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1.  Introduction 

In generalized pairwise comparisons (Buyse, 2010), each patient in the Treatment group is 

compared with every patient in the Control group. For a pair, if the patient in the Treatment group 

has a better outcome than the Control patient, it is called a ‘win’ for the Treatment group; if on the 

other hand, the Control patient has a better outcome, it is called a 'loss' for the Treatment group 

and a “win” for the Control group. If a 'win' or a 'loss' cannot be established, the result is a 

'tie'.  Because the win ratio (ratio of win proportions; Pocock et al., 2012), the net benefit 

(difference in win proportions; Buyse, 2010) and the win odds (odds of win proportions; Dong et 

al., 2020a) are derived from the same win proportions and can be used to test the same hypothesis 

of equal win probabilities in the two groups, Dong et al. (2021) proposed the unifying term win 

statistics, adopting the idea of “win” from Pocock et al. (2012). R packages such as the WINS 

package by Cui and Huang (2022) for the calculation and inference of win statistics are available. 

Inclusion of ties in the win odds has some benefits compared with the win ratio since the 

win odds considers a tie as a half win for the Treatment group and a half win for the Control group. 

Peng (2020) discussed the win odds in the design of a non-inferiority (NI) trial with a composite 

endpoint of prioritized multiple outcomes, since ties in NI trials may reflect comparable treatment 

effect and the number of ties may be substantial. Brunner, Vandemeulebroecke and Mütze (2021) 

pointed out that a larger number of ties provide evidence of greater similarity of the two arms and 

should not be ignored. In addition, through several cases they demonstrated that an increase in the 

proportion of ties can result in an increase in the win ratio while the win odds remains unchanged. 

Therefore, they concluded that the win odds should be preferred over the win ratio. Brunner, 

Vandemeulebroecke and Mütze (2021) and Gasparyan et al (2021a) provided a way to calculate 

variance and confidence interval for the win odds when the response variable is univariate and can 



be ordered.  Further, Gasparyan et al (2021b) provided the sample size and power for the win odds 

with a univariate outcome. Matsouaka (2022) developed a robust statistical inference for the 

matched win odds and win statistics in general. Though beyond the scope of this article, methods 

suggested for inference with the win ratio and net benefit can be adapted to the win odds.  

For a continuous non-normal or ordinal outcome, the Mann-Whitney U test (also known 

as the Wilcoxon-Mann-Whitney test) (Wilcoxon, 1945; Mann and Whitney, 1947) is often used to 

compare two treatment groups (i.e., each patient in the Treatment group is compared with every 

patient in the Control group). The probabilistic index (called the relative effect in Brunner et al. 

2021), typically estimated as the ratio of the Mann-Whitney U to the total number of pairwise 

comparisons, was first formally used by Acion et al. (2006). It has been extensively studied during 

the past few decades in stress-strength models in reliability theory, receiver operating characteristic 

(ROC) curve analysis in diagnostic test accuracy, medical applications, and other areas (e.g., 

Church and Harris, 1970; Kotz, Lumelskii and Pensky, 2003; Pepe, 2010; Fay and Malinovsky, 

2018; Verbeeck et al., 2021). In one milestone in the development of the probabilistic index, Thas 

et al. (2012) introduced a class of regression models, the Probabilistic Index Models (PIMs). 

Subsequently, PIMs have been further developed and established (e.g., De Neve and Thas, 2015; 

Meys et al., 2020). Because generalized pairwise comparisons (Buyse, 2010) is an extension of 

the Wilcoxon-Mann-Whitney test, it is related to the probabilistic index. For example, the net 

benefit can be shown as a linear transformation of the probabilistic index. Verbeeck et al. (2021) 

showed that, with a univariate outcome and no missing or censored data, the probabilistic index 

and net benefit are always unbiased and efficient in detecting a treatment effect in realistic clinical 

scenarios.   

