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Abstract: Snakebite is considered a neglected tropical disease, and it is one of the most intricate ones.
The variability found in snake venom is what makes it immensely complex to study. These variations
are present both in the big and the small molecules found in snake venom. This study focused on
examining the variability found in the venom’s small molecules (i.e., mass range of 100–1000 Da)
between two main families of venomous snakes—Elapidae and Viperidae—managing to create a
model able to classify unknown samples by means of specific features, which can be extracted from
their LC–MS data and output in a comprehensive list. The developed model also allowed further
insight into the composition of snake venom by highlighting the most relevant metabolites of each
group by clustering similarly composed venoms. The model was created by means of support vector
machines and used 20 features, which were merged into 10 principal components. All samples from
the first and second validation data subsets were correctly classified. Biological hypotheses relevant
to the variation regarding the metabolites that were identified are also given.

Keywords: venom variation; metabolomics; data analysis; script-controlled peak integration

Key Contribution: A pipeline was developed to automatically extract MS1 features from metabolomics
LC–MS measurements of venoms. It was applied in this research to investigate inter- and intra-family
differences in venom composition.

1. Introduction

Neglected tropical diseases (NTDs)—such as dengue and leishmaniasis—are a group
of diseases that mostly afflict populations found in low- and middle-income countries of
the tropics and thus have not received as much attention as other diseases [1]. Within NTDs,
snakebite stands out for its high mortality rate, although it was only recently accepted
as a Category A neglected tropical disease by the WHO in 2017 [2]. Snakebite results in
more than 1.8 million envenomings and 125,000 deaths annually [3]. Although snakebite
envenoming can be found in all inhabited continents, it is mostly a public health concern in
tropical and sub-tropical areas in developing countries, and in part, this is due to the lack
of health system resources found within these countries.

Snake venoms are an intricate mixture of bioactive compounds, and their composition
varies extensively between and within snake species. They primarily comprise small
molecules—such as neurotransmitters or polyamines—salts, metals and proteins, the
latter being the most abundant type of biomolecule found. Although multiple types of
proteins can be found within snake venom [4–6], four stand out as generally being the most
important ones based on toxicity and relative abundance [7,8]: three-finger toxins (3FTxs),

Toxins 2023, 15, 161. https://doi.org/10.3390/toxins15020161 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins15020161
https://doi.org/10.3390/toxins15020161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0003-3922-8099
https://orcid.org/0000-0002-8035-4719
https://orcid.org/0000-0001-8270-6979
https://orcid.org/0000-0002-0011-5612
https://doi.org/10.3390/toxins15020161
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins15020161?type=check_update&version=2


Toxins 2023, 15, 161 2 of 19

phospholipases (PLA2s), snake venom metalloproteases (SVMPs) and snake venom serine
proteases (SVSPs).

In addition to these proteinaceous toxins, earlier studies have also demonstrated the
presence of other smaller molecules (<1000 Da) in snake venoms [9–11]. For a number of
these molecules—or metabolites—such as peptides, amines or hydrocarbons, it was shown
that they potentially play a role in aiding [8] or inhibiting [12] protein toxins within the
venom. However, these small molecules have not been thoroughly studied due to proteins
being the main and most recognizable cause of toxicity of the venom. Nevertheless, they
could be of significant help when trying to study the inter- and intra-group variability of
venoms and when aiming at gaining better holistic understanding of venom functioning.

Independent of their size, most of the toxins within snake venoms can perturb home-
ostasis of the human body, and the pathologies associated with snake venoms can be
summarized in three main groups: hemotoxic, cytotoxic or neurotoxic [13]. Variability in
the composition of venoms can be found both between different taxa [4] and within the
same taxonomic unit [14–16].

This variability is not only found in snake venom proteinaceous toxins. Small molecules
can also be found within snake venoms at different concentrations depending on taxonomic
differences of the snakes and thus could also be used for classifying snake venoms. The
purpose of these molecules within the venoms is not fully understood yet, partially because
of the broad variety of different metabolites found, each of them potentially having one—
or several—different functions [8]. Additionally, a generalized classification of the said
metabolites has not been reached yet—probably due to the lack of information regarding
these molecules. One of the purposes of this research will be looking at classification of
small molecules in venoms depending on the source of the said metabolites, which can
be useful for the classification of snake venoms but also for understanding the relevance
of small molecules in this biological matrix by considering how they might be involved
in, for example, human envenoming, maintaining venom gland integrity and ecological
relationships between snake and prey. Three groups stand out: endogenous metabolites
produced by the venom gland, relevant to the venom activity; endogenous metabolites
unrelated to venom, generated through metabolic pathways separate from those associated
with venom; and exogenous metabolites coming from the snake’s environment.

The classification of snakes that this study aims for must be based on species, which
are somewhat unique to the snake’s taxonomic group. This would mean that, by creating
the said model, we are not only developing a way of classifying snake venoms—and as
such, the snakes from which the venoms were derived—but also a workflow for untargeted
studies of the chemical species able to define each taxonomic group. Because the said
species must be found in only that group for us to be able to classify the venom based on
the said molecules, the biological and evolutionary reasons for those species to be found
in the venoms could be inferred and further studied. For this purpose, a comprehensive
list containing the m/z-values and retention times for all features found in the samples
is automatically generated and included in “Table S1: Level of each metabolite” in the
Supplementary Materials.

Within the order Squamata, two families stand out as the most dangerous ones:
Elapidae and Viperidae [5]. The Viperidae are mainly known for their hemotoxicity [6],
while Elapidae snakebite manifests through systemic neurotoxic and cytotoxic illnesses [17].
As can be seen in Figure 1, Dendroaspis and Naja are part of the Elapidae family, whereas
Crotalus and Bothrops are part of the Viperidae family. Within the Naja genus, spitting and
non-spitting cobras can be recognized, the first one being able to spit out venom at attackers.
Thus, their venom is specialized in causing more pain, which is achieved by upregulating
the PLA2s toxins [18]. This taxonomic distribution can be found in Figure 1. No subclade
was presented further than Asian Naja due to the lack of representation from non-spitting
African cobras in the model.
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Figure 1. Order, family, genus, clade and subclade of the individuals that produced the samples.

