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Abstract

The isolation of Streptococcus pneumoniae serotypes in systemic tissues of patients with invasive disease versus the naso-
pharynx of healthy individuals with asymptomatic carriage varies widely. Some serotypes are hyper-invasive, particularly sero-
type 1, but the underlying genetics remain poorly understood due to the rarity of carriage isolates, reducing the power of
comparison with invasive isolates. Here, we use a well-controlled genome-wide association study to search for genetic vari-
ation associated with invasiveness of serotype 1 pneumococci from a serotype 1 endemic setting in Africa. We found no con-
sensus evidence that certain genomic variation is overrepresented among isolates from patients with invasive disease than
asymptomatic carriage. Overall, the genomic variation explained negligible phenotypic variability, suggesting a minimal
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effect on the disease status. Furthermore, changes in lineage distribution were seen with lineages replacing each other over
time, highlighting the importance of continued pathogen surveillance. Our findings suggest that the hyper-invasiveness is an
intrinsic property of the serotype 1 strains, not specific for a “disease-associated” subpopulation disproportionately harbor-
ing unique genomic variation.

Key words: Streptococcus pneumoniae, genome-wide association study, bacterial genomics, genomic epidemiology,
pathogenicity, invasiveness.

Introduction
Streptococcus pneumoniae, also known as the pneumo-
coccus, is an opportunistic human pathogen that asympto-
matically colonizes the respiratory tract but sometimes
causes life-threatening diseases, including pneumonia,
bacteremia, and meningitis (Henriques-Normark and
Tuomanen 2013). Despite the widespread use of serotype-
specific capsule-based pneumococcal conjugate vaccines,
the pneumococcus remains a significant cause of life-
threatening diseases (Wahl et al. 2018). These diseases ac-
count for .320,000 deaths globally each year in children
,5 years old, and two-thirds occur in sub-Saharan Africa
with a disproportionate representation of the hypervirulent
serotype 1 strains (Johnson et al. 2010). The serotypes dis-
covered to date (≈100) (Ganaie et al. 2020) vary substan-
tially in how they evolve (Chewapreecha, Harris, et al.
2014), asymptomatically colonize the nasopharynx
(Abdullahi et al. 2012), and cause invasive diseases in hu-
mans (Brueggemann et al. 2003; Balsells et al. 2018).
Althoughmost serotypes are proficient colonizers with mo-
dest invasive potential, some serotypes, notably serotype 1,
are hyper-invasive as indicated by high disease-to-carriage
odds ratios (Brueggemann et al. 2003) and progression
rates (Løchen et al. 2021). Whereas nasopharyngeal car-
riage surveys typically show carriage rates of,1% for sero-
type 1 strains (Ebruke et al. 2015; Usuf et al. 2015; Usuf
et al. 2019),.20%of patients with invasive pneumococcal
diseases, in endemic sub-Saharan African settings, are due
to serotype 1 (Johnson et al. 2010; Everett et al. 2012; du
Plessis et al. 2016), often associated with lethal meningitis
outbreaks (Leimkugel et al. 2005; Antonio et al. 2008;
Mehiri-Zghal et al. 2010; Kwambana-Adams et al. 2016;
Franklin et al. 2021).

Considering the high pneumococcal nasopharyngeal
carriage rates in sub-Saharan Africa (Hill et al. 2006;
Ebruke et al. 2015; Usuf et al. 2019; Swarthout et al.

2020), the rarity of serotype 1 in the nasopharyngeal niche
is puzzling given its frequency in disease (Ritchie et al.
2012). This infrequent carriage but high disease burden
due to serotype 1 pneumococci seems to contradict the
conventional assumption that carriage is necessary to de-
velop invasive pneumococcal diseases (Bogaert et al.
2004; Simell et al. 2012). The basis for the hyper-
invasiveness of serotype 1 pneumococci, reflecting rare
and short carriage but high abundance in disease, remains
poorly understood (Brueggemann et al. 2003; Abdullahi
et al. 2012; Usuf et al. 2015). Whether the serotype 1 iso-
lates sampled from patients with invasive diseases re-
present a unique subpopulation genetically distinct from
those sampled in the nasopharyngeal niche is unknown,
due to the rare isolation in asymptomatic individuals. To
date, the majority of studies have focused on comparing
serotype 1 clones with other serotypes (Bricio-Moreno
et al. 2017; Jacques et al. 2020). Direct population-level
comparison of serotype 1 isolates from invasive disease
and asymptomatic carriage are urgently needed to provide
insights regarding the pathogenicity of this hypervirulent
serotype. However, the scarcity of serotype 1 carriage iso-
lates makes the genetic comparison with the readily avail-
able disease-associated strains challenging.