Current methods for win statistics have a major limitation:  when a win statistic is used to 



analyze a randomized clinical trial, it is assumed that two treatment groups are 

balanced/comparable on patients’ characteristics at baseline. When two treatment groups are not 

balanced, it may be desirable to take possible confounding factors into account. Therefore, this 

restriction has limited the application of win statistics. Dong et al. (2018) proposed the stratified 

win ratio. Mao and Wang (2021) introduced a regression method for the win ratio to provide 

flexibility in adjusting for confounders in the model. Furthermore, Gasparyan et al (2021a) 

provided a unified theory of win odds estimation in the presence of stratification and adjustment 

for one numeric variable. The probabilistic index models (Thas et al, 2012) allow adjustments for 

multiple covariates, but those models have not been explored for the win odds.  

In this article, we focus on the (unmatched) win odds. We present statistical inferences for 

the win odds, including showing how to extend alternative variance estimators by the exact 

permutation and bootstrap to the win odds, and we demonstrate a regression for the win odds, 

following the probabilistic index models (Thas et al, 2012). For the matched win odds following 

a matched pair design (e.g., one eye vs. the other eye of the same patients) or for the paired patients 

matched on baseline characteristics, risk profiles and other factors, we refer to Matsouaka (2022). 

2.   Calculation of the win odds 

Generalized pairwise comparisons (Buyse, 2010) result in three possible outcomes for 

comparing a patient from the Treatment group with a patient from the Control group: the Treatment 

patient wins, the Control patient wins, or the two patients are tied. Let πt, πc and πtie be the 

probabilities of these three outcomes, for which πt + πc + πtie = 1.  The subscripts t and c denote the 

Treatment and Control groups, respectively. Following Dong et al. (2020a), the win odds (WO) is 

defined as follows:  

𝑊𝑂 =
𝜋𝑡+0.5𝜋𝑡𝑖𝑒

𝜋𝑐+0.5𝜋𝑡𝑖𝑒
=  

𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)

𝜋𝑐+0.5(1−𝜋𝑡−𝜋𝑐)
=

𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)

1−[𝜋𝑡+0.5(1−𝜋𝑡−𝜋𝑐)]
.                                 (1) 



The WO can be theoretically calculated as an integral or estimated using the counting approach. 

The win ratio (WR), the net benefit (NB) and the probabilistic index (PI) can also be similarly 

calculated as 𝑊𝑅 =  
𝜋𝑡

𝜋𝑐
, 𝑁𝐵 =  𝜋𝑡 − 𝜋𝑐 and 𝑃𝐼 =  𝜋𝑡 + 0.5𝜋𝑡𝑖𝑒. 

2.1  Theoretical calculation via integral  

Let Y be a response variable. If the distribution of Y is known, one may be able to theoretically 

calculate the WO (and the other win statistics). As an example, suppose Y is a time-to-event 

variable that follows an exponential distribution with parameter λ, Y~Exp(λ). The survival function 

of Y at time x is 𝑆(𝑥) =  𝑒−𝜆𝑥. Following Oakes (2016), the win probabilities by time x can be 

calculated as 

  𝜋𝑡(𝑥) = − ∫ 𝑆𝑡(𝑥)
𝑥

0
𝑑𝑆𝑐(𝑥) = ∫ 𝑒−𝜆𝑡𝑥𝑥

0
𝜆𝑐𝑒−𝜆𝑐𝑥𝑑𝑥 = 𝜆𝑐 ∫ 𝑒−(𝜆𝑡+𝜆𝑐)𝑥𝑥

0
𝑑𝑥 

             =
𝜆𝑐

𝜆𝑡+𝜆𝑐

[1 − 𝑒−(𝜆𝑡+𝜆𝑐)𝑥], 

  𝜋𝑐(𝑥) =
𝜆𝑡

𝜆𝑡+𝜆𝑐

[1 − 𝑒−(𝜆𝑡+𝜆𝑐)𝑥]. 