To analyze the venoms of different species and focus on their variability, various
statistical tools can be used. Principal component analysis (PCA) is one of the most
important techniques used in exploratory data analysis. It was developed in 1901 by Karl
Pearson [19], and it involves the projection of a dataset into a series of vectors that hold
information about the variance found within the said dataset.

After PCA, other statistical techniques can be used to group the data and create a
model able to classify samples based on the said groups. If a proper model is built, the
family prediction of a snake based solely on the components of its venom can be produced.

This model could be applied in a high-throughput fashion for recognition and clas-
sification of snake venoms using data from liquid chromatography–mass spectrometry
(LC–MS) analyses of venoms as input, followed by automated feature extraction from the
mass spectra to, finally, introduction of the class-defining features into the model. This
would eventually output—within certain confidence intervals—the taxon of the snake.

The automated extraction of data from the liquid chromatography–mass spectrometry
(LC–MS) analyses, which is always performed when following the analytical workflow,
also results in the creation of a comprehensive list containing all m/z-values and retention
times of all compounds detected in each venom within the mass range used for detection
(i.e., 100 to 1000 in our case). Thus, by following the analytical workflow, two main results
are obtained: a classifier able to predict the family of the snake (in this case either Elapidae
or Viperidae) and a comprehensive list containing the processed analytical data on all small
molecules found for each venom.

The bioinformatic tools in combination with the analytical approach presented in this
study can help better explain why some metabolites are found more commonly in some
taxa and could indicate the evolutionary origin and function of the said small molecules.

2. Results

The overall workflow started with the LC–MS (Liquid Chromatography—Mass spec-
trometry) analysis of the small molecules in 50 different venoms—in duplicate—followed
by extraction and alignment of the features found (i.e., all detected peaks in MS and their
corresponding properties, such as m/z-value and retention time) for all the analyses. By
doing this, a coherent matrix containing all samples (i.e., collection of features per venom
and their intensity) is generated; the columns of the matrix are the features found, and the
rows are the samples. This comprehensive list can be found in “Table S1: Level of each
metabolite” in the Supplementary Materials.
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Afterward, the measured samples were divided in three subsets in order to perform
cross-validation of the model. After the validity of the model was proven, the model was
looked at to check what features were recognized as relevant, and their concentrations
in each venom were then investigated. This step was performed in conjunction with the
identification of several metabolites associated with these relevant features for the model
by means of the acquired MS/MS spectra of these metabolites or by standard addition
when a metabolite was commercially available.

A graphic depiction of this workflow is included in Chart 1.

Toxins 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

by extraction and alignment of the features found (i.e., all detected peaks in MS and their 

corresponding properties, such as m/z-value and retention time) for all the analyses. By 

doing this, a coherent matrix containing all samples (i.e., collection of features per venom 

and their intensity) is generated; the columns of the matrix are the features found, and the 

rows are the samples. This comprehensive list can be found in “Table S1: Level of each 

metabolite” in the Supplementary Materials. 

Afterward, the measured samples were divided in three subsets in order to perform 

cross-validation of the model. After the validity of the model was proven, the model was 

looked at to check what features were recognized as relevant, and their concentrations in 

each venom were then investigated. This step was performed in conjunction with the 

identification of several metabolites associated with these relevant features for the model 

by means of the acquired MS/MS spectra of these metabolites or by standard addition 

when a metabolite was commercially available. 

A graphic depiction of this workflow is included in Chart 1.  

 

Chart 1. Graphic depiction of the workflow followed to develop the classifier model. After the de-

velopment of the coherent list with all the metabolites and their levels in each venom, two classifiers 

were used to optimize the dimensionality reduction of this list. 

2.1. Feature Extraction 

To check for repeatability of the analyses, the venom of Naja siamensis was spiked 

with a mixture of standards—specified in Section 5—and analyzed several times before 

the analysis of all venoms was performed. This venom was chosen arbitrarily, as the same 

Chart 1. Graphic depiction of the workflow followed to develop the classifier model. After the
development of the coherent list with all the metabolites and their levels in each venom, two classifiers
were used to optimize the dimensionality reduction of this list.

2.1. Feature Extraction

To check for repeatability of the analyses, the venom of Naja siamensis was spiked with
a mixture of standards—specified in Section S5—and analyzed several times before the
analysis of all venoms was performed. This venom was chosen arbitrarily, as the same
function could be attained by any other venom. As can be seen in “Figure S1—Analysis
of repeatability” in the Supplementary Materials, the retention times of the features were
sufficiently repeatable for the bioinformatic tool to extract the features and to recognize the
same ones among the different repetitions—even if the retention times shifted slightly—
meaning that the method was repeatable. The mixture of standards added to this venom
was used to investigate whether normalization of the intensity of all features found by
an internal standard would render more reproducible results. Thus, the intensities of the
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signals of these standards were used to normalize the intensities extracted from the features
found by means of recalculating all the intensities as a percentage relative to the chosen
standard’s signal intensity for all standards included separately. The highest repeatability
was found when the intensities extracted were not normalized. This is probably because
all intensities were normalized using a single standard at a time, and internal standards
should preferably be similar to the compounds that are being standardized, which was
impossible for this study, since none of the compounds measured were known at the point
of measurement and of data processing. Additionally, taking into account the complexity
of snake venom, no analyte can be similar to all of the metabolites found, meaning that no
single internal standard could be used. Thus, no standardization was performed on the
data. However, one of the standards (d9-Caffeine) was included in all the measurements to
check for any issues during the analyses. By monitoring this standard in all measurements,
the stability of the analyses could be investigated, from which it was found that the
measurements were performed robustly.

After testing the repeatability of the analyses, the 50 different snake venoms (5 Dendroaspis,
15 Naja—divided into 5 African spitting cobras, 5 African non-spitting cobras, 4 Asian
non-spitting cobras and 1 Asian spitting cobra—27 Crotalus and 3 Bothrops) were analyzed
in duplicate by LC–MS in the order specified in “Table S2: Order of the injections” in the
Supplementary Materials. The MS1 data from each analysis were exported and converted
into .mzXML by MSConvert and run through the SAFD bioanalytical tool, which extracts
the features and their intensities from the .mzXML files, in conjunction with “Computer
code S1” of the Supplementary Materials, which aligns the features between samples,
allowing us to obtain a coherent list containing all features and their retention times,
m/z-values and intensities for each sample.