The application of genome-wide association studies
(GWAS) to identify novel genetic variants linked with bac-
terial phenotypes has increased over the past decade
(Read and Massey 2014; Power et al. 2016). This agnostic
approach does not require prior hypotheses about specific
candidate loci; therefore, it is unbiased at detecting causal
genetic variation even for incompletely studied pheno-
types. Recent advances in whole-genome sequencing tech-
nologies and associated cost reductions have increased the
applicability of GWAS. In parallel, advances in GWAS, such
as the development of linear mixedmodels that robustly ac-
count for the clonal structure, have drastically improved

Significance
Streptococcus pneumoniae serotype 1 strains are a significant endemic cause of invasive diseases globally, especially in
sub-Saharan Africa but are rarely detected in asymptomatic carriers, raising questions regarding the genetic similarity
between these carriage and disease-associated isolates. We sequenced the first extensive collection of carriage and dis-
ease serotype 1 isolates and conducted a bacterial genome-wide association study to identify potential pathogenicity
loci in this hyper-invasive serotype. Our findings show no evidence for the presence of specific disease-associated strains
enriched with genomic variation promoting invasion.
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genotype–phenotype associations in bacterial pathogens
(Read andMassey 2014; Power et al. 2016). The application
of bacterial GWAS has identified associations between gen-
omic loci and phenotypes such as disease susceptibility
(Young et al. 2019); duration of asymptomatic carriage
(Lees, Croucher, et al. 2017); progression between tissues
(Lees, Kremer, et al. 2017; Chaguza et al. 2020); virulence
(Laabei et al. 2014); environmental and host adaptation
(Ma et al. 2020); nutrient synthesis (Sheppard et al.
2013); and antimicrobial resistance (Chewapreecha,
Marttinen, et al. 2014; Coll et al. 2018). Such application
of GWAS to study pathogen biology has the potential to re-
veal pathogenicity loci, which could inform disease preven-
tion and control measures.

Here we investigated genomic differences between
pneumococcal serotype 1 isolates sampled from the naso-
pharynx of asymptomatic carriers in the community and
clinical specimens collected from patients with invasive
pneumococcal disease at the hospital in The Gambia
(West Africa)—a setting with high pneumococcal carriage
and disease burden (Roca et al. 2011). Using well-
controlled GWAS approaches, we assessed whether the
rarely detected asymptomatic serotype 1 carriage isolates
disproportionately harbor unique genomic variation dis-
tinct from those causing diseases, which impedes their abil-
ity to cause invasive disease.

Results

Population Structure of Serotype 1 S. pneumoniae

We analyzed the genomes of 204 serotype 1 isolates; 65
isolates from individuals with asymptomatic carriage and
139 from patients with invasive disease, collected from
1996 to 2016 in The Gambia, West Africa (fig. 1a–e,
supplementary fig. 1 and data 1, Supplementary Material
online). The isolates associated with invasive disease were
sampled from different sources; blood (n= 94), cerebro-
spinal fluid (n= 15), lung aspirates (n= 27), pleural aspi-
rates (n= 2), and pus (n= 1). All the isolates were
assigned to the global pneumococcal sequence cluster 2
(GPSC2) lineage based on the global pneumococcal se-
quencing (GPS) nomenclature (Gladstone et al. 2019). In
terms of multilocus sequence typing (MLST)
(Brueggemann and Spratt 2003), GPSC2 corresponds to
the clonal complex 217 (CC217), predominantly found in
sub-Saharan Africa (Brueggemann and Spratt 2003).

We constructed a maximum-likelihood phylogeny of the
isolates using genomes with single nucleotide polymorph-
isms (SNPs) located in regions containing putative recom-
bination events excluded. The phylogeny revealed four
clades for the isolates included in this study designated as
clades I–IV (fig. 1f). Clades I and II were associated with
the fewest isolates, mainly belonging to ST217 and

ST303. Clade IV, which is predominantly associated with
ST3081, replaced ST618 strains in clade I in the mid-2000s
(Ebruke et al. 2015).We next assessed the genomic variation
in the capsule biosynthesis locus by generating a maximum-
likelihood phylogeny of the isolates. The isolateswere placed
into two sequence clusters of ST618-like and ST217 or
ST3081-like strains, corresponding to themain STs identified
in The Gambia. These clustering patterns were consistent
with those seen in thewhole-genome phylogeny of the sero-
type 1 isolates (supplementary fig. 2, Supplementary
Material online). To quantify the effect of the pneumococcal
genetic background on the disease status of the isolates, we
used a generalized linear regression model to investigate the
association between the clades and disease status. We de-
fined the disease status as isolation of the pneumococcus
from the nasopharynx of asymptomatic carriers or systemic
tissues of patients with invasive diseases. The distribution
of carriage and disease isolates varied across the phylogenet-
ic tree possibly highlighting the differences in the sampling
of isolates across clades or the invasiveness of the strains
across distinct genetic backgrounds. Such variability indi-
cated that controlling for the population structure was ne-
cessary for the GWAS to identify genetic variants
associated with disease status.