Suppose 𝜆𝑡= 0.0693 and 𝜆𝑐 = 0.1155 and assume that all patients are followed to 12 months. Then 

at 12 months, 𝜋𝑡(12) =  
0.1155

0.0693+0.1155
[1 − 𝑒−(0.0693+0.1155)∗12] = 0.557 , 𝜋𝑐(12) = 0.334  and 

𝜋𝑡𝑖𝑒(12) = 1 − 𝜋𝑡(12) − 𝜋𝑐(12) = 0.109. Therefore, WO = 1.57, WR = 1.67, NB = 22.3% and 

PI = 0.61  at 12 months. 

 This example demonstrates a theoretical calculation for a single time-to-event endpoint 

without censoring. Finkelstein and Schoenfeld (2019) presented some examples with two 

prioritized outcomes. However, it is challenging to perform a similar calculation for prioritized 

multiple time-to-event endpoints. Moreover, the mathematical derivations of the variance and 

confidence interval are not available.  



2.2  Counting approach following U-statistics  

More conveniently, the WO, like the other win statistics, can be estimated using the counting 

approach. The main idea is to compare each patient in a treatment group with every patient in the 

other group. Within each pair, the comparison starts with the most important outcome, and uses 

lower-priority outcomes only if higher-priority outcomes have not occurred or result in a tie. When 

comparing patient i (i = 1, 2, …, 𝑁𝑡) in the Treatment group and patient j (j=1, 2, …, 𝑁𝑐) in the 

Control group, we define the kernel functions K and L as follows: 

                         𝐾𝑖𝑗 = 1, 𝑖𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 

                    = 0, otherwise.        (2a) 

  𝐿𝑖𝑗 = 1, 𝑖𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖  

                    = 0, otherwise.        (2b) 

The numbers of wins are 𝑛𝑡 = ∑ ∑ 𝐾𝑖𝑗
𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1  and 𝑛𝑐 = ∑ ∑ 𝐿𝑖𝑗

𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1  for the Treatment and 

Control groups, respectively. The corresponding win proportions are 𝑃𝑡 = 𝑛𝑡 𝑁𝑡𝑁𝑐⁄  and 𝑃𝑐 =

𝑛𝑐 𝑁𝑡𝑁𝑐⁄ , and the proportion of ties is 𝑃𝑡𝑖𝑒 = 1 − 𝑃𝑡 − 𝑃𝑐 .  These three proportions are the 

estimates of the corresponding probabilities, namely, 𝜋̂𝑡 = 𝑃𝑡, 𝜋̂𝑐 = 𝑃𝑐 and 𝜋̂𝑡𝑖𝑒 = 𝑃𝑡𝑖𝑒. Therefore, 

the WO can be estimated as 

𝑊𝑂̂ =
𝑃𝑡+0.5𝑃𝑡𝑖𝑒

𝑃𝑐+0.5𝑃𝑡𝑖𝑒
=

𝑃𝑡+0.5(1−𝑃𝑡−𝑃𝑐)

𝑃𝑐+0.5(1−𝑃𝑡−𝑃𝑐)
.                                                                            (3) 

Similarly, WR, NB and PI can be estimated as 𝑊𝑅̂ = 𝑃𝑡 𝑃𝑐⁄ , 𝑁𝐵̂ = 𝑃𝑡 − 𝑃𝑐 and 𝑃𝐼̂ = 𝑃𝑡 + 0.5𝑃𝑡𝑖𝑒. 

Since WR, WO and NB are constructed using the same win proportions and test the same null 

hypothesis, H0: πt = πc, Dong et al. (2021) proposed the unifying term win statistics, adopting the 

idea of “win” from Pocock et al. (2012). 

3. Variance estimators for win odds 



Some estimators have been proposed for the variance of the win odds. Additionally, methods for 

estimating the variance of the win ratio and the net benefit can be adapted to the win odds. 

Simulation studies (Verbeeck et al. 2020) have shown that the exact permutation method provides 

better Type I error rate control, coverage probability and variance estimation than the U-statistic 

method for the net benefit, but less so for the win ratio; and the U-statistic inference proposed by 

Dong et al. (2016) performs better than the U-statistic inference proposed by Bebu and Lachin 

(2016). 

