection process. We identified 18,341 citations in the primary search, of which 186 were retrieved for full text evaluation after the initial screening of abstracts and titles. In addition, 13 studies were identified through manual examination of reference lists. Overall, a total of 67 studies reported in 65 articles were included in our main analysis (Table S2-S7 in Supplementary Appendix 1, Fig. 1) [16-18, 31-92].

1	The included studies comprised of 27 prospective cohort studies [16-18,31,36-38,
2	40,41,42,44-52,55,63,65-67,70,76,92], nine case-cohort studies [32,39,57,69,72,78,
3	80, 90,91], one nested case-cohort study [35], and 28 nested case-control studies [33,
4	34,43, 53,54,56,58,59-62,64,68,71,73-75,77,79,81-89]. Twenty-seven studies were
5	conducted in Europe [16,17,33-35,37-39,42,44,46,49,57,58,63,64,67,69,70,74-
6	76,78,79,81,84,87], 26 in the United States [18,31,36,40,43,47,48,50,51,53-
7	56,59,65,66,68,71,77,82,83, 85,86,88-90], seven in Asia [41,45,52,60-62,73], and five
8	in Australia [32,72,80,91,92]. Mean age of participants in the individual studies
9	ranged from 41.1 to 80.5 years. For the measurements of omega-3 PUFA levels, 51
10	studies used GC analytic approach [16-18,32,34-41,43-54,57-59,61-64,66-70,73-
11	79,81,83,85,87-90,92], 13 used GLC [31,33,43,55,56,65,71,72,80,82,84,86,91], one
12	in nuclear magnetic resonance-based profiling [42], and one used GC-tandem mass
13	spectrometry [60]. The Fig. 1 in Supplementary Appendix 2 shows the mean (SD)
14	proportion of each objective omega-3 PUFA relative to the total fatty acid contents in
15	blood compartments. The study quality scores were shown in Table S8 and Table S9
16	in Supplementary Appendix 1. Fifty-seven studies were deemed to be of high quality
17	[16-18,31-40,42,44,46-48,50-52,54-59,61,62,64-82,84-89,91,92], and the others
18	judged as having a moderate quality [41,43,45,49,53,60,63,83,90].

1	were observed for EPA (RR: 0.85, 95%CI: 0.72-0.99, <i>P</i> =0.04; <i>P</i> heterogeneity <0.001;
2	Fig. 2 and Fig. S3 in Supplementary Appendix 2) and DPA (RR: 0.84, 95%CI:0.73-
3	0.96, $P = 0.11$; $P_{\text{heterogeneity}} = 0.005$; Fig. 2 and Fig. S4 in Supplementary Appendix 2).
4	A non-significant inverse trend was found for the sum of EPA+DPA+DHA (RR: 0.81,
5	95%CI: 0.60-1.09, P =0.16; P heterogeneity =0.15; Fig. 2, Fig. S5-S6 in Supplementary
6	Appendix 2) with T2D risk. The result of analyses stratified by length of follow-up,
7	sex, geographic location, number of cases, exposure assessment, biomarkers type, and
8	study design showed that these variables did not substantially alter the association
9	between level of omega-3 PUFA biomarkers and T2D risk (Table S10 in
10	Supplementary Appendix 1).
11	3.3 Omega-3 PUFA biomarkers and risk of CVD
12	Association of omega-3 PUFA levels with total CVD was assessed in 13 studies,
13	which included a total of 4,706 cases among 36,921 participants [16-18, 43-54]. When
14	comparing the extreme tertiles, the risk of total CVD was significantly lower by 21%
15	for EPA (RR: 0.79, 95%CI: 0.70-0.89, P<0.001; P heterogeneity=0.20; Fig. 2 and Fig. S7
16	in Supplementary Appendix 2), 22% for DPA (RR: 0.78, 95%CI:0.70-0.86, P<0.001;
17	P heterogeneity=0.94; Fig. 2 and Fig. S8 in Supplementary Appendix 2), and 24% for
18	DHA (RR: 0.76, 95%CI:0.66-0.88, P<0.001; P heterogeneity=0.02; Fig. 2 and Fig. S9 in
19	Supplementary Appendix 2, Table S11 in Supplementary Appendix 1). The sum of
20	EPA+DPA+DHA was also associated with a significantly lower total CVD risk by
21	55% (RR: 0.45, 95%CI:0.27-0.74, P=0.002; P heterogeneity=0.15; Fig. 2 and Fig. S10 in

1	CVD when comparing the highest with lowest categories (RR: 1.09, 95%CI: 0.98-
2	1.20, P=0.10; P heterogeneity=0.74; Fig. 2 and Fig. S11 in Supplementary Appendix 2).
3	Results from the dose-response analyses showed a significant linear decrease in the
4	risk of CVD of individuals with increasing values of circulating EPA and DPA
5	concentration, and per 1-SD increment was associated with 22% (RR: 0.78, 95%CI:
6	0.71-0.86, <i>P</i> <0.001) and 8% (RR: 0.91, 95%CI: 0.87-0.95, <i>P</i> <0.001) lower risk of
7	CVD, respectively (Fig. 3). A potential non-linear dose-response curve was detected
8	for DHA-CVD association in that the CVD risk did not decrease until the DHA levels
9	exceeded about 2% ($P_{\text{non-linearity}}=0.01$; Fig. 3).
10	3.4 Omega-3 PUFA biomarkers and risk of CHD
11	The association between omega-3 PUFA biomarker levels and CHD was evaluated in
12	13 studies, which consisted of 7,626 cases and 27,624 participants [18,47,48,53-62].
13	The overall effect estimates of CHD comparing the top tertile with bottom tertile was
14	0.98 for ALA (95% CI: 0.95-1.02, P=0.30; P heterogeneity=0.89; Fig. 2 and Fig. S12 in
15	Supplementary Appendix 2), 0.85 for EPA (95%CI: 0.77-0.95, P=0.003; P
16	heterogeneity=0.41; Fig. 2 and Fig. S13 in Supplementary Appendix 2, Table S12 in
17	Supplementary Appendix 1), 0.83 for DPA (95%CI: 0.76-0.92, P<0.001; P
18	heterogeneity=0.84; Fig. 2 and Fig. S14 in Supplementary Appendix 2), 0.70 for DHA
19	(95%CI: 0.58-0.84, P<0.001; P heterogeneity=0.02; Fig. 2 and Fig. S15 in Supplementary
20	Appendix 2, Table S12 in Supplementary Appendix 1), and 0.67 for the sum of
21	EPA+DPA+DHA (95%CI: 0.47-0.96, P=0.03; P heterogeneity=0.34; Fig. 2 and Fig. S16
22	in Supplementary Appendix 2). For the dose-response analyses, a linear association
23	was observed for marine-derived omega-3 PUFA biomarkers and risk of CHD. For
24	every 1-SD increase in levels of EPA, DPA, and DHA in circulating, the RR of CHD

1	decreased by 10% (RR: 0.90, 95%CI: 0.83-0.98, P=0.02), 4% (RR: 0.96, 95%CI:
2	0.89-1.02, P=0.20), and 7% (RR:0.93, 95%CI: 0.88-0.98, P=0.008), respectively (Fig.
3	3).
4	3.5 Omega-3 PUFA biomarkers and risk of stroke
5	Twelve studies provided information on omega-3 PUFA levels and the subsequent risk
6	of stroke, including a total of 7,036 events in 77,163 participants [48,51,63-70]. The
7	pooled estimate indicated that high DHA status was associated with a lower risk of
8	stroke (RR: 0.84, 95%CI: 0.72-0.99, P=0.03; P heterogeneity=0.03; Fig. 2 and Fig. S17 in
9	Supplementary Appendix 2), while there was no significant association for biomarkers
10	of ALA, EPA, DPA, or the sum of EPA+DPA+DHA (Fig. 2 and Fig. S18-S21 in
11	Supplementary Appendix 2). A linear relation was noted between DHA biomarker and
12	stroke in the dose-response analysis (Fig. 2 and Fig. S22 in Supplementary Appendix
13	2), and the RR was 0.97 (95%CI: 0.93-1.01, P=0.15) for each 1-SD increment of
14	DHA concentration in circulating.
15	3.6 Omega-3 PUFA biomarkers and risk of cancer
16	Twenty-one studies were included in the analysis of omega-3 PUFA biomarker status
17	and colorectal, breast, or prostate cancers [71-91]. For colorectal cancer (n=3) [71-
18	73], in comparison with the lowest category, the highest level category of DPA and
19	DHA were associated with 24% (RR: 0.76, 95%CI: 0.59-0.98, P=0.04; P
20	heterogeneity=0.87; Fig. 2 and Fig. S23 in Supplementary Appendix 2) and 20% (RR:
21	0.80, 95%CI: 0.65-0.99, P=0.04; P heterogeneity=0.56; Fig. 2 and Fig. S24 in
22	Supplementary Appendix 2) reduced risk of colorectal cancer, respectively. ALA and
23	EPA biomarker had a non-significant association with incident colorectal cancer (Fig.

- 24 2, Fig. S25 and Fig. S26 in Supplementary Appendix 1). No association was observed
- 25 between ALA, EPA, DPA, and DHA concentrations and incidence of breast cancer

- 1 (study n=9; Fig. 2 and Fig. S27-S30 in Supplementary Appendix 2) [74-82]. No
- 2 significant association was detected for prostate cancer (n=9) [83-91] (Fig. 2 and Fig.
- 3 **S31-S34** in Supplementary Appendix 2).

4 **3.7 Omega-3 PUFA biomarkers and total mortality**

- 5 Nine studies investigated the relation of omega-3 PUFA biomarker levels with
- 6 mortality with a total of 7,995 deaths from 27,616 participants [16,18,43,46-
- 7 50,69,92]. Pooled RR for the comparison of extreme tertiles was 0.78 for EPA
- 8 (95%CI: 0.69-0.88, P<0.001; P_{heterogeneity}=0.01; Fig. 2 and Fig. S35 in Supplementary
- 9 Appendix 2), 0.82 for DPA (95%CI: 0.74-0.90, P<0.001; P heterogeneity=0.73; Fig. 2 and
- 10 Fig. S36 in Supplementary Appendix 2,), and 0.83 for DHA (95%CI: 0.75-0.92,
- 11 $P < 0.001; P_{heterogeneity} = 0.08;$ Fig. 2 and Fig. S37 in Supplementary Appendix 2).
- 12 Nonsignificant association was observed for ALA biomarker (RR: 0.98, 95%CI: 0.89-
- 13 1.07, *P*=0.63; *P*_{heterogeneity}=0.18; **Fig. 2** and **Fig. S38** in Supplementary Appendix 2).
- 14 No significant evidence of heterogeneity was detected in these analyses.

	No of Studies	No of Events	No of Participants		Relative Risk (95%Cl)
ALA					
T2D	11	15,458	53,011	-	0.89 (0.82, 0.96)
CVD	8	2,951	22,185	-	1.09 (0.98, 1.20)
CHD	9	5,529	21,079	+	0.98 (0.95, 1.02)
Stroke	8	4,204	20,435	+	0.98 (0.92, 1.05)
Colorectal cancer	2	745	4,905		0.90 (0.72, 1.12)
Breast cancer	8	5,286	12,922	-	0.95 (0.86, 1.05)
Prostate cancer	9	5,277	12,922		1.03 (0.90, 1.19)
Mortality	7	5,802	23,091	-	0.98 (0.89, 1.07)
EPA					
T2D	9	15,002	47,014		0.85 (0.72, 0.99)
CVD	9	3,089	28,439		0.79 (0.70, 0.89)
CHD	10	6,700	21,020		0.85 (0.77, 0.95)
Stroke	9	4,692	69,176		0.95 (0.82, 1.11)
Colorectal cancer	3	923	5,365		0.86 (0.70, 1.05)
Breast cancer	9	5,749	14,534		0.93 (0.85, 1.02)
Prostate cancer	9	5.277	12,922		1.05 (0.94, 1.17)
Mortality	8	6,478	24,907	-	0.78 (0.69, 0.88)
DPA					
T2D	9	15,002	47,014		0.84 (0.73, 0.96)
CVD	6	2,122	17,962		0.78 (0.70, 0.86)
CHD	9	5,956	19,532		0.83 (0.76, 0.92)
Stroke	7	4,103	62,984		0.96 (0.79, 1.16)
Colorectal cancer	2	573	4,665		0.76 (0.59, 0.98)
Breast cancer	6	2,208	6,921		0.94 (0.85, 1.05)
Prostate cancer	6	3,253	8,825		0.92 (0.75, 1.15)
Mortality	4	2,591	10,332		0.82 (0.74, 0.90)
DHA					
T2D	10	18,054	142,868		0.96 (0.82, 1.11)
CVD	10	3,959	32,383		0.76 (0.66, 0.88)
CHD	10	6,700	21,020		0.70 (0.58, 0.84)
Stroke	9	4,692	69,176		0.84 (0.72, 0.99)
Colorectal cancer	3	923	5,365		0.80 (0.65, 0.99)
Breast cancer	9	5,749	14,534	-	1.01 (0.92, 1.11)
Prostate cancer	8	5,157	12,682	_	1.05 (0.89, 1.24)
Mortality	8	8,478	24,907	-	0.83 (0.75, 0.92)
EPA+DPA+DHA					
T2D	2	635	4,883		0.81 (0.60, 1.09)
CVD	3	374	4,972		0.45 (0.27, 0.74)
CHD	3	1,288	5,386		0.67 (0.47, 0.96)
Stroke	2	2,081	57,166		1.04 (0.90, 1.20)
			_ ·	0.5 1.01.5	<u></u>
			Rel	ative Risk (95%)	

1

2 Figure 2. Pooled relative risks of T2D, CVD, CHD, stroke, colorectal cancer, prostate

3 cancer, and all-cause mortality comparing the highest with the lowest tertile of omega-3 fatty

4 acids biomarkers.

5 ALA, α-linolenic acid; CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular

- 1 disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid;
- 2 RR, relative risk; T2D, type 2 diabetes.
- 3

Figure 3. Dose-response analysis for linear or non-linear association of EPA, DPA, and DHA
biomarkers with CVD (A, B, and C) and CHD (D, E, and F) risk.

7 Circles represent point estimates plotted over precision measures. Long dash represent summary

8 estimates and 95% confidence intervals of spline model. CHD, coronary heart disease; CVD,

9 cardiovascular disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA,

10 eicosapentaenoic acid; T2D, type 2 diabetes.

11

12 **3.8** Sensitivity analysis and publication bias

13 In sensitivity analyses omitting one study at a time from each analysis, the combined

14 estimate did not substantially change for most omega-3 PUFA biomarkers, except for

- 15 the studies that evaluated the association between DHA level and prostate cancer: the
- 16 pooled RR (95% CI) was strengthened to 1.14 (95% CI: 1.00-1.30, P=0.04; $I^2=30.6\%$,
- 17 $P_{\text{heterogeneity}}=0.20$) when the study by Chavarro et al. was removed [86]. No indication
- 18 of substantial publication bias was found for most outcomes with either Egger's test
- or Begg's test (P > 0.05 for both tests; Fig. S39-S42 in Supplementary Appendix 2).