A Strong Correlation between Phylogeny and Disease
Status

We first assessed the correlation between phylogeny and
disease status using Pagel’s λ statistic (Pagel 1999) (fig.
2a–c). Three discrete character models (all rates different
[ARD], equal rates[ER], and symmetric [SYM] model) were
used to infer Pagel’s λ values which range from 0 to 1
with high values indicating the presence of a strong phylo-
genetic signal. We observed similar mean estimates for
Pagel’s λ after subsampling the phylogenetic tree to an
equal number of isolates for each disease status trait to
minimize sampling biases. The inferred Pagel’s λ values
for the ARD, ER, and SYM models were 0.98, 1.00, and
1.00, respectively, which suggested that the disease status
phenotype evolved rapidly and strongly correlated with the
phylogenetic tree (fig. 2d). Such correlated distribution of
the disease status with the phylogeny suggested a robust
phylogenetic signal, potentially suggesting that there may
be distinguishable clusters of isolates associated with dis-
ease status. This implied that specific genomic variation as-
sociated with these clusters of isolates may influence the
invasiveness of the pneumococcal serotype 1 isolates.

Multiple GWAS Methods to Link Genomic Variation
with Disease Status

We next performed a GWAS using a linear mixed model to
identify genetic determinants associated with the disease
status (disease or carriage) of the isolates shown in figure
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1f. To avoid inherent limitations of individual GWAS meth-
ods, we used two linear mixed models (FaST-LMM, Lippert
et al. 2011 and GEMMA, Zhou and Stephens 2012) and a
phylogenetic- or convergence-based approach, Scoary
(Brynildsrud et al. 2016) (fig. 3).We focused on genetic vari-
ation consistently showing adjusted P-value, 0.05 using
the three GWAS methods to triangulate potential hits,
whereas minimizing false-positive associations. To control
potential confounders in the GWAS, including population

structure explicitly as a random effect (GEMMA and
FaST-LMM) and implicitly using the phylogenetic tree
(Scoary), and sequence read length, and an individuals’
age as a fixed covariate. To control for potential batch ef-
fects due to different sequence read lengths, we trimmed
the longer reads to the same length and reassembled the
genomes before the GWAS. Because GWAS using SNPs,
genes, and unitigs have inherent limitations, we used all
the three variant types to guard against shortfalls pertinent
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FIG. 1.—Characteristics and genetic relatedness of the pneumococcal serotype 1 isolates used in the study. (a) Map of Africa showing the location of The
Gambia in West Africa where the study was conducted. (b) Disease status as defined based on the anatomical site of the human body showing where the
serotype 1 isolates used in the study were sampled from. (c) Bar plot showing the number of whole-genome sequenced serotype 1 isolates from the carriage
(n=65) and disease (n=139). (d) Distribution of the serotype 1 isolates from carriage and disease by the age of the individuals. (e) Line plot showing the
temporal distribution of the serotype 1 isolates from carriage and disease. (f ) A maximum-likelihood phylogenetic tree constructed after removing SNPs in
recombinogenic regions showing genetic relatedness of the carriage and disease serotype 1 isolates. The icons in (b) shown in the figure were created
with permission in BioRender.com (https://biorender.com/).
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to each data type. The quantile–quantile (QQ) plots to com-
pare the observed and expected P-values revealed no ap-
parent issues, reflecting adequate control for the
population structure of the isolates as a significant con-
founder in bacterial GWAS (supplementary fig. 3,
Supplementary Material online).

GWASbased on7,903 out of 15,411 SNPs,which passed
the filtering based on the minor allele frequency and ab-
sence, revealed no consensus statistically significant asso-
ciations with the disease status based on both FaST-LMM

and GEMMA (supplementary fig. 4, Supplementary
Material online). SNPs capture single nucleotide substitu-
tions based only on the information available in the refer-
ence genome but not insertions or deletions. To address
this, we performed an additional GWAS analysis using the
presence and absence patterns of unitig sequences identi-
fied in the entire dataset. Unlike SNPs, unitig sequences ef-
fectively capture allelic variants at different resolutions,
including SNPs, insertion, and deletions in coding and non-
coding regions, and genomic rearrangements.
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The internal nodes are drawn with a larger radius to distinguish them from the terminal nodes. The colors of the nodes represent the disease status of the
isolates as shown in the key next to the phylogenetic tree. (b) Phylogenetic tree of a subset of the serotype 1 isolates belonging to clade IV, which is predom-
inantly associatedwith ST3081, themost common serotype 1 ST in TheGambia,West Africa. (c) The zoomed-in phylogenetic tree of the isolates belonging to
clade I containing isolates belonging to ST618, which was the most dominant serotype 1 ST in The Gambia before its replacement by ST3081 in the early
2000s. (d) Estimated genetic signals associated with disease status of the serotype 1 isolates using the Pagel’s λ statistic. The transition rates between disease
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Complementary GWAS based on the final set of 14,634
unitig sequences (out of 32,188) revealed no consensus
statistically significant associations based on the three
GWAS approaches (fig. 4d–f, supplementary data 2,
Supplementary Material online). Specifically, FaST-LMM
and GEMMA found no statistically significant associations,
whereas Scoary identified 18 statistically significant associa-
tions. The unitig sequences identified by Scoary were anno-
tated by comparing them to pneumococcal reference
genomes. Of the annotated unitig sequences, ≈50%
were associated with transposase or insertion sequences,
whereas the rest were either in intergenic regions
(≈28%) or their annotations were not available (≈22%).
These insertion sequences appear to be widespread across