3.1  Estimators based on U-statistics 

The statistics 𝑃𝑡 and 𝑃𝑐 are U-statistics and are asymptotically normal (AN). Therefore, 𝑛𝑡 and 𝑛𝑐  

are also asymptotically normal, 

  (
𝑛𝑡

𝑛𝑐
) ~𝐴𝑁 ([

𝜃𝑡

𝜃𝑐
] , [

𝜎𝑡
2 𝜎𝑡𝑐

𝜎𝑡𝑐 𝜎𝑐
2 ]) .      (4) 

By the delta method, 𝑙𝑜𝑔(𝑊𝑂̂)  is asymptotically normally distributed. The variance can be 

derived as (Dong et al., 2021) 

𝜎̂𝑙𝑜𝑔(𝑊𝑂)
2 = (𝜎̂𝑡

2 − 2𝜎̂𝑡𝑐 + 𝜎̂𝑐
2) (

1

𝛾̂
+

1

𝑁𝑡𝑁𝑐−𝛾̂
)

2

4⁄ ,                                              (5) 

where 𝛾 = 𝜃𝑡 + 0.5(𝑁𝑡𝑁𝑐 − 𝜃𝑡 − 𝜃𝑐) . Under the null hypothesis H0: πt = πc, 𝜃𝑡  and 𝜃𝑐  can be 

estimated as 

 𝜃𝑡 = 𝜃𝑐 = (𝑛𝑡 + 𝑛𝑐) 2⁄ ,       (6a) 

and the variance of 𝑙𝑜𝑔(𝑊𝑂) can be simplified as 

𝜎̂𝑙𝑜𝑔(𝑊𝑂)
2 =

𝜎̂𝑡
2−2𝜎̂𝑡𝑐+𝜎̂𝑐

2

(𝑁𝑡𝑁𝑐/2)2 .                                         (6b)  

Under the alternative hypothesis, their maximum likelihood estimators can be used: 

  𝜃𝑡 = 𝑛𝑡,         (7a) 



  𝜃𝑐 = 𝑛𝑐.         (7b) 

The calculations for 𝜎̂𝑡
2, 𝜎̂𝑐

2 and 𝜎̂𝑡𝑐 can be found in Dong et al. (2016, 2021) and Bebu and Lachin 

(2016). 

Alternative estimators  

By considering a tie as a half win for the Treatment group and a half win for the Control group, 

the kernel functions K and L defined in (2a) and (2b) can be modified as 

                         𝐾𝑖𝑗
′ = 1, 𝑖𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗  

        = 0.5, if the two patients are tied 

                    = 0, otherwise,        (8a) 

  𝐿𝑖𝑗
′ = 1, 𝑖𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖  

                    = 0.5, if the two patients are tied  

       = 0, otherwise.        (8b) 

By plugging 𝐾𝑖𝑗
′  and 𝐿𝑖𝑗

′  into the formulas for the point estimate and variance estimate for the win 

ratio provided in Dong et al. (2016), one can directly obtain the point and variance estimates for 

the win odds.  

On the other hand, Peng (2020) provided a direct way to estimate the variance of the win 

odds by applying 𝐾𝑖𝑗
′  and 𝐿𝑖𝑗

′ , based on the estimator by Bebu and Lachin (2016) for the win ratio. 

Peng (2020) gives the details of the calculations. 

Additionally, Gasparyan et al. (2021a and 2021b) defined the individual win proportions 

and subsequently calculated the win odds and its variance. 