Afterward, all samples were divided in three subsets: the model subset, the first
validation subset and the second validation subset. The model subset was used to generate
a model that would undergo the different validation tests. The first validation subset was
used to test the optimal number of PCs used to project the samples onto. The second
validation subset was used to test the validity of the model created after the number of PCs
had been chosen.

2.2. Model Building

The model we developed to classify snakes based on the metabolome of their venoms
was built in four steps: pretreatment of the data, PCA, jackknifing and validation.

The data were pretreated to enhance the reproducibility of the method by only consid-
ering the features that would appear in both repetitions of a venom when their signals were
at least three times the intensity of those features when they were found in Mili-Q Water,
which was used as a (blank) sample. Additionally, a variable called “Rep” was defined,
which would allow a feature to be taken into account only when it was found across a
“Rep” number of samples. Finally, the data were mean centered and autoscaled. By doing
this, a clean dataset focused in the variability of each feature was obtained.

PCA is an explorative matrix decomposition method, which allows for dimensionality
reduction [20]. It also generates new variables (principal components, PCs), which are
composed of the observed variables. The importance of each observed variable in each
PC is defined by the loadings matrix, which, when the observed variables are projected
onto it, leads to the scores matrix. The scores matrix is thus the projection of the original
dataset onto the principal components, allowing for easy multivariate representation of the
data within two or three dimensions. More information on this is given in “Section S1—
Further information regarding Principal Component Analysis” in Document S1 in the
Supplementary Materials.

Leave one out—or jackknifing—is a resampling-without-replacement method intro-
duced by Maurice Quenouille in 1949 [21]. It consists of extracting part of the samples with
which the model is built and rebuilding the model without the said samples. If performed
several times, it allows for the creation of numerous models, depending on how many
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samples are extracted and what samples they are. In this case, it was used to optimize
the Rep variable. For each possible value of Rep, four samples were extracted from each
family—Elapidae and Viperidae—and the models were built. Then, the eight samples
extracted were projected onto the loadings to obtain their scores and to be classified. This
was repeated 1000 times per Rep value to check the robustness of the model. This way
of validating a model is called cross-validation, and it is useful when trying to optimize
certain variables within the same dataset, as we do not need to obtain copious amounts of
data. Additionally, it avoids bias in the creation of the model due to virtually using all the
data as samples to be classified.

As mentioned, two validations were performed with data subsets, which were not
part of the model-building data subset. The first validation subset was used to optimize the
number of PCs to be considered within the clean PCA model (built with the clean dataset),
thus creating the optimal model. The second validation subset was used to validate the
final model and check its ability to classify unknown samples.

2.3. Classification

Some statistical techniques can be used to group the data and create a model able to
classify samples based on the said groups. There are several tools that can be used for this
goal. For this case study, two will be tested: one probabilistic and one binary linear.

Proximity classification after k-means clustering. Introduced by MacQueen in 1967 [22],
the clustering method consists of analyzing the difference between the individual scores’
sample vectors within the PCA model and the mean vector of each group or cluster.
Thus, the Euclidean distance between each nth dimensional score and each cluster center
is calculated.

To perform the classification, these two values are summed, and an algorithm is
written, so that the distance to each center is divided by the said sum and multiplied by
100. This value is recorded as the first percentage, and the other percentage is calculated by
subtracting the said number from 100. Thus, two percentages are the outcome. Because
k-means clustering is based on proximity to the cluster center, the highest percentage was
chosen as the indicator of the class of the snake family. These percentages are classified
in five groups, which represent how certain the algorithm is about the samples coming
from the specified cluster based on the indicator mentioned—the highest percentage. This
classification is specified in Table 1.

Table 1. Classification of the classifying ability of the k-means models.

Qualitative Classification Thresholds

Hard hits (80, 100] %
Hits (55, 80] %

Unsure (45, 55] %
Miss (20, 45] %

Hard miss [0, 20] %

Support vector machines (SVMs). Introduced in 1992 by Boser, Guyon and Vapnik [23],
SVMs work by generating a hyperplane, which separates the two classes of data. The
samples will be classified as either of the groups depending on which side of the hyperplane
they lay on. The SVM chosen during research was a linear Kernel with a hard margin.

2.4. Workflow
2.4.1. Model That Used k-Means Clustering

After applying PCA, the jackknifing step revealed that the appropriate value for the
Rep variable was 36, because in 72 of the 100 iterations, all the samples that had been
previously extracted were correctly classified. This was the highest number of correctly
assigned sub-models. This led to the model being created with seven variables.
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The first validation revealed that the number of PCs that could be used to correctly
assign the first validation subset was every number in between three and seven. However,
if the number of PCs is the same as the number of variables, there is an overfitting issue.
Thus, according to the workflow explained in “Section S2—Further information regarding
k-means clustering modelling” in Document S1 in the Supplementary Materials, the number
of PCs chosen was four, as adding more PCs would lead to overfitting of the data [24].

For the second step of the validation, the second validation subset was projected onto
the principal components and classified based on Table 1.

2.4.2. Model That Used Support Vector Machines

The lines of code that run the model building can be found in the “Computer Code
S2” document of the Supplementary Materials.

After applying PCA, the jackknifing step revealed that the Rep value that generated
the most robust model (98.1% of the jackknifing models correctly classified all the jackknifing
samples) was 20, and the model contained 20 variables. Therefore, 20 features were chosen
as relevant to the classification; the m/z-values of those features were: 150.0, 152.0, 175.0,
193.0, 203.2, 205.1, 215.0, 216.0, 237.0, 345.2, 385.2, 399.2, 413.1, 430.2, 431.2, 444.2, 445.2,
859.3 and 971.2 m/z.

The first validation step revealed that the number of PCs that could be used to correctly
assign the first validation subset was every number in between 3 and 20. However, if the
number of PCs is the same as the number of variables, there is a high chance of overfitting.
Thus, according to the workflow explained in “Section S3—First Validation of the k-means
clustering model” in Document S1 in the Supplementary Materials, the number of PCs
chosen was 10, as adding more PCs would lead to overfitting of the data.

