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Abstract

Diphtheria is a potentially fatal respiratory disease caused by toxigenic forms of the Gram- positive bacterium Corynebacterium 
diphtheriae. Despite the availability of treatments (antitoxin and antimicrobials) and effective vaccines, the disease still occurs 
sporadically in low- income countries and in higher income where use of diphtheria vaccine is inconsistent. Diphtheria was 
highly endemic in Vietnam in the 1990s; here, we aimed to provide some historical context to the circulation of erythromycin 
resistant organisms in Vietnam during this period. After recovering 54 C. diphtheriae isolated from clinical cases of diphtheria in 
Ho Chi Minh City between 1992 and 1998 we conducted whole genome sequencing and analysis. Our data outlined substantial 
genetic diversity among the isolates, illustrated by seven distinct Sequence Types (STs), but punctuated by the sustained circu-
lation of ST67 and ST209. With the exception of one isolate, all sequences contained the tox gene, which was classically located 
on a corynebacteriophage. All erythromycin resistant isolates, accounting for 13 % of organisms in this study, harboured a novel 
18 kb erm(X)- carrying plasmid, which exhibited limited sequence homology to previously described resistance plasmids in C. 
diphtheriae. Our study provides historic context for the circulation of antimicrobial resistant C. diphtheriae in Vietnam; these data 
provide a framework for the current trajectory in global antimicrobial resistance trends.

DATA SUMMARY
(1) All supplementary data (Table S1, Table S2, Fig. S1, S2, and S3, available in the online version of this article) have been 

deposited in FigShare. (https://figshare.com/articles/figure/Supplementary_Figures/14728200)
(2) All short reads used in this study were registered in the European Nucleotide Archive (ENA) under study accessions of 

PRJEB32654 (Accession numbers: ERR3331346- ERR3331399)
(3) The plasmid sequence was deposited in GenBank (Accession number: MZ348427)

We confirm that all supporting data, code, and protocols have been provided within the article or through supplementary data files.

INTRODUCTION
Diphtheria is a life- threatening upper respiratory disease caused by the Gram- positive organism Corynebacterium diphtheriae (C. 
diphtheriae). The organism infects the pharynx, tonsils, and nasal passage, causing a sore throat, low- grade fever, and an inflam-
matory pseudomembrane on the tonsils 2–3 days post- infection [1, 2]. The most common transmission route of C. diphtheriae is 
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via contact with an infected individual or droplets contaminated with the organism [1]. Asymptomatic carriage is common, but 
infants, the elderly, and the immuno- compromised are at particular risk of severe disease and death (case- fatality rate of >20 %) 
[2, 3]. Diphtheria toxoid vaccine was developed from the 1920s and introduced into Expanded Programme on Immunization 
(EPI) internationally in 1977 to reduce C. diphtheriae disease and community transmission. However, recent reports highlight 
that diphtheria remains endemic in several low- income settings. Outbreaks have been reported in India, Laos, Bangladesh and the 
Yemen and also in high- income settings regions with low immunisation coverage as seen in Norway [4–9]; in 2017 the estimated 
number of cases globally remained >16 000 [10–12].

Diphtheria toxin is the key virulence factor of C. diphtheriae and one of the most well- characterised bacterial toxins. The toxin 
triggers the characteristic disease features in the respiratory tract and also more severe symptoms including myocarditis, peripheral 
neuropathy, and acute renal injury [1, 13, 14]. The toxin is encoded by the tox gene and is carried on a beta- corynephage [1, 15]. 
Tox is regulated by the metallo- regulatory transcriptional regulator DtxR, which is repressor of tox, and is active when iron is 
not limited [16]. When secreted, the diphtheria exotoxin induces local tissue destruction and facilitates the formation of the 
pseudomembrane [1, 15]. Penicillin and erythromycin have long been the primary treatments for diphtheria, but recent reports 
describe an increase in resistance against these antimicrobials, potentially posing a problem for diphtheria treatment [17–20]. 
Several studies have descibed resistance mechanisms against antimicrobials used for the treatment of diphtheria [21–23]. Specifi-
cally, erythromycin resistance in C. diphtheriae is commonly encoded by the plasmid mediated erm(X) gene [24]. Erm(X) gene 
encodes an rRNA methyl transferase enzyme catalysing demethylation of adenine in the 23S rRNA gene, which prevents effective 
binding of the macrolide to the target rRNA [24].