the genomes driven by duplication events. Interestingly, no
unitig sequences were statistically associated with the dis-
ease status mapped to the genomic sequences within the
capsule biosynthesis locus (fig. 4d–f, supplementary fig.
5, Supplementary Material online). The absence of support
by the other tools such as FaST-LMM and GEMMA sug-
gested that further validation of the findings is required
to confirm the impact of these genomic variations on the
invasiveness of serotype 1 pneumococci.

We then undertook a complementary GWAS to assess
whether the presence and absence of accessory genes, re-
gardless of any mutations within them, were associated
with the disease status (fig. 3). The pan-genome size of the
serotype 1 isolates comprised of 2,393 genes, of which 292
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FIG. 3.—Overview of the GWASs performed in this study using different methods and types of genetic variation. Summary of the number of pneumo-
coccal serotype 1 isolates sampled from healthy individuals with asymptomatic carriage and patients with invasive diseases. Three different types of genetic
variation, namely, presence/absence of accessory genes, SNPs, and unitigs, were used for the GWAS. Each type of genetic variation was analyzed using mul-
tiple approaches, two linear mixed model methods (FaST-LMM and GEMMA) and phylogenetic or evolutionary convergence-based method (Scoary).
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present between 5% and 95% of the isolates were used for
the GWAS. Consistent with the results from the GWAS using
SNPs and unitigs, we found no consensus statistically signifi-
cant associations using the three GWAS methods (fig. 4g–i,
supplementary data 2, Supplementary Material online).
However, although GEMMA and FaST-LMM identified no
statistically significant associations, Scoary identified four
genes statistically associated with disease status. Consistent
with the findings from Scoary using unitig sequences, most
of the statistically significant genes (≈75%) were associated
with transposase and insertion sequences (fig. 4a–f). These in-
sertion sequences were highly conserved genetically but with

paralogs distributed across the genomes. The statistically sig-
nificant associations identified by Scoary suggested that gen-
omic variation tagging these insertion sequences may
influence the invasiveness of pneumococcal serotype
1. However, validation of the associations identified by
Scoary is required as the results were inconsistentwith the lin-
ear mixed model GWAS approaches.

Minimal Contribution of Genomic Variation on Disease
Status

To quantify the amount of the variability in the phenotype,
that is, disease status, explained by genetics, we estimated
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(h) GEMMA, and (i) Scoary. The points in all the graphs are colored based on the odds ratio, as shown in the key on the right of each diagram. The blue line
represents the genome-wide statistical significance threshold based on the Bonferroni adjustment. The unitig sequences shown in g–i were mapped to a
complete reference genome for serotype 1 strain PNI0373 from The Gambia belonging to sequence type ST168 (GenBank accession: CP001845).
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the narrow-sense heritability. Because the distribution of
genomic variants varies by genomic background and may
be influenced by other factors, we also controlled for the
population structure and other covariates as done for the
GWAS. We found a narrow-sense heritability of �0, sug-
gesting a negligible influence of pneumococcal genomic
variation on the invasiveness of serotype 1 pneumococci.
Such a low estimate was consistent with the GWAS results
showing the absence of consensus genomic variation stat-
istically associated with disease status.

Discussion
Although the hyper-invasiveness and virulence of pneumo-
coccal serotype 1 strains is well known (Brueggemann et al.
2003), the genetic basis for their invasiveness remains
poorly understood. In this study, we compared serotype 1
isolates sampled from patients with invasive diseases and
asymptomatic carriage using GWAS approaches to deter-
mine whether the presence or absence of certain genomic
variations, within isolates of the same serotype, enhance or
impede invasiveness. Our findings show that serotype 1 iso-
lates sampled from healthy individuals and patients with in-
vasive diseases are not genetically distinct, suggesting that
strains sampled from patients with invasive diseases do not
represent a subpopulation containing unique genetic vari-
ation associated with greater invasiveness than their car-
riage counterparts, and vice versa. These findings support
the notion that the outer cell wall polysaccharide capsule,
the main pneumococcal virulence factor (Kadioglu et al.
2008), is the primary determinant of the hyper-invasiveness
of serotype 1 strains.