For the second validation, the data matrix was multiplied by the loadings and then
classified by the SVMs.

2.5. Results of PCA of the Small Molecules Found in Snake Venom
2.5.1. k-Means Clustering

The results of the analysis performed on this model can be found in “Section S4—
Results of the k-means clustering model” in Document S1 in the Supplementary Materials.

Although the optimized model was able to correctly classify most of the samples, only
50% were classified as hard hits. This lack of certainty could be explained by the overall
trend of the Viperidae family not being defined by a single direction in any of the PCs—in
contrast to what we found for Elapidae. This distribution over two PCs can result in lower
classification power, as more extreme values for the seven features—the ones defined as
relevant by the model—within the Viperidae family lead to a scattering of the samples all
over the subspace created by the PCs (instead of close clustering), rather than an increase
in density of the Viperidae cluster.

2.5.2. Support Vector Machines

As mentioned, a classifier based on SVMs with Rep = 20 and n◦ PCs = 10 was built.
A 2D representation of this model, including the scores projected onto the two first PCs,
can be found in Figure 2. Two PCs were chosen for this representation, as it is easier to
visualize, but the actual subspace is contained in 10 dimensions, as they were the ones
chosen to describe most of the variance of the model.

A table containing the values for all the loading values is included in “Table S3:
Relevance of each feature” in the Supplementary Materials.

The clustering in Figure 2 already looks more organized than the one we could see
for the model obtained when Rep was set to 36 (Figure S3 of “Section S4—Results of the
k-means clustering model” in Document S1 in the Supplementary Materials, where the
representation of the optimized k-means model can be found). Whereas Elapidae scores
seem to distribute most of their variance in one direction—almost solely along the second
PC—Viperidae scores are distributed along both PCs, although mostly along the first one.
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Figure 2 also shows how non-spitting cobras seem to have high values for PC1 and low
values for PC2 compared to the rest of the Elapidae family, which indicates that further
classification could probably be performed when a bigger dataset is used.
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Figure 2. Two-dimensional representation of the scores generated by the model for Rep = 20 and
no PCs = 10 of PCs 1 and 2. Orange colors represent Viperidae venoms; dark blue colors represent
Asian Naja venoms; white colors represent African non-spitting cobra venoms; dark cyan colors
represent African spitting cobra venoms; and light cyan colors represent Dendroaspis venoms.

To understand the information held in the PCs, their loadings are represented in
“Section S5—Representation and analysis of the Loadings in the SVM model” in Document
S1 of the Supplementary Materials. The first principal component gives similar relevance to
each of the features, using all of them to define most of the variance in the model. However,
while features 1, 2 and 20 (the ones with weights higher than 0) are the only ones to be
considered when classifying a sample as a member of the Elapidae family, features 6, 7 and
8 (the ones with the lowest weights) are essential when classifying a sample as Viperidae
and explaining most of their variance.

It is interesting to look at all the features and samples at the same time to better
understand the patterns within the data; therefore, the autoscaled values of those 20 features
were summarized in a heatmap depicted in Figure 3.

Similar to what we found when Rep = 36 was used to create the model (Figure S6 of
“Section S4—Results of the k-means clustering model” in Document S1 in the Supplementary
Materials), the first features and the last one (150.0, 152.0, 175.0, 193.0 and 971.2 m/z) seem
to be consistently more abundant in Elapidae than in Viperidae. Because the last feature
(971.2 m/z) also holds some extreme variability within the Elapidae family, but its intensity
can be similar to that of Viperidae in some cases, this feature is pushed back to the fifth
component. Nonetheless, the first four variables—with quite different values between the
two families—are found in the second principal component and thus explain much more
variance. As can also be seen in the heatmap, features 7 and 9 seem to have somewhat of
an influence when defining the Elapidae. These variables are held inside the second, third
and fifth components. If we project the scores of those second and third PCs—only the
most important two out of the three are used for clarity in the representation—the resulting
graph (Figure 4) should explain most of the variance found within Elapidae. Only the said
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family is represented for clarity, as introducing the Crotalus family would make the image
too crowded, and it would add no additional value.
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from the autoscaled matrix. The subclades were also classified for biological relevance based on their
family and genus.
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Figure 4. Two-dimensional representation of the Elapidae scores generated by the model for Rep = 20
and no PCs = 10 of PCs 2 and 3. Subspecies were also indicated. Dark blue colors represent Asian Naja
venoms; white colors represent African non-spitting cobra venoms; dark cyan colors represent African
spitting cobra venoms; and light cyan colors represent Dendroaspis venoms. Legend: A: Dendroaspis
angusticepsis, B: Dendroaspis jamesoni jamesoni, C: Dendroaspis jamesoni kaimosae, D: Dendroaspis polylepsis,
E: Dendroaspis viridis, F: Naja mossambica, G: Naja nigricinta, H: Naja nigricollis, I: Naja nubiae, J: Naja
haje, K: Naja legionis, L: Naja nivea, M: Naja subfulva, N: Naja atra, O: Naja kaouthia, P: Naja naja,
Q: Naja oxiana.



Toxins 2023, 15, 161 10 of 19

It is noticeable to mention that the feature with 215.0 m/z seems to be able to clearly
differentiate between Dendroaspis and Naja while also differentiating Dendroaspis from
Crotalus, as occurred in the k-means model. However, no PC relies on this variable to
generate such clustering, probably due to the low number of Dendroaspis samples, which
biases the model generation. PC 3 does take this variable into account, but, because this
principal component also considers the feature with 237.0 m/z, the ability of the model to
cluster Dendroaspis separately is strongly diminished, as can be seen in Figure 4.

Most of the variability found in Elapidae useful for classification can be essentially
summarized in features 1, 2, 3, 4, 7, 8 and 9, which—by looking at Figure 4—means that
these two PCs should be sufficient for explaining most of the relevant variability. However,
the feature with 215.0 m/z is not relevant enough in these PCs for us to see the clustering of
Dendroaspis, probably due to the aforementioned bias. However, by adding more samples
to the model, this variable should stand out as a paramount feature to define and cluster the
said group. As will be described in the Section 3, this feature is thought to derive from the
Deoxyribose 5-monophosphate metabolite, commonly known for partaking in the pentose
phosphate pathway, which is used to anabolize precursors for the synthesis of nucleotides
and to maintain the redox state of the cell [25].