Diphtheria is endemic in Vietnam, although disease incidence declined rapidly after the introduction of the vaccine into the EPI in 
the late 1980s [25, 26]. The incidence of diphtheria increased in Vietnam in the mid- 1990s and there were several outbreaks, with 
some isolates exhibiting resistant to erythromycin [25, 27, 28]. There are little available data from this period, and no molecular 
characterisation of bacterial isolates from this period. Here, through whole genome sequencing (WGS) and analysis we aimed 
to investigate the population structure, diversity, and antimicrobial resistance gene composition in C. diphtheriae isolated from 
Vietnamese patients with symptomatic disease in the 1990s.

METHODS
Bacterial isolates
We revived 54 C. diphtheriae isolated from the nose or throat of children with a clinical diagnosis of respiratory diphtheria 
attending the Hospital for Tropical Diseases in Ho Chi Minh City between 1992 and 1998. Some of them were part of 
two studies reported in Clinical Infectious Diseases [29, 30]. Briefly, at the time of isolation, throat and nasal swabs from 
clinical cases were cultured on Hoyles tellurite agar and sheep blood agar and incubated at 37 °C for 24–48 h. Single colonies 
suspected to be C. diphtheriae were identified morphologically using methylene blue and then confirmed by the cysteinase 
and pyrazinamidase test and by API Coryne (bioMérieux, France) [31]. Toxin production was confirmed by using a standard 
Elek test. Organisms were stored at −20 °C in protect bottles with the BHI+glycerol 10 % medium until their attempted revival 
and recovered on sheep blood agar and Brain Heart Infusion broth supplemented with yeast extract (0.4 %) and Tween 80 
(0.2 %) (BHI/YE/Tween).

Impact Statement

Infection caused by Corynebacterium diphtheriae has recently become a heavy burden on human health globally. Despite develop-
ment and global introduction of diphtheria toxoid vaccine, diphtheria, the illness caused by Corynebacterium diphtheriae remains 
endemic in many low- income settings where there are issues with vaccine coverage. The most well- described virulence factor 
of C. diphtheriae is the toxin, which is encoded by the tox gene encoded on a beta- corynephage. Diphtheria antitoxin and anti-
microbials (such as penicillin and erythromycin) are considered the most effective therapies for the treatment of diphtheria. 
However, there has been an increase in resistance to these antimicrobials that may limit treatment options. The introduction 
of the diphtheria vaccine was successful in Vietnam in the 1980s; however, there were several diphtheria outbreaks a decade 
later, some of which were characterised by a high proportion of erythromycin resistant isolates. In this study, we used whole 
genome sequencing to investigate the genome structure and diversity of the C. diphtheriae population from this period. We 
identified seven different sequence types (ST) among; the most common was ST67, which has been recently found in outbreaks 
in the central highlands of Vietnam. The toxigenic and virulence components of these isolates were also characterised. Specifi-
cally, we identified a novel plasmid carrying the erm(X) gene and conferring erythromycin resistance. Our results highlight the 
importance of historical collections in providing greater context during contemporary outbreaks and the role of drug resistance.
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Antimicrobial susceptibility testing
The Minimum Inhibitory Concentrations (MICs) of the organisms were performed by the agar plate dilution method [32]. Single 
colonies were sub- cultured into Brain Heart Infusion broth supplemented with yeast extract (0.4 %) and Tween 80 (0.2 %) (BHI/
YE/Tween) before incubation at 37 °C for 18 h. A multipoint inoculator (Mast Laboratories Ltd, Merseyside, UK) was used to apply 
300 µl inoculum (105 to 106 c.f.u. ml−1) of each organism to the surface of Mueller Hinton agar (Unipath Ltd, Basingstoke, UK) 
containing saponin- lysed sheep blood (5 %) and serial two- fold dilutions of Erythromycin, Tetracycline, Ceftriaxone, Rifampicin, 
Ampicillin and Chloramphenicol. All antimicrobials were sourced from Sigma Aldrich, except ceftriaxone, which was from 
Rocephin (Rocephin, Roche, Hong Kong, China). Toxigenic C. diphtheriae var gravis NCTC10356, non- toxigenic C. diphtheriae 
var gravis NCTC11397, and Staphylococcus aureus ATCC25923 were included as controls. Plates were incubated at 37 °C for 18 h. 
Antimicrobial susceptibility was determined following guideline for infrequently isolated or fastidious bacteria [33].