3.9 GRADE profile evidence

2	Supplementary Table S13 in Appendix 1 summarize the GRADE quality of evidence
3	for each outcome. All outcomes were downgraded for risk of heterogeneity or
4	indirectness, and outcomes could be upgraded with significant inverse dose-response
5	gradient. Overall, the quality of evidence in four outcomes was rated as "moderate"
6	(EPA-CVD association, EPA-CHD association, DPA-CVD association, and DPA-
7	CHD association), 11 as "low" (ALA-T2D association, ALA-CVD association, ALA-
8	breast cancer association, ALA-prostate cancer association, ALA-mortality
9	association, EPA-breast cancer association, EPA-mortality association, DHA-CVD
10	association, DHA-CHD association, DHA-breast cancer association, and DHA-
11	mortality association), and the remaining outcomes were rated as "very low" based on
12	the GRADE classification.
13	4. Discussion
14	This comprehensive meta-analysis demonstrated robust inverse associations between
15	marine-derived omega-3 PUFA in circulation or adipose tissue and lower risk of total
16	CVD, CHD and overall mortality. No significant association was found between these
17	omega-3 PUFA biomarkers and cancer risk, except for modest reduction in the risk of
18	colorectal cancer with DPA and DHA. The associations between ALA and disease
19	outcomes are less clear except an inverse association for T2D. The results largely
20	persisted in dose-response meta-analyses or sub-group analyses. These findings
21	therefore suggest that omega-3 PUFAs have important implications in chronic
22	diseases prevention.
23	Several biologic mechanisms have been proposed through which marine-derived
24	
	omega-3 PUFA can reduce biological pathways related to the occurrence of

1	regulation of lipid metabolism, and amelioration of insulin resistance. Chronic
2	systematic inflammation is recognized as an important contributor to endothelial
3	dysfunction, phospholipid oxidation, insulin resistance, as well as tumor development
4	and growth, all of which are believed to play a role in the subsequent development of
5	metabolic diseases, certain cancers and mortality [93, 94]. Marine-derived omega-3
6	PUFAs may suppress the expression of inflammation related genes through directly
7	interacting with the nuclear receptor, including peroxisome proliferator-activated
8	receptors, hepatocyte nuclear factor- 4α , and liver X receptor, or through mitigating
9	the activation of the NF-κB transcription factor pathway by blocking IkB
10	phosphorylation [93, 94]. EPA and DHA could limit the inflammatory effect of the
11	arachidonic acid (AA)-derived pro-inflammatory eicosanoids via competing with AA
12	for enzymes (cyclooxygenase and the lipoxygenase) that catalyze the conversion of
13	omega-6 fatty acids to the 2-series prostaglandins and the 4-series leukotrienes [97-
14	99]. Moreover, the metabolites of EPA (3-series prostaglandins and 5-series
15	leukotrienes) could also competitively inhibit the pro-inflammatory triggering of
16	eicosanoids derived from AA as they shared partially same trigger receptors [100].
17	Another potential mechanism that links beneficial role of marine omega-3 PUFA to
18	chronic condition was the effects of omega-3 PUFA in protecting DNA and lipids
19	from oxidative damage. In H ₂ O ₂ -induced DNA damage response in human aortic
20	endothelial cells, Sakai et al. reported that treatment with EPA and DHA significantly
21	diminished the level of intracellular reactive oxygen species and DNA double-strand
22	breaks through upregulation of Nrf2-mediated antioxidant response [101]. Using an
23	alloxan-induced diabetes mellitus rat model, De Assis et al. demonstrated a significant
24	reduction in the content of superoxide dismutase/catalase (SOD/CAT) enzymatic
25	ratio, CAT immunocontent and increase in SOD2 levels after 4 weeks omega-3 PUFA

treatment [102]. In certain circumstances, marine-derived omega-3 PUFA has
favorable effect on blood lipid concentration *in vivo* [103]. Furthermore, evidence
suggests that DHA and EPA significantly reduce membrane electrical excitability of
cardiac myocytes via downregulation of resting membrane potential and the duration
of refractory period by directly modulating ion fluxes (e.g., Na⁺ and Ca²⁺), which is
generally considered as the mechanism underlying the antiarrhythmic effects of
marine-derived omega-3 PUFAs [104].

Results from large-scale randomized controlled trials (RCTs) that investigated the 8 9 effects of omega-3 PUFA supplementation on composite cardiovascular end points have shown conflicting results. Data from a previous meta-analysis of 10 RCTs 10 (77,917 patients with existing cardiovascular conditions) reported no significant 11 12 adverse or beneficial effects of omega-3 fatty acid supplements on CHD and major vascular events risk for a mean of 4.4 years treatment [105]. However, two recent 13 randomized trials, which were conducted among individuals who were free of pre-14 15 existing CVD, suggested cardiovascular benefits by omega-3 fatty acid supplementation. According to the REDUCE-IT report, supplementation with pure 16 EPA at 4g/day decreased the risk of ischemic events (including cardiovascular death, 17 nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or 18 19 hospitalization for unstable angina) by 19-30% during a median of 4.9 y among 8,179 20 patients with elevated CVD risk or diabetes [5]. Results from the VITAL also showed a significant 39% reduction in myocardial infarction (MI) risk by 1 g/day EPA+DHA 21 supplementation over a median 5.3 years period [6]. In agreement with the results of 22 23 these two trials, we also found a significant, lower risk of developing CHD and CVD with higher levels of EPA, DPA, and DHA biomarkers among largely healthy 24 individuals, which lends further support for the role of these nutrients in the primary 25

1 prevention of CHD and CVD.

With regard to cancer, large intervention trials exploring omega-3 PUFA 2 3 supplementation in the primary prevention of cancer are scarce. In the VITAL trial, omega-3 PUFA supplementation showed no effect on the incidence of cancer or death 4 from cancer [6]. However, these results should be interpreted with caution as the 5 number of cases was small in the trial which made it difficult to draw small to modest 6 7 effects. Observational studies also yielded inconsistent results regarding the associations of fish and omega-3 PUFA consumption with breast cancer, prostate 8 9 cancer, or colorectal cancer, with some studies that reported inverse association, whereas others produced no association or positive association [106-110]. In the 10 present analyses, comparison with cardiometabolic disorders, no apparent association 11 12 was found for most associations between marine-derived omega-3 PUFA and cancer outcomes. Whether such differences in findings are result from biological differences 13 or other factors is remains unclear, but the fact that, in general, people at high risk of 14 cardiovascular event could obtained more health benefit from omega-3 PUFA 15 cholesterol-lowering effect than the patients with cancer [111-113]. For instance, 16 dyslipidemia induced atherosclerosis is thought to play an important role in the cause 17 of CVD, but it seems not directly involved in the process of cancer incidence and 18 19 development [112,113]. Considering the complex and multifactorial association of 20 nutrients in relation to disease, additional research is needed to insight into the underlying biological mechanisms of the benefit effects of omega-3 PUFA related to 21 health in order to further understand the association between omega-3 PUFAs and 22 23 cancer.

Several potential limitations should be considered when interpreting the results.
First, fatty acid biomarker levels were measured only once at baseline and changes of

fatty acid levels over time were not accounted for. However, a recent analysis 1 suggested that the omega-3 PUFA concentrations, with the exceptions of DPA, in 2 3 serum cholesteryl ester, triglyceride and phospholipid fractions remained fairly stable in 8-10 years [114]. Second, although most included studies in our analysis adjusted 4 for multiple major risk factors, such as sociodemographic, lifestyle, clinical, and other 5 6 dietary risk factors, we cannot exclude the impact of residual and unmeasured 7 confounding on the observed associations [115]. In particular, participants with high omega-3 PUFA status might be more likely to adhere to a healthier dietary pattern or 8 9 have a higher socioeconomic status, which might distort the true associations. Third, variation in fatty acids metabolism and de novo lipogenesis between individuals and 10 between populations may introduce extraneous heterogeneity to the current analysis. 11 12 In the era of precision medicine, further studies are needed to incorporate factors that account for individual variation in response to omega-3 PUFA intake and subsequent 13 chronic disease risk. Finally, we cannot exclude the possibility of publication bias, 14 15 although our trim-and-fill analyses suggested such a bias is likely to be small.

16 5. Conclusions

Our meta-analysis of existing prospective evidence indicated that the marine-derived omega-3 PUFAs were associated with a lower risk of developing major chronic diseases, including CVD, CHD, and overall mortality, although associations for other disease outcomes were unclear. These findings further support the current recommendations of increasing intakes of marine-derived omega-3 PUFAs to facilitate the primary and secondary prevention of chronic conditions, especially

23 CVD.

1	Author Contributions: LM, DLW and JL generated the idea for the study,
2	formulated an analytical plan. All authors acquired, analyzed, or interpreted the data.
3	HJ and LNW designed the search strategy, and HJ and LNW, and FW performed the
4	literature search and screened studies for eligibility. HJ, YN, and MW extracted data.
5	WRJ and XL assessed the risk of bias. HJ, JXL, and YL performed data analysis. HJ,
6	MW, LM, BBM, FW, FYC, and CL interpreted the data analysis and assessed the
7	certainty of evidence. HJ drafted the manuscript and all other authors revised the
8	manuscript. LM supervised the study. The corresponding author attests that all listed
9	authors meet authorship criteria and that no others meeting the criteria have been
10	omitted.
11	
12	Conflict of interest: The authors declare no conflicts of interest.
13	
14	Funding: This work was Supported by the National Natural Science Foundation of
15	China (NSFC-82022062; NSFC-81973025), Nutrition Science Research Foundation
16	of BY-HEALTH (TY0181101); Key Research and Development Program of Shaanxi
17	(2022SF-185), and the Fundamental Research Funds for the Central Universities
18	(qngz2016004, xzy032019008). The funders had no role in the design and conduct of
19	the study; collection, management, analysis, and interpretation of the data;
20	preparation, review, or approval of the manuscript; and decision to submit the
21	manuscript for publication.

References

- [1] Chaddha A, Eagle KA. Cardiology patient page. Omega-3 fatty acids and heart health. Circulation 2015; 132(22):350-352.
- [2] U.S. Department of health and human services and U.S. department of agriculture. 2015-2020 Dietary Guidelines for Americans. 8th Edition. December 2015.
 Available from: <u>http://health.gov/dietaryguidelines/2015/guidelines/</u> on 15 April 2020
- [3] Giordano E, Visioli F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostag Leukotr Ess 2014; 90(1):1-4.
- [4] Elagizi A, Lavie C J, Marshall K, DiNicolantonio JJ, O'Keefe JH, Milani RV. Omega-3 polyunsaturated fatty acids and cardiovascular health: A comprehensive review. Prog Cardiovasc Dis 2018; 61(1):76-85.
- [5] Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Effects of Icosapent Ethyl on total ischemic events: From REDUCE-IT. J Am Coll Cardiol 2019; 73(22):2791-2802.
- [6] Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Me 2019; 380(1):23-32.
- [7] Zheng JS, Hu XJ, Zhao YM, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 2013; 346:f3706.
- [8] Medenwald D, Kluttig A, Lacruz ME, Schumann J. Serum dietary fatty acids and coronary heart disease risk-A nested case-control-study within the CARLA cohort. *Nutr Metab* Cardiovasc Dis 2019; 29(2):152-158.
- [9] Brostow DP, Odegaard AO, Koh WP, Duval S, Gross MD, Yuan JM, Pereira MA. Omega-3 fatty acids and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 2011; 94(2):520-526.
- [10] Dow C, Mangin M, Balkau B, et al. Fatty acid consumption and incident type 2 diabetes: an 18-year follow-up in the female E3N (Etude Epidémiologique auprès des femmes de la Mutuelle Générale de l'Education Nationale) prospective cohort study. Br J Nutr 2016; 116(10):1-9.
- [11] Djoussé L, Gaziano JM, Buring JE, Lee IM. Dietary omega-3 fatty acids and fish

consumption and risk of type 2 diabetes. Am J Clin Nutr 2011; 93(1):143-150.

- [12] Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health 2014; 36:e2014009.
- [13] Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106(21):2747-2757.
- [14] Arab L. Biomarkers of fat and fatty acid intake. J Nutr 2003; 133(3):925S-932S.
- [15] Sun Y, Koh HW, Choi H, Koh WP, Yuan JM, Newman JW, Su J, Fang J, Ong CN, van Dam RM. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study. J Lipid Res 2016; 57((7):1300-1307.
- [16] Warensjo E, Sundstrom J, Vessby B, Cederholm T, Risérus U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: a populationbased prospective study. Am J Clin Nutr 2008; 88(1):203-209.
- [17] Woodward M, Tunstall-Pedoe H, Batty GD, Tavendale R, Hu FB, Czernichow S. The prognostic value of adipose tissue fatty acids for incident cardiovascular disease: results from 3944 subjects in the Scottish Heart Health Extended Cohort Study. Eur Heart J 2011; 32(11):1416-1423.
- [18] Mozaffarian D, Lemaitre RN, King IB, Song X, Huang H, Sacks FM, Rimm EB, Wang M, Siscovick DS. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults: A cohort study. Ann Intern Med 2013; 158(7):515-525.
- [19] Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 2000; 283(15):2008-2012.
- [20] Wells GA, Shea B, O'Connell D, Robertson J, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. Available from: <u>www.ohri.ca/programs/clinical_epidemiology/oxford.html on 21</u> April 2020
- [21] Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and

strength of recommendations. BMJ 2008; 336(7650):924-926.

- [22] Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med 2014; 160(6):398-406.
- [23] Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998; 279(18):1477-1482.
- [24] Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: the Cochrane Collaboration. Hoboken (NJ): John Wiley & Sons; 2011.
- [25] Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992; 135(11): 1301-1309.
- [26] Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 2010; 29(9):1037-1057.
- [27] Rong Y, Chen L, Zhu T, Song Y, Yu M, Shan Z, Sands A, Hu FB, Liu L. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. *BMJ*. 2013; 346:e8539.
- [28] Bekkering GE, Harris RJ, Thomas S, Mayer AM, Beynon R, Ness AR, Harbord RM, Bain C, Smith GD, Sterne JA. How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? Am J Epidemiol 2008;167(9):1017-1026.
- [29] Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 2012; 175(1):66-73.
- [30] McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A; DEPRESsion Screening Data (DEPRESSD) Collaboration. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Stat Methods Med Res 2020:962280219889080.
- [31] Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH, ARIC Study Investigators. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis

Risk in Communities (ARIC) Study. Am J Clin Nutr 2003; 78(1):91-98.

- [32] Hodge AM, English DR, O'Dea K, Sinclair AJ, Makrides M, Gibson RA, Giles GG. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 2007; 86(1):189-197.
- [33] Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B, et al. Fatty acid profile of the erythrocyte membrane preceding development of type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2008; 18(7):503-510.
- [34] Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Am J Clin Nutr 2010;92(5):1214-1222.
- [35] Kröger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Döring F, Joost HG, Boeing H, Schulze MB. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr 2011; 93(1):127-142.
- [36] Djoussé L, Biggs ML, Lemaitre RN, King IB, Song X, Ix JH, Mukamal KJ, Siscovick DS, Mozaffarian D. Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr 2011; 94(2): 527-533.
- [37] Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor Study. Diabetes Care 2014; 37(1):189-196.
- [38] Takkunen MJ, Schwab US, de Mello VD, Eriksson JG, Lindström J, Tuomilehto J, Uusitupa MI; DPS Study Group. Longitudinal associations of serum fatty acid composition with type 2 diabetes risk and markers of insulin secretion and sensitivity in the Finnish Diabetes Prevention Study. Eur J Nutr 2016; 55(3):967-979.
- [39] Forouhi NG, Imamura F, Sharp SJ, et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: The EPIC-InterAct Case-Cohort Study. PLOS Medicine 2016; 13(7):e1002094.

- [40] Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. Red blood cell fatty acids and incident diabetes mellitus in the Women's Health Initiative Memory Study. Plos One 2016; 11(2):e0147894.
- [41] Zheng JS, Lin JS, Dong HL, Zeng FF, Li D, Song Y, Chen YM. Association of erythrocyte n-3 polyunsaturated fatty acids with incident type 2 diabetes in a Chinese population. Clin Nutr 2019; 38(5):2195-2201.
- [42] Zhuang P, Liu X, Li Y, Li H, Zhang L, Wan X, Wu Y, Zhang Y, Jiao J. Circulating fatty acids and genetic predisposition to type 2 diabetes: gene-nutrient interaction analysis. Diabetes Care 2022;45(3):564-75.
- [43] Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002; 346(15):1113-1118.
- [44] Laaksonen DE, Nyyssonen K, Niskanen L, Rissanen TH, Salonen JT. Prediction of cardiovascular mortality in middle-aged men by dietary and serum linoleic and polyunsaturated fatty acids. Arch Intern Med 2005; 165(2):193-199.
- [45] Chien KL, Lin HJ, Hsu HC, Chen PC, Su TC, Chen MF, Lee YT. Comparison of predictive performance of various fatty acids for the risk of cardiovascular disease events and all-cause deaths in a community-based cohort. Atherosclerosis 2013; 230(1):140-147.
- [46] Virtanen JK, Laukkanen JA, Mursu J, Voutilainen S, Tuomainen TP. Serum long-chain n-3 polyunsaturated fatty acids, mercury, and risk of sudden cardiac death in men: A prospective population-based study. Plos One 2012; 7(7):e41046.
- [47] de Oliveira Otto MC, Wu JH, Baylin A, Vaidya D, Rich SS, Tsai MY, Jacobs DR Jr, Mozaffarian D. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2013; 2(6):e000506.
- [48] Fretts AM, Mozaffarian D, Siscovick DS, et al. Plasma phospholipid and dietary α-linolenic acid, mortality, CHD and stroke: the Cardiovascular Health Study. Br J Nutr 2014; 112:1206-1213.
- [49] Marklund M, Leander K, Vikström M, Laguzzi F, Gigante B, Sjögren P, Cederholm T, de

Faire U, Hellénius ML, Risérus U. Polyunsaturated fat intake estimated by circulating biomarkers and risk of cardiovascular disease and all-cause mortality in a population-based cohort of 60-year-old men and women. Circulation 2015; 132(7):586-594.