The absence of consensus on statistically significant as-
sociations between genomic variation in serotype 1 isolates
and disease status supports the opportunistic infection
model, whereby serotype 1 pneumococci isolated from car-
riage and disease are equally able to cause disease (Méric
et al. 2018). In these opportunistic pathogens, disease-
causing strains are distributed across multiple genetic back-
grounds rather than restricted to specific clones in the phyl-
ogeny. Our findings suggest that the hyper-invasiveness of
serotype 1 strains is an intrinsic property shared by all sero-
type 1 pneumococci regardless of whether they are found
in patients with diseases or asymptomatic carriage.
However, although we did not find consensus genomic
loci associated with invasion, there was a strong phylogen-
etic signal for disease status suggesting that some strains or
clades are highly correlated with the disease state. These
findings implied that strain or lineage effects may also be
an important determinant of whether colonization with
serotype 1 pneumococci evolves into disease. It remains
to be seen whether such strain differences are driven by
the capsule as the phylogeny of the capsule biosynthesis re-
gion revealed clusters of the ST618-like and ST217/

ST3081-like strains consistent with the whole-genome
phylogeny. Why serotype 1 is rare during carriage com-
pared with other serotypes remains an open question to
be addressed by further studies. However, due to the sus-
pected low levels of recombination of serotype 1 strains
(Chaguza et al. 2016), it is possible that these strains are in-
efficient colonizers as they cannot easily adapt to environ-
mental changes.

Although the three GWAS methods identified no con-
sensus genomic variants, Scoary identified statistically sig-
nificant associations. Whether these variants are
biologically plausible and not merely analysis artifacts re-
main to be determined. Because Scoary infers genotype–
phenotype associations based on phylogenetic conver-
gence of the genotype and phenotypes, it may have a high-
er sensitivity, especially for clonal populations, than the
classical GWAS approaches (Brynildsrud et al. 2016).
However, this may come with an increase in the false-
positive rate, as Scoary only implicitly controls for popula-
tion structure, but not for other covariates. Assuming the
statistically significant associations identified by Scoary are
not false-positives, certain genomic variation mostly asso-
ciated with IS elements is overrepresented in the carriage
than disease isolates, negatively impacting the invasiveness
of serotype 1 strains. This finding is consistent with previous
studies which showed the role of mobile genetic elements
on pathogenicity, virulence, and adaptation of other bac-
terial species, including Staphylococcus epidermidis
(IS256) (Both et al. 2021), Mycobacterium bovis (IS6110)
(Soto et al. 2004), Neisseria meningitidis (IS1301) (Uria
et al. 2008), Escherichia coli (IS3) (Aronson et al. 1989)
and Xanthobacter autotrophicus (IS1247) (van der Ploeg
et al. 1995). Potentially, as the insertion sequences repli-
cate and increase in numbers in a genome of the less inva-
sive strains, they may exert a fitness effect that makes the
strain less able to cause disease, confining them to a naso-
pharyngeal carriage lifestyle, that is, impeding invasion
but not necessarily enhancing the ability to colonize.
However, there could be a cyclical effect where the inser-
tion sequences are sometimes purged from the genome,
allowing the fitter strain to invade. Because the associa-
tions were not consensus, that is, inferred by a single
GWAS approach only, further studies are required to val-
idate or rule out the biological plausibility of these find-
ings. Nevertheless, our study demonstrates that the
findings from different GWAS tools are not always consist-
ent; therefore, it is crucial to select the most appropriate
GWAS methods for specific datasets, for example, based
on the clonality of the isolates, and to adjust for potential
confounders. Overall, we recommend using multiple
GWAS methods and report consensus genomic variation
identified by all or most of the tools, when there is no ob-
jective rationale for using a specific approach, as high-
lighted in this study.
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Our approach of sampling carriage serotype 1 isolates
from asymptomatic individuals in the communities, and dis-
ease isolates from patients, eliminated ambiguity when de-
fining the disease status of the isolates. By collecting the
carriage isolates from asymptomatic individuals and not pa-
tients, we minimized the chances of sampling serotype 1
isolates transitioning to causing invasive disease, likely en-
hancing the statistical power to detect genetic signals asso-
ciated with disease status. We also explicitly adjusted for
the individuals’ age, sampling time, and population struc-
ture as these variables are well-known confounders in
population-level epidemiological studies (Power et al.
2016). Because no GWASmethod is perfect, we performed
GWAS using multiple methods and forms of genetic vari-
ation to identify consensus genetic variation consistently
found by different approaches to circumvent each meth-
od’s inherent limitations and biases, thereby minimizing
false-positive hits. However, there are some limitations to
be taken into consideration. First, our dataset size may
not be seen as significant compared with datasets used in
previously reported bacterial GWAS studies (Li et al.
2019), but in the context of pneumococcal serotype 1, it re-
presents a unique and large dataset of carriage isolates to
date, which required extensive and costly nasopharyngeal
carriage surveys in a resource-limited setting to amass suf-
ficient samples due to the rarity of this serotype in asymp-
tomatic carriers. Future GWAS studies should conduct
power calculations to determine the required sample sizes
rather than using convenient samples as done in our study
to improve the power to detect potential statistically signifi-
cant differences in the GWAS. Second, not all the isolates
were sequenced using the same read length; therefore,
we cannot rule out potential batch effects in the GWAS
(Young et al. 2021) and other next-generation sequencing
datasets (Leigh et al. 2018). We trimmed the longer reads
(125 bp) to the same length (100 bp) and included read
length as a covariate in the analysis to account for such po-
tential batch effects. Third, although we corrected for the
variability in the time of isolation and age of the individuals,
we did not explicitly correct for the geographical area.
However, the effect of the variability in the geographical
area would be minimal as most of the individuals came
from the same communities. Fourth, we did not replicate
our GWAS using an external validation dataset because
there are no similar datasets of carriage and disease sero-
type 1 pneumococci. However, the availability of such data-
sets in the future will allow for studies to validate our
findings, including assessing differences between disparate
geographical settings.