3.2  Permutation and bootstrap-based estimators 

Originally, Buyse (2010) and Pocock et al. (2012) suggested randomization (i.e., re-sampling 

permutation) and bootstrap tests for inference with the net benefit and the win ratio. However, re-



sampling is computationally intensive, and the results are less replicable (they depend on randomly 

generated permutations) since a precise estimate may require a large number (>700,000) of random 

permutations. Verbeeck et al. (2020) derived a closed-form formula for the exact permutation and 

bootstrap variance of NB and WR. Their approach can easily be extended to WO, by realizing that  

𝜎̂𝑙𝑜𝑔(𝑊𝑂)
2 = (𝑁𝑡𝑁𝑐)² 𝜎̂𝑁𝐵

2 (
1

𝛾̂
+

1

𝑁𝑡𝑁𝑐−𝛾̂
)

2

4⁄ .    (9) 

The variance of the exact permutation distribution requires a modification of the kernel functions 

K and L defined in (2a) and (2b), by allowing comparisons both between treatment arms and within 

treatment arms. When comparing patient m (m = 1, 2, …, N) with patient n (n = 1, 2, …, 𝑁), where 

𝑁 =  𝑁𝑡 + 𝑁𝑐, the kernel functions are modified as  

                         𝐾𝑚𝑛
∗ = 1, 𝑖𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑚 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑛  

        = 0, otherwise,        (10a) 

  𝐿𝑚𝑛
∗ = 1, 𝑖𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑛 𝒘𝒊𝒏𝒔 𝑜𝑣𝑒𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑚  

       = 0, otherwise.        (10b) 

The two matrices 𝐾𝑚𝑛
∗  and 𝐿𝑚𝑛

∗  have N rows and N columns. The numbers of wins from the 

Treatment and Control rows are 𝑟𝑡𝑚
∗ = ∑ 𝐾𝑚𝑛

∗𝑁
𝑛=1  and 𝑟𝑐𝑚

∗ = ∑ 𝐿𝑚𝑛
∗𝑁

𝑛=1 , respectively. The exact 

permutation variance for the net benefit is  

𝜎̂𝑁𝐵
2 =

∑ (𝑟𝑡𝑚
∗ −𝑟𝑐𝑚

∗ )𝑁
𝑚=1 ²

𝑁(𝑁−1)𝑁𝑡𝑁𝑐
         (11) 

Plugging (11) into (9) results in the exact permutation variance of WO.  

The exact bootstrap variance requires only between-treatment-arm comparisons. Using the 

kernel functions K and L defined in (2a) and (2b), the numbers of wins from row i are 𝑟𝑡𝑖 =

∑ 𝐾𝑖𝑗
𝑁𝑐
𝑗=1  and 𝑟𝑐𝑖 = ∑ 𝐿𝑖𝑗

𝑁𝑐
𝑗=1 , and the number of wins from column j are 𝑐𝑡𝑗 = ∑ 𝐾𝑖𝑗

𝑁𝑡
𝑖=1  and 𝑐𝑐𝑗 =

∑ 𝐿𝑖𝑗
𝑁𝑡
𝑖=1 , respectively. The exact bootstrap variance for the net benefit is:  



𝜎̂𝑁𝐵
2 =

1

(𝑁𝑡𝑁𝑐)2 (
(𝑁𝑡−1)

𝑁𝑡
∑ (𝑟𝑡𝑖 − 𝑟𝑐𝑖)2𝑁𝑡

𝑖=1 +
(𝑁𝑐−1)

𝑁𝑐
∑ (𝑐𝑡𝑗 − 𝑐𝑐𝑗)2 + 𝑛𝑡 + 𝑛𝑐

𝑁𝑐
𝑗=1 −

(𝑁𝑡+𝑁𝑐−1)

𝑁𝑡𝑁𝑐
∑ ∑ (𝐾𝑖𝑗 − 𝐿𝑖𝑗)2𝑁𝑐

𝑗=1
𝑁𝑡
𝑖=1 )   (12) 

Plugging (12) into (9) results in the exact bootstrap variance of WO.  