- [50] Harris WS, Luo J, Pottala JV, Espeland MA, Margolis KL, Manson JE, Wang L, Brasky TM, Robinson JG. Red blood cell polyunsaturated fatty acids and mortality in the Women's Health Initiative Memory Study. J Clin Lipidol 2017; 11(1):250-259.
- [51] Harris WS, Tintle NL, Etherton MR, Vasan RS. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J Clin Lipidol 2018; 12(3):718-727.
- [52] Zhang Y, Guo X, Gao J, et al. The associations of circulating common and uncommon polyunsaturated fatty acids and modification effects on dietary quality with all-cause and disease-specific mortality in NHANES 2003-2004 and 2011-2012. Ann Med 2021; 53(1):1744-1757.
- [53] Simon JA, Hodgkins ML, Browner WS, Neuhaus JM, Bernert JT Jr, Hulley SB. Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol 1995; 42(5):469-476.
- [54] Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS. N-3 polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2003; 77(2):319-325.
- [55] Wang L, Folsom AR, Eckfeldt JH. Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Nutr Metab Cardiovasc Dis 2003; 13(5):256-266.
- [56] Sun Q, Ma J, Campos H, Rexrode KM, Albert CM, Mozaffarian D, Hu FB. Blood concentrations of individual long-chain n-3 fatty acids and risk of nonfatal myocardial infarction. Am J Clin Nutr 2008; 88(1):216-223.
- [57] Joensen AM, Overvad K, Dethlefsen C, Johnsen SP, Tjønneland A, Rasmussen LH, Schmidt EB. Marine n-3 polyunsaturated fatty acids in adipose tissue and the risk of acute coronary syndrome. Circulation 2011; 124(11):1232-1238.
- [58] Khaw K, Friesen MD, Riboli E, Luben R, Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk

Prospective Study. PLOS Med 2012; 9(7):e1001255.

- [59] Matsumoto C, Matthan NR, Wilk JB, Lichtenstein AH, Michael Gaziano J, Djoussé L. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians' Health Study. Br J Nutr 2013; 109(11):2044-2049.
- [60] Sun Y, Koh WP, Yuan JM, Choi H, Su J, Ong CN, van Dam RM. Plasma α-linolenic and long-chain ω-3 fatty acids are associated with a lower risk of acute myocardial infarction in Singapore Chinese Adults. J Nutr 2016; 146(2):275-282.
- [61] Hamazaki K, Iso H, Eshak ES, Ikehara S, Ikeda A, Iwasaki M, Hamazaki T, Tsugane S; JPHC Study Group. Plasma levels of n-3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-based (JPHC) study. Atherosclerosis 2017; 272:226-232.
- [62] Chei CL, Yamagishi K, Kitamura A, et al. Serum fatty acid and risk of coronary artery disease-Circulatory Risk in Communities Study (CIRCS). Circ J 2018; 82(12):3013-3020.
- [63] Wiberg B, Sundström J, Arnlöv J, Terént A, Vessby B, Zethelius B, Lind L. Metabolic risk factors for stroke and transient ischemic attacks in middle-aged men: a community-based study with long-term follow-up. Stroke 2006; 37(12):2898-2903.
- [64] De Goede J, Verschuren WM, Boer JM, Kromhout D, Geleijnse JM. N-6 and n-3 fatty acid cholesteryl esters in relation to incident stroke in a Dutch adult population: A nested casecontrol study. Nutr Metab Cardiovasc Dis 2013; 23(8):737-743.
- [65] Yamagishi K, Folsom AR, Steffen LM, ARIC Study Investigators. Plasma fatty acid composition and incident ischemic stroke in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc Dis 2013; 36(1):38-46.
- [66] Yaemsiri S, Sen S, Tinker LF, Robinson WR, Evans RW, Rosamond W, Wasserthiel-Smoller S, He K. Serum fatty acids and incidence of ischemic stroke among postmenopausal women. Stroke 2013; 44(10):2710-2717.
- [67] Daneshmand R, Kurl S, Tuomainen TP, Virtanen JK. Associations of serum n-3 and n-6 PUFA and hair mercury with the risk of incident stroke in men: the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD). Br J Nutr 2016; 115(10):1851-1859.
- [68] Saber H, Yakoob MY, Shi P, Longstreth WT Jr, Lemaitre RN, Siscovick D, Rexrode KM,

Willett WC, Mozaffarian D. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke 2017; 48(10):2678-2685.

- [69] Bork CS, Venø SK, Lundbye-Christensen S, Jakobsen MU, Tjønneland A, Calder PC, Overvad K, Schmidt EB. Adipose tissue content of alpha-linolenic acid and the risk of ischemic stroke and ischemic stroke subtypes: A Danish case-cohort study. Plos One 2018; 13(66):e0198927.
- [70] Venø SK, Bork CS, Jakobsen MU, Lundbye-Christensen S, McLennan PL, Bach FW, Overvad K, Schmidt EB. Marine n-3 polyunsaturated fatty acids and the risk of ischemic stroke. Stroke 2019; 50(2):274-282.
- [71] Hall MN, Campos H, Li H, Sesso HD, Stampfer MJ, Willett WC, Ma J. Blood levels of longchain polyunsaturated fatty acids, aspirin, and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2007; 16(2):314-321.
- [72] Hodge AM, Williamson EA, Bassett JK, MacInnis RJ, Giles GG, English DR. Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int J Cancer 2015; 137(5): 1224-1234.
- [73] Butler LM, Yuan JM, Huang JY, Su J, Wang R, Koh WP, Ong CN. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis Oncol 2017; 1(1):38.
- [74] Chajès V, Hultén K, Van Kappel AL, Winkvist A, Kaaks R, Hallmans G, Lenner P, Riboli E. Fatty-acid composition in serum phospholipids and risk of breast cancer: an incident casecontrol study in Sweden. Int J Cancer 1999; 83(5):585-590.
- [75] Saadatian-Elahi M, Toniolo P, Ferrari P, Goudable J, Akhmedkhanov A, Zeleniuch-Jacquotte A, Riboli E. Serum fatty acids and risk of breast cancer in a nested case-control study of the New York University Women's Health Study. Cancer Epidemiol Biomarkers Prev 2002; 11(11):1353-1560.
- [76] Chajès V, Thiébaut AC, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC, Joulin V, Lenoir GM, Clavel-Chapelon F. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 2008; 167(11):1312-

1320.

- [77] Takata Y, King IB, Neuhouser ML, Schaffer S, Barnett M, Thornquist M, Peters U, Goodman GE. Association of serum phospholipid fatty acids with breast cancer risk among postmenopausal cigarette smokers. Cancer Causes Control 2009; 20:497-504.
- [78] Witt PM, Christensen JH, Schmidt EB, Dethlefsen C, Tjønneland A, Overvad K, Ewertz M. Marine n-3 polyunsaturated fatty acids in adipose tissue and breast cancer risk: a case-cohort study from Denmark. Cancer Causes Control 2009; 20(9):1715-1721.
- [79] Pouchieu C, Chajès V, Laporte F, Kesse-Guyot E, Galan P, Hercberg S, Latino-Martel P, Touvier M. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk-modulation by antioxidants: a nested case-control study. Plos One 2014; 9(2):e90442.
- [80] Bassett JK, Hodge AM, English DR, Macinnis RJ, Giles GG. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control 2016; 27(6):759-773.
- [81] Chajès V, Assi N, Biessy C, et al. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol 2017; 28(11):2836-2842.
- [82] Hirko KA, Chai B, Spiegelman D, Campos H, Farvid MS, Hankinson SE, Willett WC, Eliassen AH. Erythrocyte membrane fatty acids and breast cancer risk: a prospective analysis in the nurses' health study II. Int J Cancer 2018; 142(6):1116-1129.
- [83] Gann PH, Hennekens CH, Sacks FM, Grodstein F, Giovannucci EL, Stampfer MJ. Prospective study of plasma fatty acids and risk of prostate cancer. Cancer Causes Control 1994; 86(4):281-286.
- [84] Harvei S, Bjerve KS, Tretli S, Jellum E, Robsahm TE, Vatten L. Prediagnostic level of fatty acids in serum phospholipids: Ω-3 and Ω-6 fatty acids and the risk of prostate cancer. Int J Cancer 1997; 71(4):545-551.
- [85] Männistö S, Pietinen P, Virtanen MJ, Salminen I, Albanes D, Giovannucci E, Virtamo J. Fatty acid and risk of prostate cancer in a nested case-control study in male smokers. Cancer Epidemiol Biomarkers Prev 2003; 12(12):1422-1428.
- [86] Chavarro JE, Stampfer J, LiH, Campos H, Kurth T, Ma J. A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. Cancer Epidemiol

Biomarkers Prev 2007; 16(7):1364-1370.

- [87] Crowe FL, Allen NE, Appleby PN, et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2008; 88(5):1353-1363.
- [88] Park SY, Wilkens LR, Henning SM, Le Marchand L, Gao K, Goodman MT, Murphy SP, Henderson BE, Kolonel LN. Circulating fatty acids and prostate cancer risk in a nested casecontrol study: the Multiethnic Cohort. Cancer Causes Control 2009; 20(2):211-223.
- [89] Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, Thompson IM, King IB, Albanes D, Kristal AR. Serum phospholipid fatty acids and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Am J Epidemiol 2011; 173(12):1429-1439.
- [90] Brasky TM, Darke AK, Song X, et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst 2014; 105(15):1132-1141.
- [91] Bassett JK, Severi G, Hodge AM, MacInnis RJ, Gibson RA, Hopper JL, English DR, Giles GG. Plasma phospholipid fatty acids, dietary fatty acids and prostate cancer risk. Int J Cancer 2013; 133(8):1882-1891.
- [92] Miura K, Hughes MCB, Ungerer JP, Green AC. Plasma eicosapentaenoic acid is negatively associated with all-cause mortality among men and women in a population-based prospective study. Nutr Res 2016; 36(11):1202-1209.
- [93] Cholewski M, Tomczykowa M, Tomczyk M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 2018; 10(11):1662.
- [94] Lenihan-Geels G, Bishop KS, Ferguson LR. Cancer risk and eicosanoid production: interaction between the protective effect of long chain omega-3 polyunsaturated fatty acid intake and genotype. J Clin Med 2016; 5(2):25.
- [95] Castellon X, Bogdanova V. Chronic inflammatory diseases and endothelial dysfunction. Aging Dis 2016; 7(1):81-89.
- [96] Zúñiga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, Videla LA, Fernández V. N-3 PUFA supplementation triggers PPAR-activation and PPAR-/NF-Binteraction: antiinflammatory implications in liver ischemia-reperfusion injury. Plos One 2011; 6(12): e28502.

- [97] Kalkman HO, Hersberger M, Walitza S, Berger GE. Disentangling the molecular mechanisms of the antidepressant activity of omega-3 polyunsaturated fatty acid: a comprehensive review of the literature. Int J Mol Sci 2021; 22(9):4393.
- [98] Wallace JM. Nutritional and botanical modulation of the inflammatory cascade-eicosanoids, cyclooxygenases, and lipoxygenases-as an adjunct in cancer therapy. Integr Cancer Ther 2002; 1(1):7-37.
- [99] Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, Lusis AJ, Mehrabian M. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004; 350(1):29-37.
- [100] Nieves D, Moreno JJ. Effect of arachidonic and eicosapentaenoic acid metabolism on RAW264.7 macrophage proliferation. J Cell Physiol 2006; 208(2):428-434.
- [101] Sakai C, Ishida M, Ohba H, Yamashita H, Uchida H, Yoshizumi M, Ishida T. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. Plos One 2017; 12(11):e0187934.
- [102] de Assis AM, Rech A, Longoni A, Rotta LN, Denardin CC, Pasquali MA, Souza DO, Perry ML, Moreira JC. Ω3-Polyunsaturated fatty acids prevent lipoperoxidation, modulate antioxidant enzymes, and reduce lipid content but do not alter glycogen metabolism in the livers of diabetic rats fed on a high fat thermolyzed diet. Mol Cell Biochem 2012; 361(1-2):151-160.
- [103] Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 2011; 58(20):2047-67.
- [104] Kang JX. Reduction of heart rate by omega-3 fatty acids and the potential underlying mechanisms. Front Physiol 2012; 3:416.
- [105] Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol 2018; 3(3):225-233.
- [106] Sugawara Y, Kuriyama S, Kakizaki M, Nagai M, Ohmori-Matsuda K, Sone T, Hozawa A, Nishino Y, Tsuji I. Fish consumption and the risk of colorectal cancer: the Ohsaki Cohort Study. Br J Cancer 2009; 101(5):849-854.

- [107] Pham TM, Fujino Y, Kubo T, Ide R, Tokui N, Mizoue T, Ogimoto I. Fish intake and the risk of fatal prostate cancer: findings from a cohort study in Japan. Public Health Nutr 2009; 12(5): 609-613.
- [108] Thiébaut AC, Chajès V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, Berrino F, Riboli E, Bénichou J, Clavel-Chapelon F. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 2009; 124(4):924-931.
- [109] Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res 1999; 49: 1857-1860.
- [110] Allen NE, Sauvaget C, Roddam AW, Appleby P, Nagano J, Suzuki G, Key TJ, Koyama K. A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control 2004;15(9):911-920.
- [111] Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep 2016;18(12):82.
- [112] Mori TA, Beilin LJ. Long-chain omega 3 fatty acids, blood lipids and cardiovascular risk reduction. Curr Opin Lipidol 2001; 12(1):11-17.
- [113] Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J 2012; 279(15):2610-2623.
- [114] Ohrvall M, Tengblad S, Gref CG, Salminen I, Aro A, Vessby B. Serum alpha tocopherol concentrations and cholesterol ester fatty acid composition in 70-year-old men reflect those 20 years earlier. Eur J Clin Nutr 1996; 50(6):381-385.
- [115] Carter AR, Gill D, Davies NM, et al. Understanding the consequences of education inequality on cardiovascular disease: Mendelian Randomisation Study. BMJ 2019; 365: 11855.
Supplementary Appendix 1

Table of Contents

Table 1. Search strategy 1
Table 2. Summary of prospective studies on biomarkers of omega-3 fatty acids and type 2
diabetes (n=12)
Table 3. Summary of prospective studies on biomarkers of omega-3 fatty acids and
cardiovascular disease (n=13)
Table 4. Summary of prospective studies on circulating omega-3 fatty acids and coronary heart
disease included in this review (n=13)7
Table 5. Summary of prospective studies on circulating omega-3 fatty acids and stroke included
in this review (n=12)
Table 6. Summary of prospective studies on circulating omega-3 fatty acids and cancer included
in this review (n=21) 11
Table 7. Summary of prospective studies on circulating omega-3 fatty acids and mortality
included in this review (n=9)14
Table 8. Newcastle Ottawa scale assessments for prospective cohort studies and nested case-
cohort studies on fatty acids biomarkers and type 2 diabetes, cardiovascular disease, coronary
heart disease, stroke, colorectal cancer, prostate cancer, breast cancer, and mortality included
in this review
Table 9. Newcastle Ottawa scale assessments for prospective nested case-control studies on
fatty acids biomarkers and type 2 diabetes, cardiovascular disease, coronary heart disease,
stroke, colorectal cancer, prostate cancer, breast cancer, and mortality included in this review
Table 10. Subgroup analyses of alpha-linolenic acid and type 2 diabetes 20
Table 11. Subgroup analyses of docosahexaenoic acid and cardiovascular disease
Table 12. Subgroup analyses of fatty acid biomarkers and coronary heart disease 22
Table 13. GRADE assessment of the systematic review and meta-analysis of prospective cohort
studies assessing the association between omega-3 polyunsaturated fatty acid biomarkers and
the endpoints of interest