Genome sequencing
Genomic DNA from all isolates was extracted by using the Wizard Genomic DNA Extraction Kit (Promega, USA) [34] and 
quality assessed using a Qubit dsDNA system (Invitrogen) [35]. The genomic DNA was diluted and 1 ng from each isolate was 
used for library preparation in accordance with the guidelines of the manufacturer (New England Biolab and NexteraXT) before 
being subjected to WGS on an Illumina Miseq System [36]. FastQC was used for assessing the quality of reads and passed reads 
were progressed for mapping and assemblies [37]. The FASTQ generated were submitted to the ENA (https://www.ebi.ac.uk/ena) 
under the project number of PRJEB32654, and accession numbers from ERR3331346 to ERR3331399 (Table S1).

Genome analysis
All reads passing QC checking were mapped to the NCTC13129 reference genome (Accession no. BX248353.1) using Bowtie2 
v2.2.9 and SAMTools v1.3.1. All single nucleotide polymorphisms (SNPs) with the Phred quality score of ≥30 of each isolate 
were determined and called [38, 39]. A total of 66 761 conserved SNPs were identified after removing those located in the 
recombinogenic regions and those arising in <5 % of all isolates [40, 41]. The pseudogenome alignment was generated and then 
subjected to statistical scanning for potential recombinations using Gubbins. These regions were excluded from further analysis 
[42]. Variable sites that had minimum read depth ≤5 and a genome coverage ≤50 % were also excluded.

A phylogeny of 54 C. diphtheriae genome sequences was reconstructed from core SNPs determined from mapping using Rand-
omized Accelerated Maximum Likelihood (RAxML) [43]. RAxML was run five times for SNP allele table by using the generalized 
time- reversible model with Γ distribution (GTR+Γ) to model site- specific rate variation with one hundred bootstrap pseudo- 
replicate analyses to assess the maximum likelihood (ML) tree supports.

Known alleles associated with antimicrobial resistance (AMR) and virulence genes were directly detected from read sets 
mapping approach based on SRST2 [26]. The ARG- Annot database was used for the detection of AMR genes. MLST and 
virulence genes were determined using the C. diphtheriae BIGSdb database at Institute Pasteur (http://bigsdb.web.pasteur. 
fr) and Virulence Factors Database (VFDB) for Corynebacterium. Additionally, fastq reads were further de novo assembled 
using SPAdes v3.14.1 to generate contigs. Contaminated sequences were removed according to the size of contigs compared 
that of the reference genome. Genomes with evidence of contamination were excluded from the study, according to the 
following criteria: total assembly length >2.5–3 Mb, with evidence of >1 % read contamination as determined by MetaPhlAn 
and applied for other MDR bacteria, or <50 % reads mapping to the NCTC13129 reference chromosome (accession number: 
BX248353.1); or a ratio of heterozygous/ homozygous single nucleotide polymorphism (SNP) calls compared to the reference 
chromosome exceeding 20 % [44] . The presence of AMR carrying plasmid was resolved and visualized using assembled 
contigs in Bandage v.0.8.1 [45].

Plasmids
Isolates carrying the erm(X) gene were cultured on sheep blood agar supplemented with Erythromycin (2 mg l−1) and plasmid 
DNA was extracted using the Plasmid Miniprep Kit (QIAprep Kit). Plasmid DNAs were subjected to library preparation prior 
to sequencing on an Illumina Miseq system. All raw reads were de novo assembled and visualized in Bandage to determine and 
resolve the erm(X) carrying plasmid. The circularised plasmid was compared with the reference plasmid pNG2 (Acession no. 
AF492560.1) using Blast Ring Image Generator (BRIG) v0.95 [46]. The plasmid sequences were deposited in Genbank (Accession 
number: MZ348427).