3.3  Rank-based estimator 

Instead of using the kernel functions (2a) and (2b), the win odds can equivalently be estimated 

using ranks (Brunner et al. 2021; Gasparyan et al. 2021a) when the outcome is a single continuous 

or ordinal endpoint. Based on the ranks (mid-ranks must be used in case of ties), the probabilistic 

index and the win odds can be estimated by: 

𝑃𝐼̂ =
1

𝑁
(𝑅̅𝑡 − 𝑅̅𝑐) +  

1

2
,      (13a) 

𝑊𝑂̂ =
𝑃𝐼̂

1−𝑃𝐼̂
         (13b) 

where 𝑅̅𝑡 and 𝑅̅𝑐 are the mean ranks in the Treatment and Control groups, respectively. By the 

delta method, the asymptotic variance of the logarithm of the win odds can be estimated by 

(Brunner et al. 2021) 

   𝜎̂log (𝑊𝑂)
2 =

𝜎̂𝑃𝐼
2

𝑃𝐼̂(1−𝑃𝐼̂)
.       (14) 

The estimate of the asymptotic variance for the probabilistic index, 𝜎̂𝑃𝐼
2 , can easily be obtained 

from statistical software such as SAS (SAS Institute Inc 2018). Brunner et al. (2021) and 

Gasparyan et al. (2021a and 2021b) give further details of the rank-based method when the 

outcome is a single continuous or ordinal endpoint.  

4.   Regression 

4.1  Probabilistic index  

Following the notation by Thas et al. (2012), let Y be a response variable and X be p-dimensional 

covariates, and (𝑌, 𝑋) and (𝑌∗, 𝑋∗) are independent and identically distributed (i.i.d.) with a joint 

density function. The Probabilistic index is defined as  



  𝑃(𝑌 ≽ 𝑌∗|𝑋, 𝑋∗) = 𝑃(𝑌 > 𝑌∗|𝑋, 𝑋∗) +
1

2
 𝑃(𝑌 = 𝑌∗|𝑋, 𝑋∗) .  (15) 

4.2  Probabilistic index models 

The Probabilistic index models (Thas et al., 2012) are defined as 

   𝑃(𝑌 ≽ 𝑌∗|𝑋, 𝑋∗) = 𝑚(𝑋, 𝑋∗; 𝛽),      (16) 

Where the function 𝑚(⋅) has a range of [0, 1] and 𝛽 is a p-dimensional parameter vector. This 

model requires semiparametric theory for inference on β because it does not make a full 

distributional assumption on the conditional distribution of Y given X. 

Let 𝑍 = 𝑋 −  𝑋∗ and 𝑚(𝑋, 𝑋∗; 𝛽) = 𝑔−1(𝑍𝑇𝛽), where 𝑔(⋅) is a link function (e.g., logit or 

probit). Then (16) has the general form of the probabilistic index model: 

 𝑃(𝑌 ≽ 𝑌∗|𝑋, 𝑋∗) = 𝑔−1(𝑍𝑇𝛽).      (17) 

The calculations for the probabilistic index model are implemented in the R package pim (Meys 

et al., 2017).  

4.3  Regression for the win odds 

The regression for the win odds can use the probabilistic index model. Indeed, since WO is related 

to PI via 𝑊𝑂 =
𝑃𝐼

1−𝑃𝐼
, the natural link function is the logit:  

  𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 ≽ 𝑌∗|𝑋, 𝑋∗)) = 𝑍𝑇𝛽. 

Since 𝑙𝑜𝑔 (
𝑃(𝑌≽𝑌∗|𝑋,𝑋∗)

1−𝑃(𝑌≽𝑌∗|𝑋,𝑋∗)
) = 𝑙𝑜𝑔(𝑊𝑂) = 𝑍𝑇𝛽, we can obtain 

  𝑊𝑂 = 𝑒𝑥𝑝(𝑍𝑇𝛽),        (18a) 

  𝑊𝑂̂ = 𝑒𝑥𝑝(𝑍𝑇𝛽̂).        (18b) 

4.4  Example 

As an example, consider a clinical study with a time-to-event outcome as the primary endpoint. 