Table	1.	Search	strategy
-------	----	--------	----------

Database and search terms	
PUBMED	EMBASE
#1. "fatty acids, omega 3"[Mesh] OR "n-3 fatty acid*"[tiab] OR "omega 3 fatty	#1. 'fatty acids, omega 3'/exp OR 'n 3 fatty acid*':ab,ti OR 'omega 3 fatty acid*':ab,ti
acid*"[tiab] OR essential fatty acid*"[tiab] OR polyunsaturated fatty	OR 'essential fatty acid*':ab,ti OR 'polyunsaturated fatty acid*':ab,ti OR
acid*"[tiab] OR "ALA"[tiab] OR "alpha-linolenic acid"[tiab] OR "flaxseed	'ALA':ab,ti OR 'alpha-linolenic acid':ab,ti OR 'flaxseed oil':ab,ti OR
oil"[tiab] OR "eicosapentaenoic*" [tiab] OR "Icosapent"[tiab] OR	'eicosapentaenoic*':ab,ti OR 'Icosapent':ab,ti OR 'docosahexaenoic*':ab,ti OR
"docosahexaenoic*"[tiab] OR "Docosahexaenoate"[tiab] OR "docosapentae	'Docosahexaenoate':ab,ti OR 'docosapentaenoic*':ab,ti OR 'Timnodonic
noic*"[tiab] OR "Timnodonic Acid"[tiab] OR "clupanodonic acid "[tiab]	Acid':ab,ti OR 'clupanodonic acid': ab,ti
#2. "Neoplasms"[Mesh] OR "cancer*"[tiab] OR "carcinoma*"[tiab] OR	#2. 'Neoplasms'/exp OR 'cancer*':ab,ti OR 'carcinoma*':ab,ti OR 'tumor*':ab,ti OR
"tumor*"[tiab] OR "Cerebrovascular Disorders"[Mesh] OR "stroke* "[tiab]	'Cerebrovascular Disorders'/exp OR 'stroke*':ab,ti OR 'cerebrovascular
OR "cerebrovascular accident*"[tiab] OR "Cardiovascular diseases"[Mesh]	accident*':ab,ti OR 'Cardiovascular diseases'/exp OR 'cardiovascular':ab,ti OR
OR "cardiovascular"[tiab] OR "heart"[tiab] OR "myocardial	'heart':ab,ti OR 'myocardial infarction*':ab,ti OR 'sudden death*':ab,ti OR
infarction*"[tiab] OR "sudden death*"[tiab] OR "Diabetes Mellitus" [Mesh]	'Diabetes Mellitus'/exp OR 'diabet*':ab,ti OR 'Mortality'/exp OR 'Death'/exp OR
OR "diabet*"[tiab] OR "Mortality"[Mesh] OR "Death"[Mesh] OR	'mortality':ab,ti OR 'death':ab,ti OR 'fatal':ab,ti
"mortality"[tiab] OR "death"[tiab] OR "fatal"[tiab]	#3. 'Epidemiology '/exp OR 'Epidemiologic Studies'/exp OR 'Intervention
#3. "Epidemiology" [MESH] OR "Epidemiologic Studies" [MESH] OR	Studies'/exp OR 'cohort*':ab,ti OR 'incident*':ab,ti OR 'incidence*':ab,ti OR
"Intervention Studies" [MESH] OR "cohort*"[tiab] OR "incident*"[tiab] OR	'prospective':ab,ti OR 'follow-up':ab,ti OR 'predict*':ab,ti OR 'prognos*':ab,ti
"incidence*"[tiab] OR "prospective"[tiab] OR "follow-up"[tiab] OR	OR 'case-control':ab,ti OR 'cross-sectional':ab,ti OR 'intervention*':ab,ti OR
"predict*" [tiab] OR "prognos*"[tiab] OR "case-control"[tiab] OR "cross-	<pre>'clinical trial*':ab,ti OR 'randomized*':ab,ti</pre>
sectional"[tiab] OR "intervention*" [tiab] OR "clinical trial*"[tiab] OR	#4. 'Blood'/exp OR 'marker*':ab,ti OR 'biomarker*':ab,ti OR 'serum*':ab,ti OR
"randomized*"[tiab]	'plasma*':ab,ti OR 'whole blood*':ab,ti OR 'adipose tissue*':ab,ti OR 'fat*':ab,ti
#4. "Blood" [MESH] OR "marker*" [tiab] OR "biomarker*" [tiab] OR "serum*"	OR 'circulating':ab,ti OR 'erythrocyte*':ab,ti OR 'red blood cell':ab,ti OR
[tiab] OR "plasma*" [tiab] OR "whole blood*" [tiab] OR "adipose tissue*"	'cholesteryl esters':ab,ti
[tiab] OR "fat*" [tiab] OR "circulating" [tiab] OR "erythrocyte*" [tiab] OR	#5. #1 AND #2 AND #3 AND #4
"red blood cell" [tiab] OR "cholesteryl esters" [tiab]	

#5. #1 AND #2 AND #3 AND #4	
Web of Science	Cochrane Library
#1. TS=(fatty acids, omega 3 OR n 3 fatty acid* OR omega 3 fatty acid* OR	#1. (fatty acids, omega 3):ti,ab,kw OR (n 3 fatty acid*):ti,ab,kw OR (omega 3 fatty
essential fatty acid* OR polyunsaturated fatty acid* OR ALA OR alpha-	acid*):ti,ab,kw OR (essential fatty acid*):ti,ab,kw OR (polyunsaturated fatty
linolenic acid OR flaxseed oil OR eicosapentaenoic* OR Icosapent OR	acid*):ti,ab,kw OR (ALA):ti,ab,kw OR (alpha-linolenic acid):ti,ab,kw OR
docosahexaenoic* OR Docosahexaenoate OR docosapentaenoic* OR	(flaxseed oil):ti,ab,kw OR (eicosapentaenoic*):ti,ab,kw OR (Icosapent):ti,ab,kw
Timnodonic Acid OR osbond acid OR clupanodonic acid)	OR (docosahexaenoic*):ti,ab,kw OR (Docosahexaenoate):ti,ab,kw OR
#2. TS=(Neoplasms OR cancer* OR carcinoma* OR tumor* OR Cerebrovascular	(docosapentaenoic*): ti,ab,kw OR (Timnodonic Acid):ti,ab,kw OR (osbond
Disorders OR stroke* OR cerebrovascular accident* OR Cardiovascular	acid):ti,ab,kw OR (clupanodonic acid):ti,ab,kw
diseases OR cardiovascular OR heart OR myocardial infarction* OR sudden	#2. (Neoplasms):ti,ab,kw OR (cancer*):ti,ab,kw OR (carcinoma*):ti,ab,kw OR
death* OR Diabetes Mellitus OR diabet* OR Mortality OR Death OR	(tumor*):ti,ab,kw OR (Cerebrovascular Disorders):ti,ab,kw OR (stroke*):
mortality OR death OR fatal)	ti,ab,kw OR (cerebrovascular accident*):ti,ab,kw OR (Cardiovascular
#3. TS= (Epidemiology OR Epidemiologic Studies OR Intervention Studies OR	diseases):ti,ab,kw OR (cardiovascular):ti,ab,kw OR (heart):ti,ab,kw OR
cohort* OR incident* OR incidence* OR prospective OR follow-up OR	(myocardial infarction*):ti,ab,kw OR (sudden death*):ti,ab,kw OR (Diabetes
predict* OR prognos* OR case-control OR cross-sectional OR intervention*	Mellitus): ti,ab,kw OR (diabet*):ti,ab,kw OR (Mortality):ti,ab,kw OR
OR clinical trial* OR randomized*)	(Death):ti,ab,kw OR (mortality):ti,ab,kw OR (death):ti,ab,kw OR (fatal):ti,ab,kw
#4. TS= (blood OR marker* OR biomarker* OR serum* OR plasma* OR whole	#3. (blood):ti,ab,kw OR (marker*):ti,ab,kw OR (biomarker*):ti,ab,kw OR
blood* OR adipose tissue* OR fat* OR circulating OR erythrocyte* OR red	(serum*):ti,ab,kw OR (plasma*):ti,ab,kw OR (whole blood*):ti,ab,kw OR (adipose
blood cell OR Ccholesteryl esters)	tissue*):ti,ab,kw OR (fat*):ti,ab,kw OR (circulating):ti,ab,kw OR
#5. #1 AND #2 AND #3 AND #4	(crythrocyte*):ti,ab,kw OR (red blood cell):ti,ab,kw OR (cholesteryl
	esters):ti,ab,kw
	#4. #1 AND #2 AND #3

Author,	tor, Characteristics of the study				Charac pa	teristics (rticipant	of the		Characte	ristics of the e	exposure	Characteris the outco	stics of ome	A directment for conformaling	Study
year, country	Baseline survey year	Design	Follow up (year)	Study name	No.	Age range (year)	Men (%)	Assay metho d	Biological sample	Lipid fraction measured	Exposure	Ascertainm ent method	Cases (n)	factors	quality*
Wang et al, 2003, USA ³¹	1987-89	PC	9.0	ARIC	2,909	45-64	46.0	GLC	Plasma	Total fatty acid fraction	ALA	Biomarkers	252	Age, sex, smoking, alcohol, education, BMI, physical activity, WHR, family history of diabetes	High
Hodge et al, 2007, Australia ³²	1990-94	CCD	4.0	MCCS	3,737	36-72	44.1	GC	Plasma	Phospholipid fraction	ALA, EPA, DPA, DHA	Self-report	346	Age, sex, region, alcohol, BMI, physical activity, WHR, family history of diabetes	High
Krachler et al, 2008, Sweden ³³	1985-94	NCCD	8.8	VIP	450	30-60	NR	GLC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DPA, DHA	Records	159	Smoking, alcohol, BMI, physical activity, HbA1c	High
Patel et al, 2010, UK ³⁴	1993-97	NCCS	10.0	EPIC- Norfolk	383	40-79	53.3	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DPA, DHA	Self-report, medication use	199	Age, sex, smoking, alcohol, BMI, physical activity, family history of diabetes	High
Kröger et al, 2011, Europe ³⁵	1991	NCCS	7.0 (mean)	EPIC- Potsdam	2,724	23-71	44.5	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DPA, DHA	Self-report, records, medication use	673	Sex, smoking, alcohol, education, BMI, WHR, occupational activity, physical activity, dietary factors	High
Djoussé et al, 2011, USA ³⁶	1989-90	PC	10.6 (median)	CHS	3,088	≥65	38.9	GC	Plasma	Phospholipid fraction	ALA	Biomarkers	204	Age, sex, race, smoking, alcohol, region, BMI, physical activity, blood lipid, plasma fatty acids	High
Virtanen et al, 2014, Finland ³⁷	1984-89	PC	19.3 (mean)	KIHD	2,212	42-60	100.0	GC	Serum	Total fatty acid fraction	ALA,EPA+DPA+ DHA, EPA, DPA, DHA	Self-report, records, biomarkers	422	Age, examination year, smoking, alcohol, education, BMI, physical activity, family history of diabetes, serum fatty acids	High
Takkunen et al, 2016, Finland ³⁸	1993-98	PC	11.0 (median)	FDP	407	40–65	32.6	GC	Serum	Total fatty acid fraction	ALA, EPA, DPA, DHA	Biomarkers	155	Age, sex, study group, smoking, alcohol, physical activity, WHR, energy intake, dietary factors, serum lipid, plasma fasting and 2h blood glucose	High
Forouhi et al, 2016, Europe ³⁹	1991	CCD	9.8 (mean)	EPIC- InterAct	28,051	23-71	41.6	GC	Plasma	Phospholipid fraction	ALA, EPA, DPA, DHA	Self-report, records	12,132	Age, sex, smoking, alcohol, education, BMI, physical activity, energy intake, dietary factors	High
Harris et al, 2016, USA ⁴⁰	1995	PC	11.0	WHIMS	6,379	65-80	0.0	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DHA, DPA	Self-report	703	Age, race, smoking, alcohol, education, physical activity, WHR, family history of diabetes, dietary glycemic load	High

Table 2. Summary of prospective studies on biomarkers of omega-3 fatty acids and type 2 diabetes (n=12)

			-	GC	membrane	fraction	EPA+DHA+DPA, EPA, DPA, DHA	Biomarkers	213	family history of diabetes, dietary factors, fasting serum, glucose and erythrocyte total omega-6 PUFA	Moderate
Zhuang et al, 2006-10 PC 11.6 UK 2022, UK ⁴² 2006-10 PC (mean) Biobank	95,854	37-73	44.5	NMR	Plasma	Total fatty acid fraction	DHA	Records	3,052	Age, sex, race, smoking, alcohol, education, physical activity, Townsend deprivation index, household income, history of hypertension and high cholesterol, family history of diabetes, vitamin supplement use, mineral supplement use, aspirin use, remaining plasma	High

docosapentaenoic acid; EPIC-InterAct, European Prospective Investigation into Cancer (EPIC)- InterAct study; EPIC- Potsdam, European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study; EPA, eicosapentaenoic acid; GC, gas chromatography; GNHS, Guangzhou Nutrition and Health Study; GLC, gas-liquid chromatography; HHS, Hitachi Health Study; FDP, Finnish Diabetes Prevention Study; KIHD, Kuopio Ischemic Heart Disease Risk Factor study; NMR, nuclear magnetic resonance-based profiling; NR, not reported; MCCS, Melbourne Collaborative Cohort Study; NCCD, nested case-control design study; NCCS, nested case-cohort study; PC, prospective cohort study; USA, the United States of America; VIP, Västerbotten Intervention Programme; WHIMS, Women's Health Initiative Memory Study; WHR, waist hip rate.