By undertaking extensive carriage surveys and hospital
surveillance to amass a unique collection of pneumococcal
serotype 1 isolates, we have found no consensus evidence
of genomic variation distinguishing isolates associated with
asymptomatic carriage and invasive disease. These findings

suggest that serotype 1 strains are intrinsically hyper-
invasive and equally likely to cause disease; there are no
consistent loci more commonly associatedwith invasive dis-
eases than carriage, and vice versa. Our study represents
the first comprehensive comparative genomic analysis of
carriage and disease isolates to understand the impact of
genomic variation on the pathogenicity of serotype 1
strains. However, much remains to be done to validate
these findings using additional geographically diverse data-
sets and to experimentally assess whether the nonconsen-
sus statistically significant associations in the insertion
sequences identified by some GWAS approaches are not
merely artifacts. With the increasing availability of large
and well-sampled pneumococcal genomic datasets global-
ly, the application of GWAS and other computational
methods could unpick cryptic genotype–phenotype asso-
ciations not detected in this study, potentially unlocking no-
vel mechanisms of pathogenicity, adaptation, and
transmission.

Our study highlights the utility of genomic surveillance
and genotype–phenotype association studies to provide
novel, unbiased, hypothesis-free, and genome-wide in-
sights into the population-level pathogen traits, such as in-
vasiveness, which is intrinsically challenging to study
experimentally, to inform infection prevention and control
strategies.

Materials and Methods

Sample Characteristics and Preparation

We selected 204 pneumococcal serotype 1 isolates for
whole-genome sequencing in The Gambia, West Africa
(supplementary data 1, Supplementary Material online).
Of these isolates, 139 were sampled from the clinical speci-
mens of patients with invasive diseases between 1996 and
2016, whereas 65 were isolated from the nasopharynx of
asymptomatic individuals. The disease-associated isolates
were collected at theMedical Research Council (MRC) clinic
in Fajara and Basse, but some patients were referred from
other, primarily teaching, hospitals. Hence, the samples re-
present the greater Banjul area (Western Region) and Basse
(Upper River Region). The carriage isolates were recovered
from multiple studies between 2007 and 2016, with the
majority of the isolates sampled between 2007 and 2009
via different studies, including a large-scale carriage survey
of .12,000 people as described previously (Ebruke et al.
2015). Based on this survey, the prevalence of pneumococ-
cus among carriers, determined using latex agglutination,
was 71.78% in the pre-PCV7 period and 47.08% in the
post-PCV7 period (Ebruke et al. 2015). Genomic DNA
was extracted from fresh overnight cultures as described
previously (Roca et al. 2015). All isolates included in the
study were not associated with known pneumococcal
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serotype 1 outbreaks. The study protocols were approved
by the MRC/Gambia Government Joint Ethics committee.
We obtained informed consent from the participants or
their parents or legal guardians before enrollment in the
study.

