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Objectives: This study aimed to investigate the relationship between long-term 
trajectories of changes in cardiovascular risk factors (CVRFs) and the risk of cognitive 
impairment among Chinese adults over 60 years old.

Methods: Data were obtained from the Chinese Longitudinal Healthy Longevity Survey 
2005–2018. Cognitive function was evaluated longitudinally through the Chinese version 
of the Mini-Mental State Examination (C-MMSE), and cognitive impairment (C-MMSE ≤23) 
was used as the main outcome variable. The cardiovascular risk factors, including systolic 
blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), pulse 
pressure (PP), and body mass index (BMI), were continuously measured in the follow-up 
duration. The patterns of trajectories of changes in CVRFs were derived from the latent 
growth mixture model (LGMM). The Cox regression model was used to evaluate the 
cognitive impairment hazard ratio (HR) across different CVRF trajectories.

Results: A total of 5,164 participants aged ≥60 years with normal cognitive function at 
baseline were included in the study. After a median follow-up of 8 years, 2,071 participants 
(40.1%) developed cognitive impairment (C-MMSE ≤ 23). The four-class trajectories 
of SBP and BMI were obtained by means of LGMM, and the trajectories of DBP, MAP, 
and PP were grouped into a three-class subgroup. In the final adjusted Cox model, the 
lowered SBP [adjusted HR (aHR): 1.59; 95% CI: 1.17–2.16], lowered PP (aHR: 2.64; 95% CI: 
1.66–4.19), and progressively obese (aHR: 1.28; 95% CI: 1.02–1.62) and stable slim (aHR: 
1.13; 95% CI: 1.02–1.25) were associated with the higher risk of cognitive impairment. 
Low stable DBP (aHR: 0.80; 95% CI: 0.66–0.96) and elevated PP (aHR: 0.76; 95% CI: 
0.63–0.92) decreased the risk for cognitive impairment among participants.

Conclusion: Lowered SBP, lowered PP, progressive obesity, and stable slim increased 
the risk for cognitive impairment in the Chinese elderly. Low stable DBP and elevated 
PP were protective against cognitive impairment, but more DBP lowering and 
≥25 mmHg growth in PP contributed to a higher risk of cognitive impairment. The 
findings have important implications for preventing cognitive impairment in elder 
adults based on the long-term trajectories of changes in CVRFs.
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1. Introduction

With the increase in human lifespan, dementia imposes a heavy 
burden on families, society, and health-care systems (Yu et al., 2012). It 
is reported that the global dementia population reached 47 million in 
2015 and will rise to 131 million by 2050 (Arvanitakis et al., 2019). 
Cognitive impairment, characterized by declines in memory, attention, 
and cognitive function, is a transitional state between normal aging and 
dementia (Gao et al., 2017). A previous study has shown that 10%–15% 
of people with mild cognitive impairment could develop dementia each 
year (Eshkoor et al., 2015). Therefore, delaying the onset of cognitive 
impairment may be a prospective clinical strategy to prevent dementia 
(Gao et al., 2017). Previous studies have recognized that age, gender, 
educational level, cardiovascular risk factors (CVRFs), family history, 
and APOE4 allele are the risk factors for cognitive impairment (Beeri 
et al., 2009; Zhang et al., 2019; Livingston et al., 2020). Among them, 
CVRFs have attracted more and more researchers’ attention because of 
their potentially modifiable features.

Researchers have found that diabetes is strongly associated with the 
development of cognitive impairment in the elderly population, whereas 
the findings for other risk factors are more mixed (Kerola et al., 2011). 
For example, some studies report elevated blood pressure prior to the 
onset of mild cognitive impairment or dementia, while others show that 
low blood pressure is associated with an increased risk for cognitive 
impairment (Launer et al., 2000; Kivipelto et al., 2001; Qiu et al., 2003; 
Reitz et al., 2007; Lv et al., 2017). The association between obesity and 
cognitive impairment is also controversial (Wanleenuwat et al., 2019). 
Some studies showed that being underweight and substantial weight loss 
are important risk factors for cognitive impairment in the elderly (Ren 
et al., 2021; Wu et al., 2021), but others suggested that obesity might 
impair cognitive function, especially when coexisting with other CVRFs 
(Gustafson and Luchsinger, 2013; Wang et al., 2019). Therefore, the 
relationships between CVRFs and cognitive impairment need to 
be further explored.