Author,	Char	acteristi	cs of the s	study	Chara the p	acterist particip	ics of oant		Characte	eristics of the	exposure	Charact the o	teristics of utcome	,	
publication year, country	Baseline survey year	Design	Follow up (year)	Study name	No	Age range (year)	Men (%)	Assay metho d	Biological sample	Lipid fraction measured	Exposure	Ascertai nment method	Cases (n)	Adjustment for confounding factors	Study quality*
Albert et al, 2002, USA ⁴³	1982-84	NCCD	8.7 (mean)	PHS	278	40-84	100.0	GLC	Blood	Total fatty acid fraction	EPA+DPA+DHA	Records, interview	94 sudden deaths	Alcohol, BMI, physical activity, aspirin use, beta carotene or placebo treatment, diabetes, hypertension, hypercholesterolemia, family history of MI, blood fatty acids	Moderate
Laaksonen et al, 2005, Finland ⁴⁴	1984-89	PC	14.6 (median)	KIHD	1,551	42-60	100.0	GC	Serum	Total fatty acid fraction	ALA	Records	78 CVD deaths	Age, smoking, alcohol, socioeconomic status, examination year, BMI, physical activity, SBP, BP medication, family history of IHD, energy intake, dietary factors, blood lipid, plasma fatty acids, insulin concentration	High
Warensjö et al, 2008, Sweden ¹⁶	1920-24	PC	30.7 (median)	ULSAM	3,894	≥ 50	100.0	GC	Serum	Cholesteryl fraction	ALA, EPA, DHA	Records	461 CVD deaths	Smoking, BMI, physical activity, hypertension, blood lipid	High
Woodward et al, 2011, Scotland ¹⁷	1984-87	PC	19.5 (median)	SHHECS	3,944	40-59	53.1	GC	Adipose tissue	-	DPA, DHA	Records	870 CVD	Age, sex, smoking, socioeconomic status SBP, BP treatment, diabetes, and family history, blood lipid	, High
Virtanen et al, 2012, Finland ⁴⁶	1984-89	PC	20.1 (mean)	KIHD	1,857	42-60	100.0	GC	Serum	Total fatty acid fraction	EPA+DPA+DHA, EPA, DPA, DHA	Records	91 SCD	Age, smoking, alcohol, examination year BMI, hair mercury content	High
Chien et al, 2013, China (Taiwan) ⁴⁵	1990	PC	9.6 (median)	Cohort in Taiwan	1,833	50-72	NR	GC	Plasma	Total fatty acid fraction	EPA, DHA	Records	275 CVD cases	Age, sex, marital status, occupation, smoking, alcohol, education, BMI, physical activity, hypertension, diabetes, blood lipid	Moderate
Mozaffarian et al, 2013, USA ¹⁸	1992-93	PC	16.0 (max)	CHS	2,692	≥65	36.3	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Records, interview	570 CVD deaths	Age, sex, race, smoking, alcohol, education, region, BMI, WHR, physical activity, fatty acid measurement batch, diabetes, atrial fibrillation, drug-treated hypertension, dietary factors	High
de Oliveira Otto et al, 2013, USA ⁴⁷	2000-02	PC	9.0	MESA	2,837	45-84	46.8	GC	Plasma	Phospholipid fraction	ALA, EPA+DPA+DHA, EPA, DPA, DHA	, Records	189 CVD	Age, sex, race, smoking, alcohol, education, region, BMI, physical activity diabetes, dietary supplement treatment, BP treatment, energy intake, dietary factors	, High
Fretts et al, 2014 USA ⁴⁸	' 1992-93	PC	16.0 (max)	CHS	2,709	≥65	36.1	GC	Plasma	Phospholipid fraction	ALA	Records, interview	517 CVD deaths	Age, sex, race, smoking, alcohol, education, region, BMI, diabetes, hypertension, energy intake	High
Marklund et al, 2015, Swedish ⁴⁹	1997-98	PC	14.5 (median)	Cohort in Swedish	2,193	≥60	48.2	GC	Serum	Cholesterol fraction	ALA, EPA, DHA	Records	484 CVD deaths	Smoking, alcohol, education, BMI, physical activity, diabetes, drug-treated hypertension and hypercholesterolemia	Moderate

Table 3. Summary of prospective studies on biomarkers of omega-3 fatty acids and cardiovascular disease (n=13)

Harris et al, 2017, USA ⁵⁰	1996	PC	14.9 (median)	WHIMS	6,501	65-80	0.0	GC	Erythrocyte membrane	Phospholipid fraction	ALA	, EPA, EPA, DHA	Records	617 CVD deaths	Age, race, smoking, alcohol, education, region, BMI, WHR, physical activity, HT assignment, hypertension, diabetes, CVD and/or cancer, family history of cancer and CVD, aspirin treatment, cholesterol medication	High
Harris et al, 2018, USA ⁵¹	1971	PC	7.3 (median)	FHS	2,500	56-75	43.1	GC	Erythrocyte membrane	Phospholipid fraction	ALA,	EPA, DPA, DHA	-	245 CVD, 58 CVD deaths	Age, sex, marital status, occupation, smoking, alcohol, education, BMI, physical activity, health insurance status, aspirin treatment, hypertension, cholesterol medication, diabetes, SBP, blood lipid	High
Zhang, et al, 2021, China ⁵²	2003-04	PC	6.9 (mean)	NHANE S	4,132	≥18	49.3	GC	Serum	Triglycerides fraction, phospholipid , fraction, cholesterol fraction	EPA, I	DPA, DHA	National Death Index	157 CVD deaths	Age, sex, BMI, race, smoking, drinking, education, family annual income, physical activity, diabetes, CVD, cancer, ever controlled blood pressure, blood cholesterol or blood glucose, serum triglycerides, serum total cholesterol, SFAs, USFAs, fiber, total energy, carbohydrate, protein intake, AHEI-2010	High

AHEI: alternative healthy eating index; ALA, α-linolenic acid; BP, blood pressure; BMI, body mass index; CHS, Cardiovascular Health Study; CVD, cardiovascular disease; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; FHS, The Framingham Heart Study; GC, gas chromatography; GLC, gas-liquid chromatography; HT, heart rate; KIHD, Kuopio Ischemic Heart Disease Risk Factor study; IHD, ischemic heart disease; MI, myocardial infarction; MESA, the Multi-Ethnic Study of Atherosclerosis; NCCD, nested case-control design study; NHANES, National Health and Nutrition Examination Survey; NR, not reported; PC, prospective cohort study; PHS, Physicians' Health Study; SCD, sudden cardiac death; SHHECS, the Scottish Heart Health Extended Cohort Study; SBP, systolic blood pressure; ULSAM, Uppsala Longitudinal Study of Adult Men; USA, the United States of America; WHIMS, Women's Health Initiative Memory Study; WHR, waist hip rate.

Author, Characteristics of the study				udy	Characteristics of the participant				Characte	ristics of the ex	kposure	Characte the ou	eristics of tcome		64 1
year, country	Baseline survey year	r Design	Follow up (year)	Study name	No	Age range (year)	Men (%)	Assay method	Biological sample	Lipid fraction measured	Exposure	Ascertai nment method	Cases (n)	factors	quality*
Simon et al, 1995, USA ⁵³	1973-76	NCCD	6.9 (mean)	MRFIT	188	35-57	100.0	GC	Serum	Phospholipid fraction, cholesterol fraction	ALA, EPA, DPA, DHA	Records, interview	94 CHD	Age, alcohol, region, recruitment date, blood lipid, serum fatty acids	Moderate
Lemaitre et al, 2003, USA ⁵⁴	1992-93	NCCD	1.76	CHS	304	≥65	73.0	GC	Plasma	fraction, cholesterol	ALA, EPA+DHA	Records	125 fatal MI	Age, sex, education, region, recruitment date, BMI, SBP, fasting plasma glucose	High
Wang et al, 2003, USA ⁵⁵	1987-89	PC	10.7 (mean)	ARIC	3,591	45-64	46.0	GLC	Plasma	Total fatty acid fraction	ALA	Records	282 CHD	Age, sex, smoking, alcohol, physical activity, dietary factors	High
Sun et al, 2008, USA ⁵⁶	1989-90	NCCD	6.0	NHS	434	30-55	0.0	GLC	Plasma	Total fatty acid fraction	EPA+DPA+DHA, EPA, DPA, DHA	Records	146 nonfatal MI	fasting status, BMI, physical activity, postmenopausal status, postmenopausal hormone treatment, MI, hypertension, hypercholesterolemia, diabetes, energy intake blood fatty acids	High
Joensen et al, 2011, Denmark ⁵⁷	1993-97	CCD	7.6 (mean)	DCH	2,792	50-64	61.2	GC	Adipose tissue	-	EPA, DPA, DHA	Records	1,012 ACS	Smoking, alcohol, education, BMI, physical activity, history of diabetes, blood pressure, blood lipid, hormone replacement therapy (women)	High
Khaw et al, 2012, UK ⁵⁸	1993-97	NCCD	13.0 (mean)	EPIC- Norfolk	7,354	40-79	52.2	GC	Plasma	Phospholipid fraction	ALA, EPA, DPA, DHA	Records	2,424 CHD	socioeconomic status, BMI, physical activity, diabetes, SBP, blood lipid, plasma vitamin C	High
de Oliveira Otto, 2013, USA ⁴⁷	2000-02	PC	10.0 (max)	MESA	2,837	45-84	46.8	GC	Plasma	Phospholipid fraction	ALA, EPA+DPA+DHA , EPA, DPA, DHA	Records	189 CHD	Age, sex, race, smoking, alcohol, education, region, BMI, physical activity, diabetes, energy intake, dietary supplement treatment, BP treatment, dietary factors	High
Mozaffarian et al, 2013, USA ¹⁸	1992-93	PC	16.0 (max)	CHS	2,692	≥65	36.3	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Records	730 CHD deaths	Age, sex, race, smoking, alcohol, education, region, BMI, WHR, physical activity, fatty acid measurement batch, diabetes, atrial fibrillation, drug-treated hypertension, dietary factors	High
Matsumoto et al, 2013, USA ⁵⁹	1982-84	NCCD	5.0 (average)	PHS I	2,000	50-92	100.0	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DPA, DHA	Records	1,000 CHD	Age, smoking, alcohol, recruitment date, blood collection age, BMI, physical activity, hypertension, diabetes, hypercholesterolemia	High

Table 4. Summary of prospective studies on circulating omega-3 fatty acids and coronary heart disease included in this review (n=13)

Fretts et al, 2014, USA ⁴⁸	1992-93	PC	16.0 (max)	CHS	2,709	≥65	36.1	GC	Plasma	Phospholipid fraction	ALA	Records	519 CHD deaths	Age, sex, energy intake, race, smoking, alcohol, education, region, BMI, diabetes, drug-treated hypertension	High
Sun et al, 2016, Singapore ⁶⁰	1993-98	NCCD	10.0 (max)	SCHS	1,488	3 47-83	64.7	GC- MS/MS	Plasma	Total fatty acid fraction	ALA, EPA, DHA,	Records	744 AMI	Age, sex, smoking, alcohol, education, age at blood collection, recruitment date, BMI, physical activity, hours of fasting before blood collection, hypertension, diabetes, energy intake, dietary factors, plasma fatty acids	Moderate
Hamazaki et al, 2017, Japan ⁶¹	1990-93	NCCD	13.5 (mean)	JPHC	627	40-59	63.6	GC	Plasma	Total fatty acid fraction	EPA+DPA+DHA , EPA, DPA, DHA	Records	209 CHD	Age at blood collection, sex, smoking, alcohol, region, recruitment date, BMI, time elapsed since last meal, hypertension, hypercholesterolemia treatment, serum glucose category	High
Chei et al, 2018, Japan ⁶²	1984, 1989 1997, 1998	NCCD	11.0 (mean)	CIRCS	608	40- 385	-	GC	Serum	Total fatty acid fraction	ALA, EPA, DPA, DHA	Records	152 CAD	Smoking, alcohol, BMI, matching for sex, age, community, year of serum stored, fasting status	High

ALA, α-linolenic acid; ACS, acute coronary syndromes; ARIC, Atherosclerosis Risk in Communities Study; AMI, acute myocardial infarction; BMI, body mass index; CAD, coronary artery disease; CCD, nested case-cohort design study; CHD, coronary heart disease; CHS, Cardiovascular Health Study; DBP, diastolic blood pressure; CIRCS, Circulatory Risk in Communities Study; DCH, the Diet, Cancer and Health study; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPIC-Norfolk, European Prospective Investigation into Cancer (EPIC)-Norfolk study; EPA, eicosapentaenoic acid; GC, gas chromatography; GLC, gas-liquid chromatography; GC-MS/MS, Gas chromatography-triple quadrupole mass spectrometry; JPHC, Japan Public Health Center-based study; MI, myocardial infarction; MESA, the Multi-Ethnic Study of Atherosclerosis; MRFIT, Multiple Risk Factor Intervention Trial; NCCD, nested case-control design study; NHS, Nurses' Health Study; PHS, Physicians' Health Study; PUFA, polyunsaturated fatty acid; SCHS, Singapore Chinese Health Study; UK, the United Kingdom; USA, the United States of America; PC, prospective cohort study; SBP, systolic blood pressure; VIP, Västerbotten Intervention Program; WHR, waist hip rate.

Author, Characteristics of the study			study	Characteristics of the participant				Characteri	stics of the ex	posure	Characteri outc	stics of the ome	A 11	64 1	
year, country	Baseline survey year	Desi gn	Follow up (year)	Study name	No	Age range	Men (%)	Assay method	Biological sample	Lipid fraction measured	Exposure (cases/controls)	Ascertain ment method	Cases (n)	factors	Study quality [*]
Wiberg et al, 2006, Sweden ⁶³	1920-24	PC	29.3 (median)	ULSAM	2,322	50	100.0	GC	Serum	Cholesterol fraction	ALA, EPA, DHA	Records	421 stroke or TIA	Smoking, physical activity, antihypertensive, antidiabetic, lipid- lowering drugs, hypertension, diabetes, atrial fibrillation, CVD, metabolic syndrome, blood lipid	Moderate
De Goede et al, 2013, Holland ⁶⁴	1993-97	NCC D	10.5 (median)	MORGEN	358	20-65	53.0	GC	Plasma	Cholesteryl fraction	ALA	Records	179 stroke	Age, sex, smoking, alcohol, education, enrollment date, BMI, diabetes, hypertension, hypercholesterolemia	High
Yamagishi et al, 2013, USA ⁶⁵	1987-89	PC	19.9 (median)	ARIC	3,870	45-64	61.3	GLC	Plasma	Phospholipid fraction, cholesterol fraction	ALA, EPA, DHA	Records	168 ischemic stroke	Age, sex, smoking, cigarette-years, alcohol	High
Yaemsiri et al, 2013, USA ⁶⁶	1993-98	PC	10.0 (max)	WHI-OS	1,928	50-79	0.0	GC	Serum	Total fatty acid fraction	ALA, EPA, DPA, DHA	Self-report	964 ischemic stroke	Age, race, smoking, examination year, BMI, SBP, diabetes, aspirin treatment, BP treatment, blood lipid, normalized-triglycerides	High
Fretts et al, 2014, USA ⁴⁸	1992-93	PC	16.0 (max)	CHS	2,709	≥65	36.1	GC	Plasma	Phospholipid fraction	ALA	Records	430 stroke	Age, sex, race, region, smoking, alcohol, education, BMI, diabetes, BP treatment, energy intake	High
Daneshmand et al, 2016, Finland ⁶⁷	1992-93	PC	21.2 (mean)	KIHD	1,828	42-60	100.0	GC	Serum	Total fatty acid fraction	ALA, EPA+EPA+DHA, EPA, DPA, DHA	Records	202 stroke	Age, smoking, alcohol, examination year, BMI, SBP, physical activity, diabetes, blood lipid	High
Saber et al, 2017, USA ⁶⁸	1992-93	NCC D	11.2	CHS	516	≥65	40.0	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Records	516 ischemic stroke	Age, sex, race, smoking, alcohol, BMI, physical activity, hypertension, family history of CVD and diabetes, menopausal status, aspirin treatment, dietary factors	High
Saber et al, 2017, USA ⁶⁸	1989-90	NCC D	8.3	NHS	714	30-55	0.0	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Records	357 ischemic stroke	Age, sex, race, smoking, alcohol, BMI, physical activity, hypertension, family history of CVD and diabetes, menopausal status, aspirin treatment, dietary factors	High
Saber et al, 2017, USA ⁶⁸	1993-94	NCC D	8.3	HPFS	160	40-75	100.0	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Records	80 ischemic stroke	Age, sex, race, smoking, alcohol, BMI, physical activity, hypertension, family history of CVD and diabetes, menopausal status, aspirin treatment, dietary factors	High

Table 5. Summar	v of r	prospective studi	es on circulati	ng omega-3 fat	tv acids and	l stroke included	in this review ()	n=12)
Tuble of Summur	, v. r	n ospective studi	co on chiculati	ng onnega e rat	y actus and	i sti one meruaca		u 1 <i>2)</i>

Bork et al, 2018, Denmark ⁶⁹	1993-97	CCD	13.4 (mean)	DCH	4,920 50-64 61.2	GC	Adipose tissue	-	ALA	Records	1,735 ischemic stroke	Age, smoking, alcohol, education, waist circumference, BMI, physical activity, hypercholesterolemia and/or lipid-lowering medication, hypertension and/or antihypertensive medication use, diabetes, atrial fibrillation	High
Harris et al, 2018, USA ⁴⁸	1971	PC	7.3	FHS	2,500 56-75 43.1	GC	Erythrocyte Pho membrane	ospholipio fraction	d ALA, EPA, DPA, DHA	-	105 ischemic stroke	Demographic, clinical status, therapeutic, CVD risk factors	High
Venø et al, 2019, Denmark ⁷⁰	1993-97	PC	13.5 (median)	DCH	55,338 50-65 48.0	GC	Adipose tissue	-	EPA+EPA+DHA, EPA, DPA, DHA	Records	1,879 ischemic stroke	Age, sex, smoking, alcohol, education, BMI, waist circumference, physical activity, alcohol abstain	High
ALA, α-linoleni	c acid; ARI	IC, Ath	nerosclerosi	s Risk in	Communities Study; B	P, bloo	d pressure; BMI, l	body mas	s index; CCD, neste	d case-coho	rt design st	udy; CHS, Cardiovascular Health Study	; CVD,
cardiovascular d	rdiovascular disease; DHA, docosahexaenoic acid; DCH, the Diet, Cancer and Health study; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; FHS, Framingham Heart Study; GC, gas												

chromatography; GLC, gas-liquid chromatography; HPFS, Health Professionals Follow-Up Study; KIHD, Kuopio Ischemic Heart Disease Risk Factor study; MORGEN, Monitoring Project on Risk Factors for Chronic Diseases; NCCD, nested case-control design study; NHS, Nurses' Health Study; USA, the United States of America; PC, prospective cohort study; SBP, systolic blood pressure; TIA,

Transient ischemic attack; ULSAM, Uppsala Longitudinal Study of Adult Men; WHI-OS, Women's Health Initiative Observational Study.