Let X = 1 denote the Treatment group and X = 0 denote the Control group. For illustration, we 



assume that the event time Y follows an exponential distribution with parameter λ = 0.0693 in the 

Treatment group and λ = 0.1155 in the Control group. Therefore, theoretically, the hazards are 

proportional with hazard ratio (HR) = 0.6 (win ratio = 1.67) and win odds = 1.57. We randomly 

generate 1000 samples and obtain median win odds = 1.57 and 95% percentile interval (1.25, 1.98). 

 By applying the probabilistic index model with the logit link function, we have 𝑍𝑖𝑗 = 𝑋𝑖 −

 𝑋𝑗 = 1 to compare the Treatment group against the Control group: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑌𝑖 ≽ 𝑌𝑗|𝑋𝑖 = 1, 𝑋𝑗 = 0)) = (𝑋𝑖 −  𝑋𝑗)𝛽 = 𝑍𝑖𝑗𝛽 = 𝛽 , 

Therefore, WO = exp(β). From the 1000 samples, we get the median 𝛽̂ = 0.452 and the 95% 

percentile interval = (0.221, 0.681). Hence, the median 𝑊𝑂̂ = exp(0.452) = 1.57 and the 95% 

percentile interval = (1.25, 1.98). 

4.5  Application to CHARM studies  

The CHARM trial was a randomized, double-blind, controlled trial comparing candesartan with 

placebo in patients with chronic heart failure (Pfeffer et al., 2003). The primary endpoint was 

cardiovascular death or hospitalizations due to chronic heart failure. For illustration, we use the R 

package pim to explore regression analysis of the win odds in the CHARM data. Since the current 

pim package (Meys et al., 2020) considers only one single continuous or ordinal outcome, we 

analyze only the 1-year survival outcome, and we assume that patients who were censored were 

alive at the end of Year 1.  

 From (3) through (6b), we obtain 𝑊𝑂̂ = 1.046 and 𝜎̂𝑙𝑜𝑔(𝑊𝑂)
2 = 0.000126 (or 𝜎̂log (𝑊𝑂)= 

0.01122), and the 95% confidence interval for WO is (1.023, 1.069). The probabilistic index 

models with the treatment group as a single covariate give almost the same result:  𝛽̂ = 0.04499, 

𝑊𝑂̂ = exp(𝛽̂) = 1.046 and the standard error 𝑆𝐸𝛽̂ = 𝜎̂log (𝑊𝑂)= 0.01119. 



For illustration, in a multivariate regression analysis using the probabilistic index model 

with the logit link function, we consider the first few most significant covariates reported in Pocock 

et al. (2006): age (per 10 years over age 60 years), diabetes status at baseline, and prior 

hospitalization. Table 1 shows the parameter estimates 𝛽̂ and their standard errors (i.e., 𝑆𝐸𝛽̂). 

Table 2 shows the win odds and its 95% confidence interval by 𝑊𝑂̂ = exp(𝛽̂) and (exp(𝛽̂ −

𝑍1−𝛼/2𝑆𝐸𝛽̂), exp(𝛽̂ + 𝑍1−𝛼/2𝑆𝐸𝛽̂)), where α = 0.05. 

5.  Discussion 

Win statistics (win ratio, net benefit and win odds) have been increasingly used as a 

clinically meaningful measure to quantify treatment benefit in medical research because they 

consider more important outcomes first in pairwise comparisons. They compare each subject in 

the Treatment arm with every subject in the Control arm, starting with the most important outcome 

and evaluating lower-priority outcomes if and only if higher-priority outcomes cannot determine 

a win. Thus, lower-priority outcomes do not “mask” more important outcomes when they occur 

earlier. The win statistics have been used in the design and analysis of clinical trials (e.g., 

NCT04001504, NCT04847557 and NCT04510493 as examples of Phase III studies, registered in 

ClinicalTrials.gov) and in supporting drug approval by regulatory authorities (e.g., in 2019 the 

FDA approved tafamidis for treatment of cardiomyopathy on the basis of the ATTR-ACT trial 

with the win ratio as the primary analysis). The stratified win ratio (Dong et al., 2018) has also 

been applied to Phase III and Phase IV clinical trials such as the EMPULSE study of the SGLT2 

inhibitor empagliflozin in patients hospitalized for acute heart failure (Voors et al., 2022) and the 

ACTION study of therapeutic versus prophylactic anticoagulation for patients admitted to hospital 

with COVID-19 and elevated D-dimer concentration (Lopes et al., 2021). 