Previous studies have mainly explored the relationships between 
CVRFs at a certain moment and the subsequent onset of cognitive 
impairment (Launer et al., 2000; Kivipelto et al., 2001; Qiu et al., 2003; 
Reitz et al., 2007; Lv et al., 2017; Wang et al., 2019; Ren et al., 2021; Wu 
et al., 2021). However, it is acknowledged that CVRFs are not static but 
change with age during the life course, so the associations of CVRFs 
with cognitive impairment could alter over time (Walker et al., 2019). 
Thus, it is more meaningful to analyze the trajectories of changes in 
CVRFs over time to show the direction and magnitude of changes in 
CVRFs during the life course (Cheng et al., 2021). The latent growth 
mixed model (LGMM) can identify multiple unobserved subpopulations 
that respond similarly to repeated measures of CVRFs (Qiu et al., 2020) 
and describe the developmental trajectories of subpopulations over 
time. Given the strong association between cardiovascular burden and 
cognitive impairment (Beeri et al., 2009; Kerola et al., 2011; Cleveland, 
2020), we hypothesized that the patterns of trajectories of changes in 
CVRFs are predictive of cognitive impairment.

As a populous country, approximately 260 million people aged 60 
and above lived in China in 2020, with the elderly population expected 
to increase to one-third by 2050 (Zhang et al., 2022). Inevitably, with 
severe aging, the growth rate of people with cognitive impairment in 
China is the highest in the world due to growing exposure to CVRFs 
(Wu et al., 2013; Prince et al., 2016). However, most studies investigating 
the relationships between the trajectories of CVRFs and cognitive 
impairment were conducted in developed countries (Hakala et al., 2021; 

Yaffe et  al., 2021), with only a few in China. Therefore, based on a 
national cohort of adults over 60 in China, the study aimed to determine 
trajectories of changes in CVRFs using the LGMM and explore the 
relationships between trajectories of changes in CVRFs and 
cognitive impairment.

2. Methods

2.1. Participants

The study data were derived from the Chinese Longitudinal Healthy 
Longevity Survey (CLHLS), an ongoing longitudinal cohort jointly 
established by Peking University and Duke University. To investigate the 
determinants of the health of the Chinese elderly, the CLHLS began in 
1998 and was followed in 2000, 2002, 2005, 2008–2009, 2011–2012, 
2014, and 2017–2018. The first eight waves of survey covered about half 
of the counties/cities in 23 China provinces, and the ongoing ninth wave 
of survey further expanded to 27 provinces. To compensate for missing 
samples due to death and loss to follow-up in the ongoing survey, each 
wave of surveys continually recruits new participants based on similar 
gender, age, and baseline characteristics (Zeng, 2012). CLHLS 
procedures were approved by the Ethics Committee of Peking University 
and Duke University (IRB00001052-13074). All participants provided 
written informed consent. A more detailed description of the design and 
procedures of CLHLS has been described elsewhere (Yi, 2008).

Considering the lack of height data in the first three waves of survey 
(1998, 2000, and 2002) and fewer than three follow-up visits in the last 
two waves (2014 and 2018); in the study, we included the participants 
who were enrolled in the three surveys conducted in 2005, 2008–2009, 
and 2011–2012 and followed up to 2018. As summarized in 
Supplementary Figure S1, a total of 26,477 participants were extracted 
from the three cohorts. However, 19,375 participants were excluded 
because of fewer than three visits during the follow-up, and 1,925 
participants were excluded because they were diagnosed with dementia 
or cognitive impairment at the baseline. Among the remaining 5,177 
participants, 8 participants aged <60 years at the baseline and 5 
participants without assessment of cognitive impairment at the last visit 
were also excluded. Finally, a total of 5,164 participants were included 
in the study.

2.2. Assessment of cognitive function

Cognitive function was evaluated using the Chinese version of the 
Mini-Mental State Examination (C-MMSE), which was a modified and 
validated cognitive scale for the China elderly (Zeng, 2012; Ming-yue 
et al., 2015; Gao et al., 2017). The C-MMSE scale consists of 6 dimensions 
with 24 items, including 5 items for orientation, 1 for naming, 3 for 
registration, 6 for attention and calculation, 3 for recall, and 6 for 
language. The total score of the C-MMSE ranges from 0 to 30, with 
lower scores indicating poorer cognitive function.