Author,	Char	acteristi	cs of the	study	Characteri	stics of the	participant	;	Character	ristics of the	e exposure	Character out	istics of the come	Adjustment for	G(1
publication year, country	Baseline survey year	Design	Follow up (year)	Study name	No	Age range	Men (%)	Assay meth od	Biological sample	Lipid fraction measured	Exposure (cases/controls)	Ascertain ment method	Cases (n)	confounding factors	Study quality [*]
Colorectal cance	r														
Hall et al, 2007, USA ⁷¹	1982-84	NCCD	10.0 (max)	PHS	460	40-84	100.00	GLC	Blood	Total fatty acid fraction	EPA +DPA+DHA, EPA, DPA, DHA	Records	178	Alcohol, BMI, physical activity, diabetes, aspirin treatment, multivitamin treatment, dietary factors, blood fatty acids	High
Hodge et al, 2014, Australia ⁷²	1990–94	CCD	9.0 (mean)	MCCS	4,205	40–69	45.0	GLC	Plasma	Phospholip id fraction	ALA, EPA, DPA, DHA	Records	395	Alcohol, smoking, education, physical activity, energy intake	High
Butler et al, 2017, Singapore ⁷³	1993-98	NCCD	3.3 (median)	SCHS	700	45-74	58.86	GC	Plasma	Total fatty acid fraction	ALA, EPA, Dha	Records	350 (211 colon, 139 rectal)	Smoking, alcohol, education, BMI, physical activity, diabetes	High
Breast cancer														Menarche age first full-term	
Chajès et al, 1999, Sweden ⁷⁴	1986-97	NCCD	9.0 (median)	VIP, MONIC A, MSP	584	30-60	0.00	GC	Serum	Phospholip id fraction	ALA, EPA, DHA	Records	196	pregnancy age, number of children, hormone replacement therapy use, height and weight	High
Saadatian-Elahi et al, 2002, France ⁷⁵	1985-91	NCCD	4.3 (median)	NYUWH S	394	34-65	0.00	GC	Erythrocyte membrane	Phospholip id fraction	ALA, EPA, DPA, DHA	Records	197	First full-term birth age, family history of breast cancer and benign breast cancer, cholesterol	High
Chajès et al, 2008, France ⁷⁶	1989-91	PC	7.0 (mean)	E3N Study	1,065	40–65	0.00	GC	Serum	Phospholip id fraction	ALA, EPA+DPA+DHA, EPA, DHA	Records	363	Alcohol, education, BMI, height, menopausal hormone treatment, parity, family history of breast cancer	High
Takata et al, 2009, USA ⁷⁷	1985-94	NCCD	7.5 (median)	CARET	387	50-69	0.00	GC	Serum	Phospholip id fraction	ALA, EPA, DPA, DHA	Self-report, records	130	Age, smoking, alcohol, region, examination year, BMI, intervention arm	High
Witt et al, 2009, Denmark ⁷⁸	1997	CCD	4.8 (median)	DCH	1,561	50–64	0.00	GC	Adipose tissue	-	EPA+ DPA+DHA, EPA, DPA, DHA	Records	463	Smoking, alcohol, education, physical activity, BMI, HRT use, menarche, age at first child, number of children	High
Pouchieu et al, 2014, UK ⁷⁹	1994-95	NCCD	3.7 (median)	SU.VI.M AX	500	35-60	0.00	GC	Plasma	Total fatty acid	ALA, EPA, DPA, DHA	Self-report	154	Age, sex, smoking, alcohol, education, study group, height, BMI, physical activity, family history of cancer	High

Table 6. Summary of prospective studies on circulating omega-3 fatty acids and cancer included in this review (n=21)

Bassett et al, 2016, Australia ⁸⁰	1990-94	CCD	8.9 (mean)	MCCS	2491	40-69	100.00	GLC	Plasma	Phospholip id fraction	ALA, EPA, DPA, DHA	Records	470	Age, region, smoking, alcohol, education, physical activity, menopausal status, hormone therapy, oral contraceptive use, family history of cancer, energy intake,	High
Chajès et al, 2017, Europe ⁸¹	1993- 2002	NCCD	11.5 (median)	EPIC	5,964	40-84	0.00	GC	Plasma	Phospholip id fraction	ALA, EPA, DHA	Records	2,982	Alcohol, education, BMI, height, menopausal hormone treatment, first birth age and parity combined, energy intake, family history of breast cancer	High
Hirko et al, 2018, USA ⁸²	1996-99	NCCD	8.0 (median)	NHS II	1,588	25-42	0.00	GLC	Erythrocyte membrane	Phospholip id fraction	ALA, EPA, DPA, DHA	Self-report	794	Menarche age, first birth/parity age, alcohol, region, BMI, physical activity, family history of breast cancer and benign breast disease, weight change between age 18 and blood collection	High
Prostate cancer Gann et al, 1994,	1000	NGCD		DUG	240	10.01	100.00			Cholesterol		D 1	120		
USA ⁸³	1982	NCCD	NR	PHS	240	40-84	100.00	GC	plasma	fraction	ALA, EPA	Records	120	Age, smoking	Moderate
Harvei et al, 1997, Norway ⁸⁴	1973-94	NCCD	11.6 (mean)	-	423	NR	100.00	GLC	Serum	Phospholip id fraction	ALA ,EPA, DPA, DHA	Records	141	Multiplicative risk	High
Mannisto et al, 2003, USA ⁸⁵	1995-98	NCCD	6.1 (median)	ATBC	396	50-69	100.00	GC	Serum	acid fraction	ALA, EPA, DHA	Records	246	Smoking, region, alcohol, education, BMI	High
Chavarro et al, 2007, USA ⁸⁶	1982	NCCD	13.0	PHS	952	40-84	100.00	GLC	Whole blood	Total fatty acid fraction	ALA, EPA+DPA+DHA, EPA, DPA, DHA	Records	476	Age, smoking, examination year	High
Crowe et al, 2008, Europe ⁸⁷	1992	NCCD	4.2 (median)	EPIC	2,022	40-84	100.00	GC	Plasma	Phospholip id fraction	ALA, EPA, DPA, DHA	Records	962	Age, smoking, alcohol, marital status, education, region, BMI, physical activity	High
Park et al, 2008, USA ⁸⁸	1993-96	NCCD	1.9 (mean)	MCS	1,105	45-75	100.00	GC	Erythrocyte membrane	Phospholip id fraction	ALA, EPA, DPA, DHA	Records	376	Blood collection age, education, BMI, fasting hours prior to blood collection, family history of prostate cancer	High
Brasky et al, 2011, USA ⁸⁹	1994- 2003	NCCD	7.0	PCPT	3,461	55-84	100.00	GC	Serum	Phospholip id fraction	ALA, EPA+DHA, EPA, DHA	Annual prostate- specific antigen and	1,658	Age, race, family history of prostate cancer, treatment arm	High

										digital rectal examinatio			
Brasky et al, 2013, USA ⁹⁰ 200)1-04 CCD	9.0 (max)	SELECT	2,198	≥ 50	100.00	GC	Plasma	ALA, Phospholip EPA+DPA+DHA id fraction EPA, DPA, DHA	Records	834	Age, race, education, diabetes, family history of prostate cancer, intervention arm	Moderate
Bassett et al, 2013, Australia ⁹¹ 1990	90-94 CCD	8.9 (mean)	MCCS	2,125	40-69	100.00	GLC	Plasma	Phospholip ALA, EPA, DPA, id fraction DHA	Records	464	Country of birth, alcohol, education, physical activity, family history of cancer, energy intake	High
ALA, α-linolenic acid; ATBC, the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; BMI, body mass index; CCD, case-cohort design study; CARET, the β-Carotene and Retinol Efficacy Trial;													
DCH, the Diet, Cancer and Health study; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; EPIC, European Prospective Investigation into Cancer and Nutrition; E3N													
Study, Etude Epide´m	Study, Etude Epide'miologique aupre's des femmes de la Mutuelle Ge'ne'rale de l'Education Nationale; GC, gas chromatography; GLC, gas-liquid chromatography; HRT, hormone replacement treatment;												
MCCS,; MCS, The M	MCCS,; MCS, The Multiethnic Cohort Study; MONICA, Monitoring of Trends and Cardiovascular Disease study; MSP, The Mammary-Screening Project; NCCD, nested case-control design study; NHS,												
Nurses' Health Study;	; NYUWHS,	New York	University	Women's	Health Study	; PC, prosp	ective co	ohort study	y; PCPT, Prostate Cancer Preve	ntion Trial; P	HS, Physi	icians' Health Study; SCHS, Sin	Igapore

Chinese Health Study; SELECT, the Selenium and Vitamin E Cancer Prevention Trial; SU.VI.MAX, the Supplementation en Vitamines et Mine'raux Antioxydants study; USA, the United States of

America; VIP, Västerbotten Intervention Program.

Author,	С	haracte	eristics of t	he study	Char	acteristics participan	of the t		Characte	ristics of the e	exposure	Character of the out	ristics come		
publication year, country	Baseline survey year	Design	Follow up (year)	Study name	No.	Age range (year)	e Men (%)	Assa y meth od	Biological sample	Lipid fraction measured	Exposure	Ascertain ment method	Cases (n)	Adjustment for confounding factors	Study quality*
Warensjö et al, 2008, Sweden ¹⁶	1920-24	PC	30.7 (median)	ULSAM	2,009	\geq 50	100.0	GC	Serum	Cholesteryl fraction	ALA, EPA, DHA	Records	1,012	Smoking, BMI, physical activity, hypertension, blood lipid	High
Chien et al, 2013, China (Taiwan) ⁴⁵	-	PC	9.6 (median)	A cohort study in Taiwan	¹ 1,833	50-72	NR	GC	Plasma	Total fatty acid fraction	EPA, DHA	House-to- house visits	568	Age, sex, marital status, occupation, smoking, alcohol, education, BMI, physical activity, hypertension, diabetes, blood lipid	Moderate
Mozaffarian et al, 2013, USA ¹⁸	1992-93	PC	16.0 (max)	CHS	2,692	≥65	36.3	GC	Plasma	Phospholipid fraction	EPA, DPA, DHA	Interviews	1,625	Age, sex, race, region, smoking, alcohol, physical activity, education, BMI, WHR, fatty acid measurement batch, diabetes, hypertension, atrial fibrillation, drug treated diatory factors	High
Fretts et al, 2014, USA ⁴⁸	1992-93	PC	12.0 (max)	CHS	2,709	≥65	36.1	GC	Plasma	Phospholipid fraction	ALA	Records	1,517	Age, sex, race, smoking, alcohol, education, region, BMI, diabetes, drug-treated hypertension	High
Marklund et al, 2015, Swedish ⁴⁹	1997-98	PC	14.5 (median)	A cohort study in Swedish	¹ 4,232	≥60	48.2	GC	Serum	Cholesterol fraction	ALA, EPA, DHA	Records	456	Sex, smoking, alcohol, education, BMI, physical activity, diabetes, drug-treated hypertension, drug- treated hypercholesterolemia	Moderate
Miura et al, 2016, Australia ⁹²	1992-96	PC	17.0	NSCS	1,008	20-69	44.0	GC	Plasma	Phospholipid fraction	ALA, EPA+DPA+DHA, EPA, DPA, DHA	Records	179	Age, sex, smoking, blood cholesterol, jaundice measure, serious medical condition	High
Harris et al, 2017, USA ⁵⁰	1996	PC	14.9 (median)	WHIMS	6,501	65-80	0.0	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA+DHA, EPA, DHA	Records	1,851	Age, race, region, smoking, alcohol, education, BMI, WHR, heart rate, physical activity, diabetes, hypertension, CVD and/or cancer, family history of cancer and CVD, aspirin treatment, cholesterol medication,	High
Harris et al, 2018, USA ⁵¹	1971	РС	7.3 (median)	FHS	2,500	56-75	43.1	GC	Erythrocyte membrane	Phospholipid fraction	ALA, EPA, DPA, DHA	-	350	supplement intake Age, sex, marital status, occupation, smoking, alcohol, education, BMI, SBP, physical activity, health insurance status, diabetes, hypertension, aspirin treatment, cholesterol medication, blood lipid	High

	Table 7. Summar	y of prosp	pective studies of	n circulating om	ega-3 fatty	acids and 1	mortality in	cluded in this	s review (n=9)
--	-----------------	------------	--------------------	------------------	-------------	-------------	--------------	----------------	----------------

Zhang, et al, 2021, China ⁵²	2003-04	РС	6.9 (mean)	NHANES	4,132	≥18	49.3	GC	Serum	Triglycerides fraction, phospholipid, A fraction, cholesterol fraction	LA, EPA, DPA, DHA	National Death Index	437	Age, sex, race, smoking, alcohol, education, family annual income, BMI, physical activity, diabetes, CVD, cancer, ever controlled blood pressure, blood cholesterol or blood glucose, serum triglycerides, total cholesterol, SFAs, and USFAs, energy, fiber, carbohydrate, and protein intake, AHEI-2010	High
--	---------	----	---------------	--------	-------	-----	------	----	-------	---	----------------------	----------------------------	-----	--	------

AHEI: alternative healthy eating index; ALA, α-linolenic acid; BMI, body mass index; CHS, Cardiovascular Health Study; CVD, cardiovascular disease; DHA, docosahexaenoic acid; DPA,

docosapentaenoic acid; EPA, eicosapentaenoic acid; FHS, Framingham Heart Study; GC, gas chromatography; NHANES, National Health and Nutrition Examination Survey; NCCD, nested case-control design study; NR, not reported; PC, prospective cohort study; SBP, systolic blood pressure; ULSAM, Uppsala Longitudinal Study of Adult Men; USA, the United States of America; WHIMS, the Women's Health Initiative Memory Study; WHR, waist hip rate.