Quality Control, Assembly, and Annotation

Whole-genome sequencing was done using Illumina se-
quencing platforms (Illumina, CA, USA) through the
Pneumococcal African Genomics (Cornick et al. 2015)
and GPS consortium projects (https://www.pneumogen.
net/gps/) (Gladstone et al. 2019). Quality control was
undertaken to assess abnormalities in the sequence data.
We included sequences with .60% reads mapping to S.
pneumoniae using Kraken (version 2.1.2) (Wood and
Salzberg 2014), .20× overall sequencing depth and
.60% mapping coverage against S. pneumoniae ATCC
700669 reference genome (GenBank accession:
NC_011900). We also excluded samples with .15% of
the total heterozygous SNPs, and maximum minor allele
frequency .25%, which was suggestive of a mixed sam-
ple. Furthermore, only draft genome assemblies with a total
number of nucleotide bases between 2.0 and 2.2 Mb, con-
sistent with the known genome size of the pneumococcus
(Tettelin et al. 2001), were included in the analysis. No gen-
omes were excluded from the analysis after the quality con-
trol. To minimize batch effects arising in the GWAS arising
due to differences in the read lengths, we trimmed longer
reads of 125–100 bp, to be consistent with the rest of
the reads, by clipping an equal number of nucleotides at
the 5′ and 3′ ends of the reads using seqtk (version
1.3-r117-dirty) (Shen et al. 2016). Genome assembly was
done using SPAdes genome assembler (version 3.14.0)
(Bankevich et al. 2012) and assembly statistics were gener-
ated using assembly-stats (version 1.0.1) (https://github.
com/sanger-pathogens/assembly-stats). The mean genome
size was 2,053,649 bp (range: 2,029,496–2,132,262 bp)
and number of contigs was 253 (range: 161–527)
(supplementary data 1, Supplementary Material online).

Determination of Serotypes and Sequence Types

The isolates were serotyped using an in silico genomic sero-
typing approach implemented in SeroBA (version 1.0.0)
(Epping et al. 2018). The isolates were initially serotyped
using latex agglutination as previously described by
Ebruke et al. (2015), therefore, the isolates expressed the
capsule. Pneumococcal sequence types defined by the
pneumococcal MLST scheme (Enright and Spratt 1998)
were called using MLSTcheck (version 2.0.1510612)
(Page, Taylor, Keane, 2016). We assigned each isolate to
a pneumococcal lineage using PopPUNK (version 1.1.7)
(Lees et al. 2019) based on the GPSC nomenclature defined
by the GPS project (Gladstone et al. 2019).

Population Structure and Phylogenetic Analysis

A multi-sequence whole-genome alignment was gener-
ated based on consensus sequences of each isolate inferred
after mapping reads against a complete reference genome
for serotype 1 strain PNI0373 from The Gambia (GenBank
accession: CP001845) using Snippy (version 4.6.0) with de-
fault options (https://github.com/tseemann/snippy). We
identified and extracted genomic positions from the align-
ment containing 18,100 SNPs in multi-FASTA and variant
call format (VCF) using SNP-sites (version 2.3.2) (Page,
Taylor, Delaney et al. 2016). The SNPs were used for cluster-
ing analysis to assign isolates into clades using the baps op-
timization option in Fastbaps (version 1.0.0) (Tonkin-Hill
et al. 2019). For the phylogenetic construction, the SNPs lo-
cated within putative recombination events were identified
and excluded from the whole-genome alignment using
Gubbins (version 1.4.10) (Croucher et al. 2015). A
maximum-likelihood phylogenetic tree of the isolates was
generated from the recombination-filtered alignment using
RAxML (version 7.0.4) (Stamatakis 2006) with the GTR and
Gammamodel (Tavaré 1986, Yang 1993). The phylogenet-
ic tree was rooted using an outgroup serotype 1 strain be-
longing to GPSC31 (sequence type ST306) predominantly
found outside Africa (ENA accession: ERS628764). The in-
ferred phylogeny was visually processed and explored using
APE (version 4.3) (Paradis et al. 2004), and then annotated
with isolate metadata using the “phylo4d” and “gridplot”
functions in phylobase (version 0.8.6) (https://cran.r-
project.org/package=phylobase), and phylosignal (version
1.3) packages, respectively (Keck et al. 2016). Stochastic
discrete ancestral character reconstruction was used to
map the disease status across the phylogenetic tree using
the “ace” and “fitDiscrete” functions in the R packages
APE (version 4.3) (Paradis et al. 2004) and Geiger (version
2.0.6.4), respectively (Pennell et al. 2014). The number of
transitions between disease and carriage states and gain
and loss of genetic variants, namely genes and unitig se-
quences, were inferred using “make.simmap” and
“densityMap” functions in phytools (version 0.7.70)
(Revell 2012). The difference in the mean number of transi-
tions between states was assessed using the Kruskal–Wallis
test. Correlation between the phylogenetic tree and the
phenotype, or phylogenetic signal, was quantified using
Pagel’s λ statistic (Pagel 1999).