The PCs in the model that hold the highest variance and that contain information
concerning the features that define the variability found within Viperidae are the first
PC (as it holds information concerning variables 5 to 19 and explains most of the vari-
ability within the model) and the second one (as it contains information concerning the
variability of features 3 and 4, which also define Viperidae). These PCs can be found in
Figure S8 of “Section S5—Representation and analysis of the Loadings in the SVM model”
in Document S1 of the Supplementary Materials.

After analyzing the model built for Rep = 20 and no PCs = 10 (Figure 2), the samples
within the second validation subset were projected onto this model, thereby obtaining their
scores. In Figure ??, the scores of both validation subsets were included with those already
in the model. Only snakes from the Viperidae family were chosen for the second validation
model to test its ability to predict the family of the snake from which a specific venom
originates. It is relevant to mention that some of the said samples derive from a genus
that was not included in the model—Bothrops—which was done to test the ability of the
model to predict the family of a genus, which had not been presented to the model. In brief,
this means that if the model was able to correctly classify those samples, the features
found—and their concentrations—could be assumed to be homogeneous throughout the
different families. However, this statement should be explored in further studies, as the
prediction of one genus, which was not included in the model, cannot be extrapolated to
all other genera.

The results of the validation demonstrated that 100% of the second validation subset
samples were correctly classified, thus showing that the SVM model rendered excellent
results, whereas the k-means approach did not. Even samples coming from a genus unseen
by the SVM model (Bothrops) were correctly identified within the Viperidae family. As can
be seen, the representation of the second validation shows how the clustering defined by
the hyperplane works, as the distribution of the validation samples does not seem to follow
a random pattern, but rather, the same trend, which could be seen in the model itself, can
be found for the validation subsets.

To understand the reason for this clustering, the features present in the model were
looked into more thoroughly in order to recognize the metabolites that were associated
with the said features, and thus, the metabolites that were able to discriminate between
different taxa.
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Figure 5. (a) Two-dimensional representation of PCs 1 and 2 holding the scores generated by the
totality of the samples when using the PCs obtained for the model set with Rep = 20 and no PCs =
10. Red colors represent Viperidae snakes, while blue and white colors represent Elapidae ones. All
the genera, species, subspecies and clades are also shown. (b) Three zoom-in views (i.e., 1, 2 and 3)
of the densest parts of a) to further clarify the relative position of each of the samples. Black dots
represent Bothrops venoms; yellow dots represent Crotalus venoms in the second validation set; orange
dots represent Crotalus venoms in the model dataset; dark blue dots represent Asian Naja venoms;
white dots represent African non-spitting cobra venoms; dark cyan dots represent African spitting
cobra venoms; and light cyan dots represent Dendroaspis venoms. Legend: A: Dendroaspis angusticepsis,
B: Dendroaspis jamesoni jamesoni, C: Dendroaspis jamesoni kaimosae, D: Dendroaspis polylepsis, E: Dendroaspis
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viridis, F: Naja mossambica, G: Naja nigricinta, H: Naja nigricollis, I: Naja nubiae, J: Naja pallida,
K: Naja annulifera, L: Naja haje, M: Naja legionis, N: Naja nivea, O: Naja subfulva, P: Naja atra,
Q: Naja kaouthia, R: Naja naja, S: Naja Naja siamensis, T: Naja oxiana, 1: Crotalus adamanteus,
2: Crotalus culminatus, 3: Crotalus durissus cumanensis, 4: Crotalus durissus terrificus, 5: Crotalus
vegrandis (1), 6: Crotalus vegrandis (2), 7: Crotalus enyo, 8: Crotalus horridus, 9: Crotalus horridus atricaudatus
(1), 10: Crotalus horridus atricaudatus (2), 11: Crotalus lepidus kluberri, 12: Crotalus lepidus maculosus,
13: Crotalus morulus, 14: Crotalus molossus molossus, 15: Crotalus molossus nigricans, 16: Crotalus
molossus oaxacus, 17: Crotalus phyrrus (1), 18: Crotalus phyrrus (2), 19: Crotalus cerberus, 20: Crotalus
ravus ravus, 21: Crotalus lorenzoensis, 22: Crotalus ruber ruber, 23: Crotalus scutellatus salvini, 24: Crotalus
scutellatus scutellatus, 25: Crotalus tortuguensis, 26: Crotalus triseratus triseratus, 27: Crotalus viridis
viridis, 28: Bothrops asper, 29: Bothrops alternatus, 30: Bothrops atrox.

In the first place, the identification of the metabolites was performed via comparison
of the m/z-values of the features with two databases of metabolites; one included the ones
found in snake venom and the other one metabolites only found in humans [8,26]. As
a second step, the metabolites from which we had stock solutions were spiked onto the
venom samples, which contained features to check whether their intensity increased after
the addition. Because we did not have stock from all expected metabolites, LC–MS/MS
was performed on a pooled sample containing four of the venoms (Naja Nigricinta, Crotalus
vegrandis (2), Crotalus culminatus and Crotalus lorenzoensis), which, in conjunction, contained
all the metabolites relevant to the model. With the acquired data, the MS/MS spectra
resulting from fragmentation of accurate masses that correlated to features of the specific
metabolites under investigation, could be compared with MS/MS fragmentation spec-
tra retrieved from the Human Metabolome Database (HMDB) [26], which contains all
human metabolites found and relevant information about them, such as their mass and
fragmentation spectra. This database was chosen, as it is the only one that includes MS/MS
fragmentation spectra of a high number of metabolites (220,945). When a match was found
for a feature’s accurate mass and its MS/MS spectrum, that feature was designated as the
metabolite listed in the database.