Table 8. Newcastle Ottawa scale assessments for prospective cohort studies and nested case-cohort studies on fatty acids biomarkers and type 2 diabetes, cardiovascular disease, coronary heart disease, stroke, colorectal cancer, prostate cancer, breast cancer, and mortality included in this review

		Sele	ction		Comparability	Asses	ssment of expo	sure	
First author, year	Representativ eness	Selection of the non-exposed cohort	Exposure ascertainment	Demonstration of outcome not present at start	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Long enough follow-up	Adequacy of follow up	Total score
Type 2 diabetes									
Wang, 2003 ³¹	1	1	1	1	2	1	1	1	9
Hodge, 2007 ³²	1	1	1	1	2	1	0	0	7
Krachler, 2008 ³³	1	1	1	1	0	1	1	1	7
Zhuang, 2022 ⁴²	1	1	1	1	2	1	1	1	9
Kröger, 2011 ³⁵	1	1	1	1	2	1	1	1	9
Djoussé, 2011 ³⁶	0	1	1	1	2	1	1	1	8
Virtanen, 2014 ³⁷	1	1	1	1	2	1	1	1	9
Takkunen, 2015 ³⁸	0	1	1	1	2	1	1	0	7
Forouhi, 2016 ³⁹	0	1	1	1	2	1	1	1	8
Harris, 2016 ⁴⁰	0	1	1	1	2	1	1	0	7
Zheng, 2018 ⁴¹	0	1	1	0	2	1	1	0	6
Cardiovascular disease									
Laaksonen, 200544	1	1	1	1	2	1	1	1	9
Warensjö, 2008 ¹⁶	1	1	1	1	2	1	1	1	9
Woodward, 2011 ¹⁷	0	1	1	1	2	1	1	0	7
Virtanen, 2012 ⁴⁶	1	1	1	1	2	1	1	1	9
Chien, 2013 ⁴⁵	0	1	1	0	2	1	1	0	6
Mozaffarian, 2013 ¹⁸	0	1	1	1	2	1	1	1	8
de Oliveira Otto, 201347	1	1	1	1	2	1	1	0	8
Fretts, 2014 ⁴⁸	0	1	1	1	2	1	1	1	8
Marklund, 2015 ⁴⁹	1	1	1	1	0	1	1	0	6
Harris, 2017 ⁵⁰	0	1	1	1	2	1	1	0	7
Harris, 2018 ⁵¹	1	1	1	1	2	1	1	1	9
Zhang, 2021 ⁵²	1	1	1	1	2	1	1	0	8
Coronary heart disease									

Wang, 2003 ⁵⁵	1	1	1	1	2	1	1	1	9
Joensen, 2011 ⁵⁷	0	1	1	1	2	1	1	1	8
de Oliveira Otto, 201347	1	1	1	1	2	1	1	0	8
Mozaffarian, 2013 ¹⁸	0	1	1	1	2	1	1	1	8
Fretts, 2014 ⁴⁸	0	1	1	1	2	1	1	1	8
Stroke									
Wiberg, 2006 ⁶³	1	1	1	1	0	1	1	0	6
Yamagishi, 2013 ⁶⁵	1	1	1	1	2	1	1	1	9
Yaemsiri, 2013 ⁶⁶	0	1	1	1	2	1	1	0	7
Fretts, 2014 ⁴⁸	0	1	1	1	2	1	1	1	8
Daneshmand, 2016 ⁶⁷	1	1	1	1	2	1	1	1	9
Bork, 2018 ⁶⁹	0	1	1	1	2	1	1	1	8
Harris, 2018 ⁵¹	1	1	1	1	2	1	1	1	9
Venø, 2019 ⁷⁰	1	1	1	1	2	1	1	0	8
Colorectal cancer									
Hodge, 2014 ⁷²	0	1	1	1	2	1	1	1	8
Prostate cancer									
Brasky, 2013 ⁹⁰	0	1	1	1	0	1	1	1	6
Bassett, 2013 ⁹¹	0	1	1	1	2	1	1	1	8
Breast cancer									0
Chajès, 1999 ⁷⁴	1	1	1	1	0	1	1	1	7
Chajès, 2008 ⁷⁶	0	1	1	1	2	1	1	1	8
Witt, 2009 ⁷⁸	0	1	1	1	1	1	1	1	7
Bassett, 2016 ⁸⁰	0	1	1	1	2	1	1	1	8
All-cause mortality									
Warensjö, 2008 ¹⁶	1	1	1	1	2	1	1	1	9
Chien, 2013 ⁴⁵	0	1	1	0	2	1	1	0	6
Mozaffarian, 2013 ¹⁸	0	1	1	1	2	1	1	1	8
Fretts, 2014 ⁴⁸	0	1	1	1	2	1	1	1	8
Marklund, 2015 ⁴⁹	1	1	1	1	0	1	1	0	6
Miura, 2016 ⁹²	1	1	1	1	2	1	1	1	9
Harris, 2017 ⁵⁰	0	1	1	1	2	1	1	0	7
Harris, 2018 ⁵¹	1	1	1	1	2	1	1	1	9
Zhang, 2021 ⁶²	1	1	1	1	2	1	1	0	8

		Sele	ection		Comparability	Assess	ment of expo	sure	
First author, year	Representativ eness	Selection of the non-exposed cohort	Exposure ascertainment	Demonstration of outcome not present at start	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	f Long enough follow-up	Adequacy of follow up	Total score
Type 2 diabetes									
Patel, 2010 ³⁴	1	1	1	1	2	1	1	1	9
Cardiovascular disease									
Albert, 2002 ⁴³	0	1	1	1	0	1	1	1	6
Coronary heart disease									
Simon, 1995 ⁵³	0	1	1	0	0	1	1	1	5
Lemaitre, 2003 ⁵⁴	0	1	1	1	2	1	1	1	8
Sun, 2008 ⁵⁶	0	1	1	1	2	1	1	1	8
Khaw, 2012 ⁵⁸	1	1	1	1	2	1	1	1	9
Matsumoto, 2013 ⁵⁹	0	1	1	1	2	1	1	1	8
Sun, 2016 ⁶⁰	0	1	1	1	0	1	1	1	6
Hamazaki, 2017 ⁶¹	0	1	1	1	2	1	1	1	8
Chei, 2018 ⁶²	0	1	1	1	2	1	1	1	8
Stroke									
De Goede, 2013 ⁶⁴	0	1	1	1	2	1	1	1	8
Saber, 2017(CHS) ⁶⁸	0	1	1	1	2	1	1	1	8
Saber, 2017(HPFS) ⁶⁸	0	1	1	1	2	1	1	1	8
Saber, 2017(FHS) ⁶⁸	0	1	1	1	2	1	1	1	8
Colorectal cancer									
Hall, 2007 ⁷¹	0	1	1	1	2	1	1	1	8
Butler, 2017 ⁷³	0	1	1	1	2	1	1	1	8
Prostate cancer									
Gann, 199482 ⁸³	0	1	1	1	0	1	1	1	6
Harvei, 1997 ⁸⁴	0	1	1	1	1	1	1	1	7
Mannisto, 2003 ⁸⁵	0	1	1	1	2	1	1	1	8
Chavarro, 2007 ⁸⁶	0	1	1	1	2	1	1	1	8

Table 9. Newcastle Ottawa scale assessments for prospective nested case-control studies on fatty acids biomarkers and type 2 diabetes, cardiovascular disease, coronary heart disease, stroke, colorectal cancer, prostate cancer, breast cancer, and mortality included in this review

Crowe, 2008 ⁸⁷	0	1	1	1	2	1	1	1	8
Park, 2008 ⁸⁸	0	1	1	1	2	1	1	1	8
Brasky, 2011 ⁸⁹	0	1	1	1	2	1	1	1	8
Breast cancer									
Saadatian-Elahi,	0	1	1	1		1	1	1	8
2002 ⁷⁵					2				
Takata, 200977	0	1	1	1	2	1	1	1	8
Pouchieu, 2014 ⁷⁹	0	1	1	1	2	1	1	1	8
Chajès, 2017 ⁸¹	0	1	1	1	2	1	1	1	8
Hirko, 2018 ⁸²	0	1	1	1	2	1	1	1	8

CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; HPFS, Health Professionals Follow-Up Study.

		A	LA		
-	n	RR (95% CI)	I^2	Ph^*	Ph^{\dagger}
All studies	11	0.89 (0.82, 0.96)	5.1	0.39	
Study type					0.87
PC	6	0.88 (0.74, 1.04)	39.4	0.14	
CCD	4	0.88 (0.80, 0.98)	0.0	0.60	
NCCD	1	0.70 (0.34, 1.46)	NA	NA	
NCCS	-				
Gender					0.93
Males	1	0.84 (0.66, 1.07)	NA	NA	
Women	1	1.00 (0.81, 1.23)	NA	NA	
Men and women	9	0.88 (0.79, 0.97)	10.6	0.34	
Geographic location					0.73
Europe	6	0.87 (0.79, 0.95)	0.0	0.85	
USA	3	0.78 (0.56, 1.08)	66.9	0.05	
Asia	1	1.06 (0.75, 1.49)	NA	NA	
Australia	1	1.05 (0.77, 1.44)	NA	NA	
Duration of follow-					0.50
up					
< 10 years	5	0.93 (0.80, 1.09)	0.6	0.40	
≥ 10 years	6	$0.87\ (0.78, 0.97)$	16.3	0.31	
Number of cases					0.74
< 300	6	0.84 (0.68, 1.04)	28.2	0.22	
300-500	2	0.92 (0.74, 1.14)	17.1	0.27	
\geq 500	3	0.89 (0.81, 0.98)	0.0	0.38	
Assessment method					0.27
GC	9	0.90 (0.83, 0.98)	4.8	0.39	
GLC	2	0.68 (0.48, 0.98)	0.0	0.95	
Biomarkers type					0.20
Total plasma	4	082 (0.68, 0.98)	44.6	0.14	
Serum	3	0.94 (0.78, 1.12)	0.0	0.44	
Phospholipids	4	0.96 (0.82, 1.12)	0.0	0.8	

Table 10. Subgroup analyses of alpha-linolenic acid and type 2 diabetes

CCD, case-cohort design study; CI, confidence interval; GC, gas chromatography; GLC, gas-liquid chromatography; NA, not applicable (because only 1 study); NCCS, nested case-control study; NCCD, nested case-cohort design study; PC, prospective cohort study; RR, relative risk; USA, the United States of America.

* *P* for heterogeneity within each subgroup.

 $^{\dagger}P$ for heterogeneity between subgroups with a meta-regression analysis.

	n	RR (95% CI)	I^2	Ph^*	Ph^{\dagger}
All studies	10	0.76 (0.66, 0.88)	55.5	0.02	
Study type					NC
PC	10	0.76 (0.66, 0.88)	55.5	0.02	
PNCC	-				
NCCS	-				
Gender					0.17
Men	2	0.71 (0.46, 1.09)	58.6	0.12	
Women	1	1.00 (0.74, 1.35)	NA	NA	
Men and women	7	0.74 (0.62, 0.88)	57.9	0.03	
Geographic location					0.76
Europe	4	0.73 (0.62, 0.86)	45.0	0.14	
USA	4	0.70 (0.53, 0.93)	65.6	0.03	
Asia	2	1.05 (0.80, 1.38)	0.0	0.59	
Duration of follow-up					0.45
< 10 years	6	0.76 (0.66, 0.87)	45.2	0.10	
\geq 10 years	4	0.75 (0.50, 1.11)	72.8	0.01	
Number of cases					0.20
< 300	4	0.61 (0.46, 0.82)	33.0	0.21	
300-500	3	0.82 (0.62, 1.09)	76.4	0.01	
\geq 500	3	0.82 (0.69, 0.97)	31.2	0.23	
Assessment method					NC
GC	10	0.76 (0.66, 0.88)	55.5	0.02	
GLC	-				
Biomarkers type					0.95
Plasma	3	0.73 (0.48, 1.12)	80.3	< 0.001	
Serum	4	0.72 (0.59, 0.89)	42.6	0.16	
Phospholipids	2	0.82 (0.54, 1.25)	67.4	0.08	
Adipose tissue	1	0.81 (0.66, 0.99)	NA	NA	
Study quality					0.41
Moderate	2	0.83 (0.49, 1.41)	87.4	0.005	
High	8	0.76 (0.65, 0.87)	42.6	0.09	

Table 11. Subgroup analyses of docosahexaenoic acid and cardiovascular disease

CI, confidence interval; GC, gas chromatography; GLC, gas-liquid chromatography; NA, not applicable (because only 1 study); NC, cannot be calculated; NCCS, nested case-control study; PC, prospective cohort study; RR, relative risk; USA, the United States of America.

* *P* for heterogeneity within each subgroup.

^{\dagger} P for heterogeneity between subgroups with a meta-regression analysis.

	EPA					DHA				
	n	RR (95% CI)	I^2	Ph^*	Ph^{\dagger}	n	RR (95% CI)	I^2	Ph^*	Ph^{\dagger}
All studies	10	0.85 (0.77, 0.95)	3.0	0.41		10	0.70 (0.58, 0.84)	54.1	0.02	
Study type										0.50
PC	10	0.85 (0.77, 0.95)	3.0	0.41	NC	2	0.51 (0.27, 0.96)	73.1	0.05	
PNCC	-					7	0.80 (0.66, 0.97)	31.2	0.19	
NCCS	-					1	0.63 (0.46, 0.86)	NA	NA	
Gender					0.42					0.40
Men	2	0.85 (0.70, 1.04)	0.0	0.65		2	0.63 (0.22, 1.79)	79.4	0.03	
Women	8	0.84 (0.73, 0.98)	22.8	0.25		1	0.69 (0.32, 1.48)	NA	NA	
Men and women					0.95	7	0.68 (0.57, 0.82)	38.9	0.13	
Geographic location										0.73
Europe	2	0.94 (0.80, 1.12)	0.0	0.50		2	0.76 (0.53, 1.09)	67.9	0.08	
USA	4	0.77 (0.62, 0.95)	40.0	0.17		5	0.61 (0.41, 0.91)	74.3	0.004	
Asia	4	0.83 (0.65, 1.06)	0.0	0.64		3	0.69 (0.53, 0.90)	0.0	0.84	
Duration of follow-up					0.30					0.79
< 10 years	5	0.80 (0.66, 0.97)	29.1	0.23		4	0.70 (0.48, 1.03)	67.3	0.03	
≥ 10 years	5	0.89 (0.77, 1.02)	0.0	0.52		6	0.69 (0.55, 0.86)	46.1	0.10	
Number of cases					0.85					0.18
< 300	5	0.77 (0.57, 1.04)	29.0	0.23		5	0.57 (0.40, 0.81)	35.4	0.19	
300-500	-					-				
\geq 500	5	0.87 (0.78, 0.98)	0.0	0.60		5	0.77 (0.63, 0.94)	57.3	0.05	
Assessment method					NC					
GC	10	0.85 (0.77, 0.95)	3.0	0.41		5	0.67 (0.55, 0.81)	0.0	0.97	
GLC	-					5	0.68 (0.49, 0.95)	75.7	0.002	
Biomarkers type					0.50					0.19
Plasma	3	0.77 (0.58, 1.01)	0.0	0.79		6	0.68 (0.54, 0.86)	45.9	0.10	
Serum	1	1.04 (0.65, 1.66)	NA	NA		2	0.55 (0.25, 1.20)	55.6	0.13	
Phospholipids	5	0.82 (0.68, 0.99)	46.2	011		1	0.98 (0.79, 1.22)	NA	NA	
Adipose tissue	1	0.89 (0.70, 1.13)	NA	NA		1	0.63 (0.46, 0.86)	NA	NA	
Study quality					0.73					0.33
Moderate	2	0.74 (0.56, 0.97)	0.0	0.83		2	0.53 (0.30, 0.95)	39.0	0.20	
High	8	0.87 (0.77, 0.98)	11.6	0.34		8	0.73 (0.60, 0.89)	55.1	0.03	
CI, confidence	interv	val; DHA, docosa	hexae	noic	acid; E	EPA,	eicosapentaenoic	acid; G	iC, gas	5

Table 12. Subgroup analyses of fatty acid biomarkers and coronary heart disease

chromatography; GLC, gas-liquid chromatography; NA, not applicable (because only 1 study); NC, cannot be calculated; NCCS, nested case-control study;

PC, prospective cohort study; RR, relative risk; USA, the United States of America.

* *P* for heterogeneity within each subgroup.