Detection of SNP, Accessory Gene, and Unitig
Sequences

We generated input pedigree-formatted files for the GWAS
from the VCF file of all SNPs identified in thewhole-genome
alignment of all the isolates using VCFtools (version 0.1.16)
(Danecek et al. 2011). At genomic positions with.2 alleles,
we generated biallelic variants using the twomost common
nucleotides. We then filtered out SNPs with minor allele
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frequency ,5% or missingness .5% using PLINK (version
1.90b4) (Purcell et al. 2007). We used the two most com-
mon nucleotides detected at each position variants at
each chromosomal position for the analysis. The coding se-
quences were identified in the draft genomes and anno-
tated using Prokka (version 1.11) (Seemann 2014). The
identified coding sequences were clustered to generate a
matrix containing the presence and absence patterns of
the clusters of orthologous genes (COGs) using the moder-
ate stringency option in Panaroo (version 1.2.2) (Tonkin-Hill
et al. 2020). We defined a core and accessory genes, were
defined as COGs present in .99% and ≤99% of the iso-
lates, respectively. The gene presence and absence data
were merged with the phenotypic data to generate input
pedigree-formatted files for the GWAS. Similarly, genes
with minor allele frequency ,5% were filtered out using
PLINK (version 1.90b4) (Purcell et al. 2007). We then gener-
ated unitig sequences represented by nonbranching paths
in the compacted De Bruijn graph constructed based on
31 bp k-mers from all the genomes using Bifrost (version
1.0.1) (Holley and Melsted 2020). We then queried all the
unitig sequences inferred from the compacted De Bruijn
graph of the entire dataset against the compacted De
Bruijn graph to generate the presence and absence pattern
of the unitig sequences in the isolates using Bifrost (version
1.0.1) (Holley and Melsted 2020). The ratio of k-mers from
the queries present in the graphwas specified as 1 when in-
ferring the presence and absence patterns of the unitig se-
quence. The presence and absence matrix for the unitig
sequences and the disease status phenotype were con-
verted to input pedigree-formatted files for the GWAS
and then processed to filter out unitig sequences with min-
or allele frequency ,5% using PLINK.

GWAS Analysis of SNPs, Accessory Genes, and Unitig
Sequences

To assess the association between the genotype, that is,
SNPs, and the unitig and accessory gene sequence presence
and absence patterns, and phenotype, that is, disease sta-
tus (carriage or disease), we performed univariate GWAS
using linear mixed model methods, which accounts for
the clonal population structure, in FaST-LMM (FastLmmC,
version 2.07.20140723) (Lippert et al. 2011) and GEMMA
(version 0.98.1) (Zhou and Stephens 2012). We treated
the carriage isolates as controls and disease isolates as the
affection status in the GWAS. The choice of the affection
status has no impact on the statistical significance, al-
though flipping it alters the direction but not the magni-
tude of the odds ratios or effect sizes. We coded the
variants data as haploid human mitochondrial genotypes,
designated as chromosome 26 as similarly done in bacterial
GWAS analyses elsewhere (Chewapreecha, Marttinen,
et al. 2014; Li et al. 2019). We also included age as a fixed

covariate in the GWAS as it may influence the disease sus-
ceptibility of the individuals. We also undertook a comple-
mentary GWAS using a phylogenetic- or
convergence-based method accounting for the clonal bac-
terial population structure with relaxed evolutionary as-
sumptions implemented in Scoary (version 1.6.16)
(Brynildsrud et al. 2016). The presence and absencematrices
based on accessory gene and unitig sequences, encoded as 0
and 1, were converted into a Scoary-compatible format
using a Python script developed by Dr. Jason Sahl (https://
raw.githubusercontent.com/jasonsahl/LS-BSR/master/tools/
BSR_to_scoary.py). For the single-locus linear mixed model
GWAS, the population structure was calculated as a genetic
relatedness matrix based on SNPs using “-gk 1” and
“-fileSim” options in GEMMA and FaST-LMM, respectively.
All the variants with adjusted P-value (Q-value),0.05 based
on the Bonferroni correction to control the false discovery
rate due to multiple testing were reported as statistically sig-
nificant. We used the genome size of serotype 1 strain
gamPNI0373 (GenBank accession: CP001845), that is,
2,064,154 bp, as the number of possible independent var-
iants to adjust the P-values.We used a “stringent” threshold
of 0.05 divided by genome size to consider the genetic var-
iants analyzed in the GWAS as statistically significant. The
proportion of variance in the phenotype as explained by
the pathogen genetics or heritability (h2) was estimated
using GEMMA.

Annotation of Genomic Variants

To annotate the identified unitig sequences, we compared
each sequence to complete S. pneumoniae reference gen-
omes obtained from GenBank using nucleotide BLAST
(BLASTN) (version 2.5.0+) (Altschul et al. 1997). The pres-
ence of the unitig sequence in the genome was confirmed
when the percent identity and coverage were .90%. The
location of unitig sequences in the reference genomes
was annotated using BLASTN and visually checked with
ACT (version 9.0.5) (Carver et al. 2005). Venn diagrams
were generated using “vennCounts” and “vennDiagram”

function in limma (version 3.46.0) (Ritchie et al. 2015).
Other statistical analyses were done using R (version
3.5.3) (R Core Team, 2020, http://www.R-project.org).

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.
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