According to the definition of cognitive impairment (Ming-yue 
et al., 2015; An and Liu, 2016), we classified cognitive functions into four 
mutually exclusive groups: (1) 24 ≤ C-MMSE ≤30: no cognitive 
impairment; (2) 18 ≤ C-MMSE ≤23: mild cognitive impairment; (3) 
10 ≤ C-MMSE ≤17: moderate cognitive impairment; and (4) 
0 ≤ C-MMSE ≤9: severe cognitive impairment. Cognitive impairment 
(C-MMSE ≤23) was used as the main outcome variable.

https://doi.org/10.3389/fnagi.2023.1084136
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Duan et al. 10.3389/fnagi.2023.1084136

Frontiers in Aging Neuroscience 03 frontiersin.org

2.3. Measurements of cardiovascular risk 
factors

In the follow-up duration, CVRFs including systolic blood pressure 
(SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), 
pulse pressure (PP), and body mass index (BMI), were continuously 
measured. After participants were required to rest for 5 min, blood 
pressure was measured on the right arm at heart level in a sitting position 
by trained internists using a mercury sphygmomanometer. The blood 
pressure was continuously measured twice, with at least one-minute 
interval between the two measurements. According to Korotkoff Phase 
I and V sound, SBP and DBP values were determined, respectively. MAP 
was further calculated based on the formula 1/3(SBP) + 2/3(DBP). PP was 
calculated as (SBP)-(DBP). Body weight (in kilograms) and height (in 
centimeters) were measured by trained interviewers. BMI (kg/m2) was 
computed by dividing body weight (kg) by the square of body height (m). 
Changes in CVRFs during the study were calculated as their values at the 
end of the follow-up minus those at baseline.

2.4. Measurements of covariates

In the present study, we  selected baseline covariates, such as 
sociodemographic characteristics, lifestyle, and medical examination, 
which may confound the relationships between CVRFs and cognitive 
impairment based on previous studies (Yi, 2008; Yuan et al., 2019; Zhang 
et al., 2019). Data on sociodemographic characteristics and lifestyle were 
obtained by questionnaire. The sociodemographic characteristics 
included gender (male/female), category of residence areas (city/town/
rural), living pattern (with family member(s)/alone), education level, and 
self-reported economic status (very bad/bad/fair/good or very good). The 
lifestyle included smoking (yes/no), drinking (yes/no), regular exercise 
(current/past/never), self-reported sleep quality (very bad/bad/fair/good 
or very good), fresh fruit consumption (rarely or never/ occasionally/ 
quite often/ almost every day), and vegetable consumption (rarely or 
never/occasionally/quite often/almost every day). The medical 
examinations were from self-reported hospital diagnoses, which included 
hypertension (yes/no), diabetes (yes/no), heart disease (yes/no), 
cerebrovascular disease (yes/no), and cancer (yes/no).

2.5. Statistical analysis

First, categorical variables were presented as numbers (percentages), 
and continuous variables were expressed as median (interquartile range) 
because of nonnormal distribution. The differences in the baseline 
characteristics across different cognitive functions were compared using 
Chi-square and the Mann–Whitney U test.

Second, in the longitudinal development of CVRFs (SBP, DBP, MAP, 
PP, and BMI) during the follow-up, the latent growth mixture model 
(LGMM) was adopted to investigate heterogeneity and identify subgroups 
of participants who shared similar underlying trajectories of CVRFs. The 
functional form of the trajectories varied across a number of different 
orders of polynomials, and the best-fitting polynomial form can 
be  specified for each trajectory separately. This property can depict 
differential age-related patterns of changes in CVRFs observed over the 
follow-up period in our samples. The trajectories of changes in CVRFs 
during the follow-up duration were modeled as follows. Because CVRFs 
were not normally distributed, the rank-order normalization procedure 

was first used to generate CVRFs with standard normal distributions. The 
first step was to determine the most appropriate number of trajectories 
based on the quadratic model. The number of trajectories was chosen 
based on better goodness of fit (2*ΔBIC >10, indicating better goodness-
of-fit for n-class model than n-1 class model), internal reliability (mean 
posterior probability >0.65 for each latent class, reflecting an acceptable 
uncertainty of posterior classification) (Marioni et al., 2014; Norris et al., 
2021), clinical plausibility, and interpretability (the size of the smallest 
class size ≥45 subjects). At last, the maximum 2*ΔBIC between the 
quadratic and cubic order terms was adopted to determine the shape of 
each trajectory group. Five trajectory models for SBP, DBP, MAP, PP, and 
BMI were generated based on adequate fit to data, classification accuracy, 
and clinical interpretability. All participants were assigned to their 
subgroups with the highest posterior probability for subsequent analyses.