The win statistics depend on follow-up time especially when a time-to-event variable is 

used. To demonstrate long-term benefit from a more important but less frequent variable by the 

win statistics, one may need to follow patients longer (Dong et al, 2020b). In addition, censoring 

could cause bias in win statistics (e.g., Oakes, 2016; Mao, 2019). To correct censoring bias, Dong 

et al. (2020c and 2021) developed the IPCW (inverse-probability-of-censoring weighting) adjusted 

win statistics in the presence of independent or dependent censoring. On the other hand, win ratio, 

win odds and net benefit have typically been used separately. The three win statistics are based on 

the same win proportions, and they test the same null hypothesis of equal win probabilities in the 

two groups. Therefore, in general, win ratio, win odds and net benefit complement one another for 

assessing the magnitude and strength of the treatment effect. We will report this work separately. 

In this article, we focus on the win odds, which differs from the win ratio by including ties 

in accounting for results from all pairwise comparisons. We also summarize the calculations and 

variance estimators for the win odds. Although inferential methods (U-statistics, permutation and 

bootstrap, rank-based) for the win statistics have been suggested, one main disadvantage is the 

inability to take into account covariates other than in stratified analyses. Adjustment of win 

statistics for important prognostic factors would yield more appropriate estimates of treatment 

effect, and thus aid interpretation of the results. This is the first article that explores regression 

analysis for the win odds using the probabilistic index model with a logit link function. We 

illustrate this approach using the CHARM dataset. Also, the identity link function can be used in 

probabilistic index models to indirectly estimate the net benefit. 

Win statistics and generalized pairwise comparisons are particularly appealing in the 

setting of multiple prioritized outcomes because they consider the more important endpoints first, 

while also assessing the overall effect across multiple outcomes. The current probabilistic index 



models (Thas et al., 2012 and Myers et al. 2020) are limited to a single continuous or ordinal 

outcome. To illustrate regression with multiple covariates for the win odds, we applied these 

models to the 1-year survival data in the CHARM studies and assumed that the patients who were 

censored were alive at the end of Year 1. Further research should extend the probabilistic index 

models for win statistics to multiple outcomes and the presence of censoring for time-to-event 

endpoints.  Alternative regression models, such as the proportional win-fractions regression model 

(Mao and Wang, 2021) for composite fatal and non-fatal outcomes, can be used to account for 

confounding covariates and handle censoring. 
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Table 1  Parameter estimate and inference from the probabilistic index model for the 1-year 

survival outcome in the CHARM trial 

Covariate Estimate (𝛽̂) Standard error (𝑆𝐸𝛽̂) Z value Prob(>|z|) 

Group (Treatment vs Control)   0.0450 0.0111  4.040 <0.001 

Age (per 10 years over age 60) -0.0494 0.0079 -6.272 <0.001 

Diabetes at baseline (Yes vs No)  -0.0513 0.0134 -3.830 <0.001 

Prior hospitalization (Yes vs No) -0.0536 0.0111 -4.805 <0.001 

 

 

 

Table 2  Win odds and 95% confidence interval for the 1-year survival outcome in the 

CHARM trial 

Covariate Win odds 95% confidence interval p-value 

Group (Treatment vs Control) 1.046 1.023, 1.069 <0.001 

Age (per 10 years over age 60) 0.952 0.937, 0.967 <0.001 

Diabetes at baseline (Yes vs No) 0.950 0.925, 0.975 <0.001 

Prior hospitalization (Yes vs No) 0.948 0.927, 0.969 <0.001 

 