RESULTS
Genomic diversity of C. diphtheriae
Of the 54 recovered C. diphtheriae isolated from 1992 to 1998 from patients with diphtheria, the overwhelming majority 
(53/54; 98.15 %) were confirmed to be toxigenic (Table S1). Mapping reads from the WGS of 54 isolates to the C. diphtheriae 

https://www.ebi.ac.uk/ena
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mitis NCTC13129 reference genome determined an average coverage of 90.7 %, an average mapping of 86.19 %, and an 
average read depth coverage of 59×. A phylogenetic tree was reconstructed from 66 761 core SNPs and identified seven 
independent lineages. Multilocus sequence typing (MLST) analysis delineated seven independent STs; of which ST67 was the 
most common (23/54; 42.6 %), followed by ST258 (11/54; 20.4 %), ST209 (8/54; 14.8 %), ST455 (6/54, 11.1 %), ST151 (3/54, 
5.5 %), ST161 (2/54, 3.7 %) and ST10 (1/54, 1.8 %) (Fig. 1).

We aligned supplementary metadata with the phylogeny, which included year of sampling and antimicrobial suscepti-
bility against to erythromycin, tetracycline, ceftriaxone, and rifampicin. All isolates were susceptible to rifampicin 
(MIC ≤0.016 mg l−1). Almost all isolates were susceptible to ceftriaxone (MIC ≤1.0 mg l−1), with 20 % (11/54) exhibiting 
intermediate resistance (MIC=2 mg l−1). Notably, 13 % (7/54) of isolates were resistant to erythromycin, the traditional second 
line antimicrobial for diphtheria treatment. The proportion of isolates that were resistant to tetracycline, an alternative 
second line antimicrobial, was 18.5 % (10/54). The sequences were screened for genes encoding resistance to antimicrobials; 
16.7 % (9/54) of organisms carried erm(X), conferring resistance to erythromycin (Fig. 1). In addition, half of the sequenced 
isolates possessed the sul1 gene, encoding sulphonamide resistance, and 16.7 % (9/54) of sequences carried the cmr gene, 
encoding resistance to chloramphenicol, correlating with an MIC ≥2 mg l−1 against chloramphenicol. The MIC values against 
ampicillin ranged from 0.06mg l−1 to 1 mg l−1.

Virulence factors of C. diphtheriae
Three distinct pili structures have been described in C. diphtheriae [47, 48]. These structures are encoded by three different 
gene clusters and facilitate the attachment of the organism to host cells. Analysis of the three pilus encoding regions in our  
C. diphtheriae genomes collection found that all organisms lacked the SpaH- type pilus (Fig. S1); however, most isolates (96.3 %; 
52/54) possessed the SpaA- type pilus. Additionally, the SpaD- type pilus was conserved in all the ST455, ST10, and ST161 isolates 
only. The SapD surface- anchored pilus proteins were present in all isolates, whereas only six isolates of ST455 contained SapA.

Fig. 1. Phylogeny, antimicrobial resistance phenotype and genotype of the C. diphtheriae isolates. Maximum likelihood phylogeny of 54 C. diphtheriae 
was reconstructed from 66 761 core SNPs. The corresponding columns were metadata: Sequence Type (STs), the year of isolation (Year), antimicrobial 
susceptible profile (blue: resistant; yellow: intermediate; grey: susceptible) using agar plate dilution method for Erythromycin (ERY), Tetracycline (TET), 
Ceftriaxone (CRO), Rifampicin (RIF). The heat map was the antimicrobial resistant genes (pink: gene presence; green: gene absence) and the last 
columns was a determined plasmid carrying erm(X) gene encoding for erythromycin resistance (pink: plasmid presence; green: plasmid absence). The 
stars show bootstrap support values 100 % on internal nodes. The shading colour was noted for the most common sequence type of ST67.
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Other gene clusters related to iron uptake was present in all isolates, with the exception of ABC- type haem transporters 
which were lacking in the ST161, ST151 and ST258 organisms (Fig. 2). In concordance with the phenotypic data, we found 
almost all (98.1 %; 53/54) organisms possessed tox (associated with the corynebacteriophage). Notably, the non- toxigenic 
isolate missing the tox gene was also lacking the entire prophage (Fig. S2). Despite the prophage being comparatively well 
conserved in the ST67 and ST258 isolates, the genes encoding the tail proteins and prophage anti- repressor were absent. Other 
organisms in the collection were found to be lacking some regions encoding exported proteins and various transcriptional 
regulators (Table S2).