In Table 2, the names, retention times and m/z-values of each metabolite relevant
to the model can be found. The second-to-last column accounts for the confidence level
at which the metabolites were determined, and the last column specifies the genera for
which that feature was found in more than 50% of the genera samples. The confidence
level was assigned by means of standards within the Metabolomic Standards Initiative
(MSI) [27]. Level 1 confidence corresponds to validated identification—confirmation by use
of a standard. Level 2 confidence signifies that both the m/z-value and the MS/MS pattern
correspond to those of the mentioned metabolite. The level of confidence “- “ corresponds
to lack of confidence level assignment, as only m/z-values were cross-referenced. Because
Villar-Briones and Aird [8] (referenced as (1) in Table 2) analyzed metabolites in venoms,
whereas Wishart et al. (HMDB) [26] (referenced as (2) in Table 2) took into account metabo-
lites only found in humans, it is notable to mention that the metabolites in accordance with
Villar Briones and Aird’s data are expected to be identified more reliably due to the fact
that we are dealing with snake venom metabolites and not human metabolites.

All relevant metabolites for the model eluted from LC within the first 20 min of the LC–
MS analyses, which means that the analysis time could probably be adapted and shortened
after this time threshold without losing any crucial information when the analyses are
performed for snake venom family classification by means of the defined SVM model.

More confidence in the identification of metabolites with no MSI confidence level
assignment would be needed to robustly elucidate the specific venom components that
underpin the differences between different snake genera.

For further understanding of the patterns found in snakes’ venom metabolites, the
relevant features of all analyzed samples were explored in the heatmap found in Figure 6.
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Table 2. Summary of the name, m/z-values, retention time, identification confidence level and the
main clade they are found in of each relevant metabolite.

Feature Metabolite m/z-Value Average Retention
Time (min)

Confidence
Level (MSI) Mostly Seen in the Clade:

1 Methionine (1) 149.95 4.2 1 Asian cobras

2 Guanine (1) 151.95 4.4 2 Asian cobras

3 Aconitic acid (1) 175.02 5.3 2 All but African spitting cobras

4 Citric acid (1) 193.03 5.3 1 All but African spitting cobras

5 4-Ethylphenilsulphate (2) 203.22 4.3 2 Bothrops and Crotalus

6 Tryptophan (1) 204.10 17.5 1 Crotalus

7 Deoxyribose
5-monophosphate (2) 215.02 5.1 - All but Dendroaspis

8 O-Phospho-4-hydroxy-L-
threonine (2) 216.02 5.1 - Bothrops and Crotalus

9 [Unknown]Na+ 237.00 4.9 - Bothrops and Crotalus

10 pEKS (tripeptide) (1) 345.18 5.1 2 Crotalus

11 TPPA (tetrapeptide) (1) 385.21 5.2 2 Crotalus

12 pERI (tripeptide) (1) 399.24 13.2 - Crotalus

13 Unknown 413.15 16.2 - Crotalus

14 pENW (tripeptide) (1) 430.17 16.3 2 Bothrops and Crotalus

15 Unknown 430.27 16.3 - Crotalus

16 Unknown 431.17 16.0 - Bothrops and Crotalus

17 Unknown 444.20 16.2 - Bothrops and Crotalus

18 Unknown 445.19 16.4 - Bothrops and Crotalus

19 Unknown 859.34 16.1 - Crotalus

20 Unknown 971.17 17.8 - African spitting cobras
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Figure 6. Heatmap of the autoscaled complete dataset for PCA with Rep = 20. These 20 features are
relevant to the model, and, in the figure, a correlation between the color and the autoscaled data is
given (lighter colors signify more signal, and darker colors signify less signal). The family, genus and
clade were also classified for biological relevance based on their family and genus.
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3. Discussion

Several patterns could be found regarding the intensities of these features, which
the model found relevant. These patterns were able to differentiate between families and
even genera and clades, meaning that there is probably a biological reason as to why
the scores of these samples are distributed in such manner. It is important to mention
here how the model is able to group both Bothrops and Crotalus venoms under the same
family—Viperidae—even though the intensity of several features does not comply with the
general trend of Viperidae.

When analyzing the patterns found in the intensity of each feature, the fact that citrate
was mostly seen in Viperidae venoms, whereas it was not found in Dendroaspis, stands out.
Citrate is known for its protease inhibition activity, due to which it is thought to be present
in snake venom to prevent degradation of the venom by its own metalloproteases [28].
Additionally, this study also reported that citrate was able to inhibit a PLA2, which was
investigated. As can be seen in Figure 6, citric acid is present, on average, in higher
concentrations in the Viperidae family, which is known to have venom compositions that
contain, on average, much higher concentrations of proteases than Elapidae venoms [29].
This is in accordance with other studies, which analyzed citrate in snake venom [8,28]. This
metabolite is known to work by chelating metals, such as zinc, thus being able to inactivate
metalloproteases residing in the venom gland. Additionally, it lowers the pH of the matrix,
thereby lowering the enzymatic activity of metalloproteases. Once a venom enters the
prey’s body, citrate can possibly also assist in disrupting the normal coagulation processes
by chelating Ca2+, the most important metal ion in the coagulation cascade [30]. Citrate is
therefore suggested to be present in metalloprotease-rich venoms to prevent self-harm while
potentially aiding in their hemotoxicity once the venom enters the prey’s bloodstream.
Spitting cobras can use their venom as a defense mechanism, thus, their venom aims
toward cytotoxicity [31]. These venoms have low amounts of metalloproteases [32], and,
with the hypothesis postulated above, it makes sense that almost no citrate was found in
these venoms. Endogenous peptides, such as pENW, are also known to be able to inhibit
metalloproteases [12,33–35], which could be a reason as to why they were mostly found in
hemotoxic Viperidae venoms. The presence of these glutamate-containing oligopeptides
in the venom is known to contribute to reducing proteolytic activity of the SVMPs, thus
preventing venom degradation by its own toxins [35], which could explain the correlation
between the concentration of these oligopeptides and SVMPs found in Viperidae venom.

Naja venoms—especially those from African non-spitting cobras—on average con-
tained higher methionine concentrations than the other taxa. This metabolite is not found
in the rest of the genera, meaning that methionine is not a trait of the Elapidae venoms but
rather specifically of the Naja venoms.

Dendroaspis is the genus, which contained the least amount of metabolite with a
feature that had a m/z-value of 215.02. As stated, this feature is suspected to derive from
deoxyribose 5-monophosphate, which is known to take part in the pentose phosphate
pathway (PPP). PPP is a metabolic pathway involved in the generation of NADPH and
pentoses, and it has been demonstrated as a major regulator of cellular redox homeostasis
and nucleotides biosynthesis [36].