^{\dagger} P for heterogeneity between subgroups with a meta-regression analy

	endpo	ints of interest		C	1	-		
tcome	№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative risk (95% Cl
							-	
etes	11	Observational studies	Not serious	Not serious	Not serious	Not serious	Dose response gradient	0.89 (0.82 to 0.96)
ılar disease	8	Observational studies	Not serious	Not serious	Not serious	Not serious	None	1.09 (0.98 to 1.20)
eart disease	9	Observational studies	Not serious	Not serious	Serious ^a	Not serious	None	0.98 (0.95 to 1.02)
	8	Observational studies	Not serious	Not serious	Serious ^a	Not serious	None	0.98 (0.92 to 1.05)
cancer	2	Observational studies	Not serious	Not serious	Serious ^c	Not serious	None	0.90 (0.72 to 1.12)
er	8	Observational studies	Not serious	Not serious	Not serious	Not serious	None	0.95 (0.86 to 1.05)
icer	9	Observational studies	Not serious	Not serious	Not serious	Not serious	None	1.03 (0.90 to 1.19)
	7	Observational studies	Not serious	Not serious	Not serious	Not serious	None	0.98 (0.89 to 1.07)
etes	9	Observational studies	Not serious	Serious ^d	Not serious	Not serious	None	0.85 (0.72 to 0.99)
ılar disease	9	Observational	Not serious	Not serious	Not serious	Not serious	Dose response	0.79 (0.70 to 0.89)
eart disease	10	Observational studies	Not serious	Not serious	Not serious	Not serious	Dose response gradient	0.85 (0.77 to 0.95)
	9	Observational studies	Not serious	Serious ^e	Not serious	Not serious	None	0.95 (0.82 to 1.11)
cancer	3	Observational studies	Not serious	Not serious	Serious ^f	Not serious	None	0.86 (0.70 to 1.05)
er	9	Observational studies	Not serious	Not serious	Not serious	Not serious	None	0.93 (0.85 to 1.02)
icer	9	Observational studies	Not serious	Not serious	Not serious	Not serious	None	1.05 (0.94 to 1.17)
	8	Observational studies	Not serious	Serious ^g	Not serious	Not serious	None	0.78 (0.69 to 0.88)
etes	9	Observational studies	Not serious	Serious ^h	Not serious	Not serious	None	0.84 (0.73 to 0.96)
ılar disease	6	Observational studies	Not serious	Not serious	Not serious	Not serious	Dose response gradient	0.78 (0.70 to 0.86)
eart disease	9	Observational studies	Not serious	Not serious	Not serious	Not serious	Dose response gradient	0.83 (0.76 to 0.92)
	7	Observational studies	Not serious	Serious ⁱ	Not serious	Not serious	None	0.96 (0.79 to 1.16)
cancer	2	Observational studies	Not serious	Not serious	Serious ^j	Not serious	None	0.76 (0.59 to 0.98)
er	6	Observational studies	Not serious	Not serious	Serious ^k	Not serious	None	0.94 (0.85 to 1.05)
icer	6	Observational studies	Not serious	Serious ¹	Not serious	Not serious	None	0.92 (0.75 to 1.15)
	4	Observational studies	Not serious	Not serious	Serious ^m	Not serious	None	0.82 (0.74 to 0.90)

Table 13. GRADE assessment of the systematic review and meta-analysis of prospective cohort studies assessing the association between omega-3 polyunsaturated fatty acid biomarkers and the endpoints of interest

etes	10	Observational studies	Not serious	Serious ⁿ	Not serious	Not serious	None	0.96 (0.82 to 1.11)
ılar disease	10	Observational studies	Not serious	Serious °	Not serious	Not serious	Dose response gradient	0.76 (0.66 to 0.88)
eart disease	10	Observational studies	Not serious	Serious ^p	Not serious	Not serious	Dose response gradient	0.70 (0.58 to 0.84)
	9	Observational studies	Not serious	Serious ^q	Not serious	Not serious	None	0.84 (0.72 to 0.99)
cancer	3	Observational studies	Not serious	Not serious	Serious ^r	Not serious	None	0.80 (0.65 to 0.99)
er	9	Observational studies	Not serious	Not serious	Not serious	Not serious	None	1.01 (0.92 to 1.11)
cer	8	Observational studies	Not serious	Serious ^s	Not serious	Not serious	None	1.05 (0.89 to 1.24)
	8	Observational studies	Not serious	not serious	Not serious	Not serious	None	0.83 (0.75 to 0.92)
HA								
etes	2	Observational studies	Not serious	Serious ^t	Serious ^u	Not serious	None	0.81 (0.60 to 1.09)
ılar disease	3	Observational studies	Not serious	Not serious	Serious ^v	Not serious	None	0.45 (0.27 to 0.74)
eart disease	3	Observational studies	Not serious	Not serious	Serious ^w	Not serious	None	0.67 (0.47 to 0.96)
	2	Observational studies	Not serious	Not serious	Serious ^x	Not serious	None	1.04 (0.90 to 1.20)

ALA, alpha-linolenic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA,

docosahexaenoic acid.

^a Serious indirectness for coronary heart disease, as >50% of the weight (75.89%) was contributed by a

study conducted among males.

^b Serious indirectness for stroke, as >50% of the weight (52.96%) was contributed by a study conducted among females.

^c Serious indirectness for colorectal cancer, as there were only 2 available studies s and >50% of the weight (67.92%) was contributed by a study.

^d Serious inconsistency for type 2 diabetes due to high degree of unexplained heterogeneity (I^2 =77.7%,

P<0.001).

^e Serious inconsistency for stroke due to high degree of unexplained heterogeneity (I^2 =54.6%, P=0.02).

^f Serious indirectness for colorectal cancer, as >50% of the weight (65.26%) was contributed by a study.

^g Serious inconsistency for mortality due to high degree of unexplained heterogeneity (I^2 =62.7%,

P=0.009).

^h Serious inconsistency for type 2 diabetes due to high degree of unexplained heterogeneity (I^2 =69.9%, P=0.001).

ⁱ Serious inconsistency for stroke due to high degree of unexplained heterogeneity ($I^2=73.0\%$, P=0.001). ^j Serious indirectness for colorectal cancer, as there were only 2 available studies and >50% of the weight (80.69%) was contributed to a study.

^k Serious indirectness for breast cancer, as >50% of the weight (62.59%) was contributed to a study.

¹ Serious inconsistency for prostate cancer due to high degree of unexplained heterogeneity (I^2 =58.4%, P=0.034).

^m Serious indirectness for colorectal cancer, as there were only 3 available studies and >50% of the weight (76.89%) was contributed to a study.

ⁿ Serious inconsistency for type 2 diabetes due to high degree of unexplained heterogeneity (I^2 =69.5%, P=0.001).

° Serious inconsistency for cardiovascular disease due to high degree of unexplained heterogeneity (I^2 =55.5%, P=0.017).

^p Serious inconsistency for coronary heart disease due to high degree of unexplained heterogeneity (I^2 =54.1%, P =0.020).

^q Serious inconsistency for stroke due to high degree of unexplained heterogeneity (I^2 =54.2%, P=0.026).

^r Serious indirectness for colorectal cancer, as there were only 3 available studies and >50% of the weight

(63.66%) was contributed to one study.

^s Serious inconsistency for stroke due to high degree of unexplained heterogeneity ($I^2=61.5\%$, P=0.011).

^tSerious inconsistency for type 2 diabetes due to high degree of unexplained heterogeneity (I^2 =52.2%,

P=0.148).

^u Serious indirectness for type 2 diabetes, as there were only 2 available studies and >50% of the weight

(59.57%) was contributed by a study.

^v Serious indirectness for cardiovascular disease, as there were only 3 available studies.

^w Serious indirectness for coronary heart disease, as there were only 3 available studies.

^x Serious indirectness for stroke, as there were only 2 available studies and >50% of the weight (82.34%) was contributed by a study.

Supplementary Appendix 2

Figure of Contents

Figure 1. Mean (standard deviation) of circulating blood omega-3 polyunsaturated	fatty acid
composition at baseline in the available studies	

Figure 2. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of a-
linolenic acid biomarker level
Figure 3. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of
eicosapentaenoic acid biomarker level
Figure 4. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of
docosapentaenoic acid biomarker level
Figure 5. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 6. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of long-
chain omega-3 polyunsaturated fatty biomarker level
Figure 7. Pooled relative risk of cardiovascular disease for the highest versus lowest categories
of eicosapentaenoic acid biomarker level
Figure 8. Pooled relative risk of cardiovascular disease for the highest versus lowest categories
of docosapentaenoic acid biomarker level
Figure 9. Pooled relative risk of cardiovascular disease for the highest versus lowest categories
of docosahexaenoic acid biomarker level
Figure 10. Pooled relative risk of cardiovascular disease for the highest versus lowest categories
of long-chain omega-3 polyunsaturated fatty biomarker level
Figure 11. Pooled relative risk of cardiovascular disease for the highest versus lowest categories
of α-linolenic acid biomarker level
Figure 12. Pooled relative risk of coronary heart disease for the highest versus lowest categories
of α-linolenic acid biomarker level
Figure 13. Pooled relative risk of coronary heart disease for the highest versus lowest categories
of eicosapentaenoic acid biomarker level
Figure 14. Pooled relative risk of coronary heart disease for the highest versus lowest categories
of docosapentaenoic acid biomarker level
Figure 15. Pooled relative risk of coronary heart disease for the highest versus lowest categories
of docosahexaenoic acid biomarker level
Figure 16. Pooled relative risk of coronary heart disease for the highest versus lowest categories
of long-chain omega-3 polyunsaturated fatty acid biomarker level
Figure 17. Pooled relative risk of stroke for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 18. Pooled relative risk of stroke for the highest versus lowest categories of α-linolenic
acid biomarker level
Figure 19. Pooled relative risk of stroke for the highest versus lowest categories of
eicosapentaenoic acid biomarker level 46
Figure 20. Pooled relative risk of stroke for the highest versus lowest categories of
docosapentaenoic acid biomarker level
Figure 21. Pooled relative risk of stroke for the highest versus lowest categories of long-chain
omega-3 polyunsaturated fatty acid biomarker level
Figure 22. Dose-response analyses of the linear association between docosahexaenoic acid
biomarker and the risk of stroke
Figure 23. Pooled relative risk of colorectal cancer for the highest versus lowest categories of
docosapentaenoic acid biomarker level

Figure 24. Pooled relative risk of colorectal cancer for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 25. Pooled relative risk of colorectal cancer for the highest versus lowest categories of
α-linolenic acid biomarker level
Figure 26. Pooled relative risk of colorectal cancer for the highest versus lowest categories of
eicosapentaenoic acid biomarker level
Figure 27. Pooled relative risk of breast cancer for the highest versus lowest categories of α -
linolenic acid biomarker level
Figure 28. Pooled relative risk of breast cancer for the highest versus lowest categories of
eicosapentaenoic acid biomarker level 55
Figure 29. Pooled relative risk of breast cancer for the highest versus lowest categories of
docosapentaenoic acid biomarker level
Figure 30. Pooled relative risk of breast cancer for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 31. Pooled relative risk of prostate cancer for the highest versus lowest categories of a-
linoleic acid biomarker level
Figure 32. Pooled relative risk of prostate cancer for the highest versus lowest categories of
eicosapentaenoic acid biomarker level 59
Figure 33. Pooled relative risk of prostate cancer for the highest versus lowest categories of
docosapentaenoic acid biomarker level 60
Figure 34. Pooled relative risk of prostate cancer for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 35. Pooled relative risk of mortality for the highest versus lowest categories of
eicosapentaenoic acid biomarker level
Figure 36. Pooled relative risk of mortality for the highest versus lowest categories of
docosapentaenoic acid biomarker level
Figure 37. Pooled relative risk of mortality for the highest versus lowest categories of
docosahexaenoic acid biomarker level
Figure 38. Pooled relative risk of mortality for the highest versus lowest categories of α -
linolenic acid biomarker level
Figure 39. Funnel plot of relative risk (RR) for type 2 diabetes comparing the lowest with the
highest categories for α-linolenic acid biomarker level
Figure 40. Funnel plot of relative risk (RR) for cardiovascular disease comparing the lowest
with the highest categories for docosahexaenoic acid biomarker level
Figure 41. Funnel plot of relative risk (RR) for coronary heart disease comparing the lowest
with the highest categories for α-linolenic acid biomarker level
Figure 42. Funnel plot of relative risk (RR) for coronary heart disease comparing the lowest
with the highest categories for docosahexaenoic acid biomarker level

Figure 1. Mean (standard deviation) of circulating blood omega-3 polyunsaturated fatty acid composition at baseline in the available studies

ALA, α -linoleic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Figure 2. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of α -linolenic acid biomarker level

95% CI, 95% confidence interval.

Figure 3. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of eicosapentaenoic acid biomarker level

95% CI, 95% confidence interval.

95% CI, 95% confidence interval.

Figure 5. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of docosahexaenoic acid biomarker level

95% CI, 95% confidence interval.

Figure 6. Pooled relative risk of type 2 diabetes for the highest versus lowest categories of long-chain omega-3 polyunsaturated fatty biomarker level

95% CI, 95% confidence interval.

Figure 7. Pooled relative risk of cardiovascular disease for the highest versus lowest categories of eicosapentaenoic acid biomarker level

95% CI, 95% confidence interval.

Figure 8. Pooled relative risk of cardiovascular disease for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 9. Pooled relative risk of cardiovascular disease for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 10. Pooled relative risk of cardiovascular disease for the highest versus lowest categories of long-chain omega-3 polyunsaturated fatty biomarker level

Figure 11. Pooled relative risk of cardiovascular disease for the highest versus lowest categories of α -linolenic acid biomarker level

Figure 12. Pooled relative risk of coronary heart disease for the highest versus lowest categories of α -linolenic acid biomarker level

Figure 13. Pooled relative risk of coronary heart disease for the highest versus lowest categories of eicosapentaenoic acid biomarker level

Figure 14. Pooled relative risk of coronary heart disease for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 15. Pooled relative risk of coronary heart disease for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 16. Pooled relative risk of coronary heart disease for the highest versus lowest categories of long-chain omega-3 polyunsaturated fatty acid biomarker level

Figure 17. Pooled relative risk of stroke for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 18. Pooled relative risk of stroke for the highest versus lowest categories of α -linolenic acid biomarker level

Figure 19. Pooled relative risk of stroke for the highest versus lowest categories of eicosapentaenoic acid biomarker level

Figure 20. Pooled relative risk of stroke for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 21. Pooled relative risk of stroke for the highest versus lowest categories of longchain omega-3 polyunsaturated fatty acid biomarker level

Figure 22. Dose-response analyses of the linear association between docosahexaenoic acid biomarker and the risk of stroke

Circles represent point estimates plotted over precision measures. The solid line and the dotted lines represent the estimated relative risks and their 95% confidence interval.

Figure 23. Pooled relative risk of colorectal cancer for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 24. Pooled relative risk of colorectal cancer for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 25. Pooled relative risk of colorectal cancer for the highest versus lowest categories of α -linolenic acid biomarker level

Figure 26. Pooled relative risk of colorectal cancer for the highest versus lowest categories of eicosapentaenoic acid biomarker level

Figure 27. Pooled relative risk of breast cancer for the highest versus lowest categories of α -linolenic acid biomarker level

Figure 28. Pooled relative risk of breast cancer for the highest versus lowest categories of eicosapentaenoic acid biomarker level

95% CI, 95% confidence interval.

Figure 29. Pooled relative risk of breast cancer for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 30. Pooled relative risk of breast cancer for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 31. Pooled relative risk of prostate cancer for the highest versus lowest categories of α -linoleic acid biomarker level

Figure 32. Pooled relative risk of prostate cancer for the highest versus lowest categories of eicosapentaenoic acid biomarker level

Figure 33. Pooled relative risk of prostate cancer for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 34. Pooled relative risk of prostate cancer for the highest versus lowest categories of docosahexaenoic acid biomarker level

Figure 35. Pooled relative risk of mortality for the highest versus lowest categories of eicosapentaenoic acid biomarker level

Figure 36. Pooled relative risk of mortality for the highest versus lowest categories of docosapentaenoic acid biomarker level

Figure 37. Pooled relative risk of mortality for the highest versus lowest categories of docosahexaenoic acid biomarker level

Study	Relative Risk (95% CI)	Weight %
Warensjo, 2008	1.07 (0.93, 1.22)	22.35
Fretts, 2014	0.95 (0.84, 1.07)	24.98
Marklund, 2015	- 1.13 (0.90, 1.41)	11.81
Miura, 2016 —	- 0.90 (0.62, 1.30)	5.18
Harris, 2017	0.96 (0.82, 1.12)	19.19
Harris, 2018	► 1.03 (0.78, 1.35)	8.64
Zhang, 2021 —	0.70 (0.52, 0.93)	7.85
Overall (I-squared = 32.9%, p = 0.177)	0.98 (0.89, 1.07)	100.00
NOTE: Weights are from random effects analysis		
.25 .5 1	2 4	
Relative	e Risk	

Figure 38. Pooled relative risk of mortality for the highest versus lowest categories of α -linolenic acid biomarker level

The dashed lines represent the pseudo-95% confidence interval of the RR. The circles represent risk estimates for each cohort, and the horizontal line represents standard errors of the RR. RR, relative risk.

The dashed lines represent the pseudo-95% confidence interval of the RR. The circles represent risk estimates for each cohort, and the horizontal line represents standard errors of the RR. RR, relative risk.

The dashed lines represent the pseudo-95% confidence interval of the RR. The circles represent risk estimates for each cohort, and the horizontal line represents standard errors of the RR. RR, relative risk.

The dashed lines represent the pseudo-95% confidence interval of the RR. The circles represent risk estimates for each cohort, and the horizontal line represents standard errors of the RR. RR, relative risk.