A novel plasmid carrying erm(X) gene
To better characterise the plasmid carrying the erm(X) gene, we performed a plasmid DNA extraction and sequenced the 
raw plasmid DNA. Reads were de novo assembled and generated three large contigs with a coverage of 248×, 235×, and 480×, 
respectively (Fig. S3). Comparing the contigs from the plasmid with 480× coverage with sequences available on GenBank, we 
identified that these contigs encoded an 842 bp mobile element. Using Bandage to create an interactive visualization of the 
assembly graph from the de novo assembly, we resolved these contigs and assembled a novel circular plasmid of 18 651 kb, 
which we named pNGVN (Fig. 3b). A pairwise comparison between pNGVN and previously described plasmid pNG2 
(AF_492560.1) revealed that the pNGVN had 65 % sequence coverage and an average of identity of 88.78 % (85.44–98.23 %) 
to pNG2 (Fig. 3a). We described a total of 23 putative coding sequences in pNGVN; of which 10/23 coding sequences were 
functionally annotated. Plasmid pNGVN contained several functional genes that were comparable to those of pNG2 including 
repA, traA, parA, and parB. These genes are a replicase protein, a conjugal transfer protein, and type Ib plasmid partitioning 
proteins, respectively. Additionally, the erm(X) gene on pNGVN was 98 % identical to that on pNG2 and located next to 
transposable elements that were previously identified in C. striatum and C. resistans. In the pNG2 plasmid sequence, the 
erm(X) gene had an an erm(LP) located upstream. This gene was annotated as the 23S rRNA adenine N- 6- methyltransferase 
leader peptide. We also identified an identical sequence to the erm(LP) gene in pNGVN; however, the output from the Prokka 
tools for our sequence was unable to annotate this gene. Six out of nine organisms carrying erm(X) possessed pNGVN 

Fig. 2. Virulence factors in the 54 C. diphtheriae isolates. SpaD and SpaA- type pili gene clusters encoding for pili proteins that were employed to target 
to human pharyngeal cells. STs: sequence types of isolates. Colours: gene presence; white: gene absence.
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Fig. 3. The genetic structure of erm(X)- carrying plasmids in C. diphtheriae. a. Pairwise comparison of erm(X)- carrying plasmids: described plasmid 
(pNG2, AF_492560.1, 15 kb) and our novel plasmid (pNGVN, 18.651 kb) detected in six out of nine C. diphtheriae strains and a larger plasmid (pNG5, 
19–24 kb) possessed by three other isolates. b. The genetic structure of the erm(X)- carrying plasmid pNGVN. blastn comparison between pNGVN 
(central ring) identified from an erythromycin resistant ST67 outbreak isolate and pNG2 plasmid from GenBank (Accession number: AF_492560.1). The 
outermost ring indicates the gene annotations of the pNGVN plasmid. erm(X) gene is highlighted in green colour.
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like plasmids. The additional three isolates possessed a larger plasmid (pNG5, 19–24 kb) with a pNGVN backbone with an 
additional cassette gene (~6 kb) carrying the methylase subunit, YeeA and a further nine hypothetical proteins (Fig. 3a).

DISCUSSION
Here, we sequenced whole genome of 54 C. diphtheriae isolates collected from patients admitted to a major tertiary hospital 
in the south of Vietnam in the 1990s. Our results outlined substantial genetic diversity among the Vietnamese C. diphtheriae 
population, with seven different STs identified. The most common STs (ST67) and the ST209 have also been identified in 
diphtheria outbreaks in the western and central highlands of Vietnam recently, implying the sustained circulation of these STs 
across the country [28]. ST67 was the most common genotype associated with diphtheria in an observational studies from 
San Lazaro Hospital in the Philippines and in Europe [49, 50], whereas ST258 and ST209 were both reported in Thailand in 
2012 [51]. Estimating within- group SNP variation for different STs in our study showed SNP numbers varied substantially 
within these STs; the average of SNP difference in ST67 was 65 (range: 51- 83 SNPs), 39 in ST151 (range: 32- 49 SNPs), 32 
in ST258 (range: 29- 36 SNPs) and 20 in ST455 (range: 17- 26 SNPs). There are different thresholds for genetic associations 
suggesting whether organisms originated from outbreaks. The threshold for a recent diphtheria outbreak in the US was 
11.6 SNPs (range: 0- 24 SNPs) and 2–12 SNPs has been suggested for other MDR bacteria [52–55]. The diverse nature of the 
organisms within this study suggest that these organisms were indicative of endemic circulation rather than an outbreak.