Thirteen features and metabolites were found in most of the Crotalus genera, and
metabolite identification of those features—with MS/MS and/or standards—would be
needed to draw further conclusions. Tryptophan, an uncommon metabolite in other taxa,
was frequently observed in the Crotalus venoms, for which we currently do not have
a hypothesis.

There does not seem to be any specific metabolite able to fully define only the Bothrops
genus. This might be due to the fact that only three Bothrops samples were analyzed and
that these samples were not used in the model. However, even if the defined SVM model
was not able to indicate which metabolites are unique for the said genera, it was indeed
able to classify them as Viperidae due to the features these samples contained and their
respective intensities.
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Considering classification regarding the origin of the metabolites previously stated
in the Introduction (endogenous metabolites produced by the venom gland, endogenous
metabolites unrelated to venom and exogenous metabolites), it is interesting to note that
endogenous metabolites, which could be related to the snake’s metabolism rather than
involvement in venom functioning—such as methionine and tryptophan—had different
abundance levels between Elapidae and Viperidae. The only endogenous metabolite
identified probably related to venom activity and/or venom gland protection (citric acid)
followed the expected pattern of taxa differentiation based on the biological relevance of
the said analyte within the venom. No exogenous metabolites were identified in this study
within the set of features in the model.

In addition to creating a model able to discriminate between Elapidae and Viperi-
dae based on their metabolites, this research can also be considered as an untargeted
metabolomic study, as a list with all the features found (i.e., peaks detected in MS and their
corresponding m/z-values and intensities) in all the venoms measured was created and
included in “Table S1: Level of each metabolite” in the Supplementary Materials. These
types of studies are helpful when identifying core metabolites in the venoms but also for
elucidating the theories explaining why those species are biologically relevant. This study
has certain limitations that allow for bias to potentially modify the results. For example,
factors such as sex, age and/or geographical location were not considered in the model
building in this study, as these data were not available for a large part of the venoms in
our venom collection, and/or some venom samples were derived from pooled milkings of
different individuals. Additionally, some of the analytes were found at the beginning of
the chromatographic analyses—eluting almost with dead volume—which is known to be
detrimental for their ionization in the MS due to the high number of species being ionized
during this time frame. Because no traceback of those factors—and many others—could be
performed, the samples must be assumed to represent the totality of their family, genus,
species and subspecies. However, this study is the first attempt to initiate research that
focuses on the metabolites found in venom, as they can also be useful for understanding
these complex mixtures.

In order to be able to investigate specific metabolites and/or features, a dashboard
tool can be used to easily visualize the variables of choice. For this, “Table S1: Level of
each metabolite” in the Supplementary Materials is used and imported into the dash-
board tool. We performed this for our dataset, and all the relevant representations
of the data can be found in https://public.tableau.com/app/profile/luisce99/viz/
Metabolome-basedclassificationofsnakevenomsbybioinformatictools/Dashboard1,
(accessed on 11 February 2023). Due to the intrinsically interactive properties of the
dashboard, the information selected can be sorted and presented in different representative
ways, such as bar graphs and pie charts. This implies that users can choose the metabolites
and/or features they want to investigate and from there be able to immediately obtain
information regarding their abundance level in each venom, or in a clade or taxa. Examples
of visualizations presented using the dashboard can be found in “Section S7—Examples of
data visualization with the dashboard” in Document S1 of the Supplementary Materials.

This software is able to automatically sort the input data into different variables, clean
and interpret the data, and understand SQL-type queries and implement them into one’s
dataset. It can also sort the data in different tables and create new variables with unions
or intersects between different tables. The main reason this software was also used in
this study is due to its ability to easily create quick representations of the input data and
merge them into a single dashboard with all the required information represented in clearly
structured overviews.

4. Conclusions

A high-throughput analytical LC–MS-based pipeline for analysis and automated
extraction of all masses corresponding to small molecules in the range of 100 to 1000 m/z-
values in snake venoms was set. Within this workflow, a comprehensive list containing all

https://public.tableau.com/app/profile/luisce99/viz/Metabolome-basedclassificationofsnakevenomsbybioinformatictools/Dashboard1
https://public.tableau.com/app/profile/luisce99/viz/Metabolome-basedclassificationofsnakevenomsbybioinformatictools/Dashboard1
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the features found and their characteristics—m/z-values, retention times and intensities—in
the samples was obtained. This list can be found in “Table S1: Level of each metabolite” in
the Supplementary Materials.

After investigating two ways of classifying snake venoms by their metabolites (k-means
and SVMs), the SVM approach showed not only much more robustness but also much more
reliability when attempting to determine whether a venom originated from an Elapidae or
a Viperidae snake. This is probably because, as we transform the sample matrix into a score
matrix, the two groups are naturally separated within the subspace of the loadings. Thus,
the SVM—being a binary linear method—recognizes this separation and takes advantage
of it.

From the results of the validation of the model, it can be inferred that metabolites
are consistently present in the snake venoms and that their levels are sufficiently similar
between samples from the same family (and sufficiently different between families) to be
used for family classification of snake venoms. This differentiation can also be found—
with less confidence—within other taxa (genera, clades, etc.). MS/MS analysis of the said
metabolites would lead to improvement in terms of their identification level. Some of the
metabolites that could be identified presented distinctly different concentration levels in
venoms of different families due to potentially explainable biological relevance. Hypotheses
regarding the said levels are proposed in this study.

To further develop the project, analyses of additional and different venoms would be
needed. By analyzing more venoms, the classification could reach and recognize deeper
patterns in the data, thus theoretically being able to also fully classify venoms into subfamily,
genus and eventually maybe even the diet of a specific snake. In order to achieve this,
the said venoms should also include biological and geographical information, such as
age, gender, location, etc., from the snake they came from, so that the result is more
representative. Follow-up targeted studies could also be performed on the metabolites
identified, as understanding the biological reasons for the presence of some of these small
molecules in venoms could provide insightful information concerning snake venom.

This study mainly focused on setting up and demonstrating the analytical method-
ology to obtain a coherent list of metabolites and the venoms they are found in by means
of developing a family classifier. Future studies should focus on the metabolite variation
related to morphological and ecological parameters.