Almost all C. diphtheriae isolates in this were susceptible to rifampicin and ceftriaxone (some organisms higher MICs at 
2 mg l−1), whilst 13 and 18.5 % of isolates were resistant to erythromycin and tetracycline, respectively. The organisms described 
generally exhibited lower MIC (0.06 mg l−1 ≤MIC ≤1 mg l−1) against chloramphenicol than those described by Maple et al. 
(all at MIC at 1 mg l−1) [56]. Notably, despite these organisms being isolated in the 1990s, the prevalence of erythromycin 
resistance was higher than the reports from Indonesia and Brazil (5.3 %, 4.2 %, respectively). Alternatively, the observed 
proportion of tetracycline resistance was higher than in the aforementioned study in Brazil (12.8 %), but substantially lower 
than that described in Indonesia (84.2 %) [17, 18]. Screening for AMR genes identified a variety of genes conferring AMR 
phenotypes. All isolates were susceptible to penicillin; therefore, we found no pbp2m gene or presence of pLRPD- like plasmid 
in this collection. Although some organisms had higher MICs against ceftriaxone (MIC=2 mg l−1), we did not detect any 
genes/chromosomal mutations associated with this phenotype. A principal observation was the identification of the erm(X) 
gene, encoding erythromycin resistance located on a novel 18 651 kb plasmid (primarily found in the CD54 strain). The 
plasmid exhibited 65 % DNA sequence identity to plasmid pNG2 (AF_492560.1, 15 kb), which was described by Tauch and 
colleagues in 2003. In total we identified 23 coding sequences from the novel plasmid, 47.8 % of these had been functionally 
annotated, necessitating some further work to determine the function of the identified sequences.

We additionally found that almost all isolates (98 %) were toxigenic, which was associated with the tox gene located on the 
classical beta corynephage. However, we did identify some signs of genetic degradation around the tox gene, with genes 
encoding bacteriophage tail proteins, prophage anti- repressor, exported and transcriptional proteins were missing. To our 
knowledge this is the first time such degradation has been observed around the tox gene, but genetic variation with the 
corynephage sequence is relatively common [57–59]. Additionally, most isolates possessed the SpaA pilus. The presence of 
the SpaA type pili had been determined to be essential for corynebacterial adherence to the host cells and known as pilus 
mediated adherence. The SpaD- type pili was identified in only nine isolates, while SpaH was not detected [60]. This has also 
been observed in other C. diphtheriae and is therefore not unique to these isolates from Vietnam. These data suggest some 
redundancy in the pili required to attach to host cells and induce infection of the pathogen. However, we did not perform 
phenotypic characterisation and the loss (or rearrangement) of some genetic material may be an artefact of long term storage 
after the original isolation, which is a potential limitation.

Diphtheria has been largely controlled by the sustained use of the vaccine since the 1980s; however, in locations where 
vaccine uptake is less complete the organism still has the potential to trigger outbreaks. This scenario is more common in 
low- middle income countries, such has Vietnam, where the cases of diphtheria arise sporadically for sustained periods and 
ongoing surveillance is required. Here, using a historic collection of organisms and data we have investigated a collection of 
C. diphtheriae isolated in Vietnam in the 1990s, when erythromycin resistance was an emerging problem. Our data provide 
some additional context to C. diphtheriae in Vietnam and we can show that identical STs (67 and 209) have remained in 
circulation for >30 years and are capable of seeding new outbreaks [28]. Our results emphasize that historic collections of 
organisms improve the framework for ongoing surveillance for diseases that have not yet been eradicated and provide better 
context for the current trajectory in global antimicrobial resistance trends.
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