5. Materials and Methods
5.1. Chemical and Biological Reagents

Water was purified with a Milli-Q Plus system (Millipore, Amsterdam, The Netherlands).
DMSO was supplied by Riedel-de-Haen (Zwijndrecht, The Netherlands). Acetonitrile
(ACN; ULC/MS grade), trifluoroacetic acid (TFA) and formic acid (FA) were obtained from
Biosolve (Valkenswaard, The Netherlands). All salts used for buffer preparation were of
analytical grade and bought from Merck (Kenilworth, USA), Fluka (Bucharest, Romania)
or Sigma-Aldrich (Darmstadt, Germany). Micro-90® concentrated cleaning solution was
supplied by Sigma-Aldrich. Lyophilized snake venoms (Worksheet 1 of Workbook 1 of
SI) were provided by the Centre for Snakebite Research & Interventions (Liverpool School
of Tropical Medicine (LSTM), UK) and the historical collections of Freek J. Vonk (FV) and
Manjunatha Kini (K) and stored on a long-term basis at −80 ◦C. Stock solutions of crude
venoms (5.0 mg/mL) were prepared in water prior to analysis and stored at −80 ◦C. A total
of 50 venoms were studied; 15 of those venoms originated from the genus Naja and 5 from
the genus Dendroaspis, both within the Elapidae family. A total of 27 of those venoms
originated from the genus Crotalus and 3 from the genus Bothrops, both within the Viperidae
family. Volumes of 50 µL of 1 mg/mL solutions of each venom were injected into the
HPLC-MS. Solutions of Phenylalanine, Caffeine, d9-Caffeine, Nortriptyline and Metoprolol
(10 mM) were prepared in Milli-Q (except for Nortriptyline, which was dissolved in DMSO—
Riedel-de Haen) and stored at −80 ◦C. They were used as internal standards for this study
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due to their small size, the ability to absorb at the wavelengths studied and disparate
retention times. All these chemicals were bought from Sigma Aldrich.

The origin of the lyophilized venoms, the order in which they were injected and the
model the samples were used on are included in “Table S2: Order of the injections” in the
Supplementary Materials.

5.2. Analysis of Small Molecules
5.2.1. Separation

Reverse-phase high-performance liquid chromatography (RP-HPLC, or LC for short)
was carried out using a Shimadzu HPLC system managed by Shimadzu LabSolution
software (Shimadzu, s-Hertogenbosch, The Netherlands). Four types of samples were
analyzed in the order specified in Table 1 of the SI: 50 µL water injections acting as blanks,
50 µL of each of the mentioned venoms spiked with d9Caffeine (2.5 µM; used as a standard),
a mixture of standards (Phenylalanine 2.5 µM, Caffeine 250 nM, d9-Caffeine 250 nM,
Nortriptyline 250 nM and Metoprolol 250 nM) and 50 µL of Naja siamensis venom spiked
with the said mixture to test the repeatability of the method and the capability of those
standards to normalize the intensities of the features found in Naja siamensis. All samples
were injected using a SIL-30AC autosampler, and the column used was a Waters Xbridge
Peptide BEH300 C18 analytical column (100 × 4.6 mm, 3.5 µm particle size and 300Å pore
size with a flow rate of 0.5 mL/min). Mobile phase A consisted of 97.9% H2O, 2% ACN,
0.1% FA, and mobile phase B consisted of 97.9% ACN, 2% H2O, 0.1% FA. The gradient
program was set as follows: linear increase to 50% B in 30 min, followed by linear increase
to 90% B in 4 min, isocratic elution for 5 min at 90% B, down to 5% B in 1 min and then
equilibration for 10 min.

5.2.2. Detection

For all LC–MS analyses, a flow splitter was added after separation. 90% of the flow
was directed toward an SPD-20A Prominence UV Detector to record UV spectra at both
220 and 254 nm. The remaining 10% of the flow was directed toward a MaXis QTOF mass
spectrometer (Bruker Daltonics, Bremen, Germany) hyphenated to the HPLC via an ESI
source operating in positive ion mode. The following parameters were used: temperature
220◦C, capillary voltage 4.5 kV, gas flow 8.0 L/min, Nebulizer pressure 1.8 Bar. The spectra
were stored at a rate of 2 Hz in the range of 100 to 1500 m/z-values. otofControl software
was used for instrument control (Version 5.2-Build 0.9; Bruker, MA, US).

To acquire MS/MS data on the relevant metabolites found in the model, an Impact
II mass spectrometer (Bruker Daltonics, Bremen, Germany) in data-dependent mode was
hyphenated to the HPLC via an ESI source operating in positive ion mode. The following
parameters were used: temperature 380 ◦C, capillary voltage 4.5 kV, gas flow 8 L/min,
Nebulizer pressure 1.8 Bar, CI gradient from 25 to 55 kV.

5.2.3. Data Processing

Data processing consisted of several steps. First, the output data from the MS were
converted to mzXML. This was performed by the MSConvert software with the thresh-
olds specified in “Section S6—Thresholds applied on MSConvert” in Document S1 of the
Supplementary Materials. Once the mzXML files were obtained, both SAFD—an algo-
rithm able to recognize features by fitting a 3D Gaussian able to align the features within
one sample by means of their m/z-values, retention times and intensities [37]—and the
algorithm given in “Computer Code S1” in the Supplementary Materials were used to
identify the features in each sample and align them into a coherent matrix. The latter based
the said alignment on similarities between retention time windows and m/z-values. With
this information, it was possible to recognize the same feature in different venoms, thus
being able to align the same feature in all venoms, thus being able to create the mentioned
coherent matrix with all venoms and features. After the coherent matrix was developed,
the measured samples were divided in three subsets in order to perform cross-validation
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of the model. After the validity of the model was proven, the model was looked at to
check what features were recognized as relevant, and their concentrations in each venom
were then investigated. This step was performed in conjunction with the identification of
several metabolites associated with those features relevant to the model by means of the
acquired MS/MS spectra of these metabolites or by standard addition when a metabolite
was commercially available.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins15020161/s1, Computer code S1: Feature Alignment, Com-
puter code S2: Model, Documents S1, Figure S1: Analysis of repeatability; Table S1: Level of each
metabolite; Table S2: Order of the injections; Table S3: Relevance of each feature.
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