Third, Cox regression models were used to evaluate the hazard 
ratios (HRs) of cognitive impairment across different trajectories of 
CVRFs. The age at which the participants first experienced cognitive 
impairment was used as the timescale for survival analyses. The 
participants who never experienced cognitive impairment were 
considered as censored observations and the censoring time was the age 
of the last assessment of cognitive function. Four adjusted Cox models 
were established. Model 1 was the basic model without covariates. 
Model 2 was established based on Model 1 after adjustments for the 
sociodemographic characteristics. Model 3 was established based on 
Model 2 with further adjustments for lifestyle. Model 4 was established 
based on Model 3 with further adjustments for the medical examination.

Fourth, we repeated Cox regression for participants with different sex, 
residence areas, and living pattern. The interactions were also tested by 
comparing models with and without a product term between trajectories 
of CVRFs and sex/residence areas/living patterns. Additionally, a series of 
sensitivity analyses were conducted to test the robustness of our findings. 
First, Cox regression was conducted with moderate/severe cognitive 
impairment (C-MMSE ≤ 17) as the outcome variable. Second, Cox 
regression was repeated with severe cognitive impairment (C-MMSE ≤ 9) 
as the unique outcome. Third, we excluded participants with a history of 
hypertension, diabetes, heart disease, cerebrovascular disease, and cancer 
at the baseline because major chronic diseases could influence both CVRF 
trajectories and cognitive impairment. Fourth, we imputed all missing 
covariates using multiple imputations to test the influence of missing 
variables. Fifth, we used restricted cubic splines to express the potentially 
non-linear relationship between changes in CVRFs and the risk of 
cognitive impairment. A two-sided p < 0.05 was considered statistically 
significant in all analyses. LGMM analyses were conducted using THE 
TRAJ procedure in Stata 12.0 (StataCorp LP, College Station, TX, USA). 
The restricted cubic splines were performed in R (version 4.1.2) with the 
package “rms.” All other statistical analyses were performed in SPSS 26.0 
(IBM SPSS Inc., New York, NY, USA).

3. Results

3.1. Basic characteristics

This study included 5,164 adults aged ≥60 (median age: 75 years). 
Among them, 51.8% were male, 35.0% resided in urban areas, and 
85.9% lived with their families. During a median 8-year follow-up, the 
prevalence of cognitive impairment (C-MMSE ≤23) was 40.1% among 
the participants. There were significant differences in the baseline 
characteristics across different cognitive functions (Table 1). Compared 
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TABLE 1 Baseline characteristics of CLHLS participants with different cognitive functions (cognitive impairment as the outcome).

Characteristics No cognitive 
impairment (24–30)

Cognitive impairment 
(0–23)

Overall p value

No. of participants 3,093 (59.9) 2,071 (40.1) 5,164

Age (years) <0.001

median (interquartile range) 71.0 (12.0) 81.0 (15.0) 75.0 (16.0)

Gender (%) <0.001

Male 1,855 (60.0) 822 (39.7) 2,677 (51.8)

Female 1,238 (40.0) 1,249 (60.3) 2,487 (48.2)

Category of residence areas (%) <0.001

City 568 (18.4) 283 (13.7) 851 (16.5)

Town 568 (18.4) 388 (18.7) 956 (18.5)

Rural 1,957 (63.3) 1,400 (67.6) 3,357 (65.0)

Living pattern (%) <0.001

Living with family member(s) 2,721 (88.1) 1,708 (82.6) 4,429 (85.9)

Living alone 367 (11.9) 361 (17.4) 728 (14.1)

Education level (years) <0.001

median (interquartile range) 3.0 (6.0) 0.0 (2.0) 1.0 (4.0)

Self-reported economic status (%) <0.001

Very poor 50 (1.6) 48 (2.3) 98 (1.9)

Poor 345 (11.2) 298 (14.4) 643 (12.5)

Fair 2,149 (69.6) 1,405 (68.0) 3,554 (68.9)

Rich 499 (16.2) 302 (14.6) 801 (15.5)

Very rich 45 (1.5) 14 (0.7) 59 (1.1)

Smoking (%) <0.001

Yes 963 (31.2) 392 (18.9) 1,355 (26.2)

No 2,128 (68.8) 1,679 (81.1) 3,807 (73.8)

Drinking (%) <0.001

Yes 846 (27.4) 431 (20.8) 1,277 (24.7)

No 2,243 (72.6) 1,640 (79.2) 3,883 (75.3)

Regular exercise (%) <0.001

Current 1,177 (38.1) 639 (30.9) 1816 (35.2)

Past 200 (6.5) 171 (8.3) 371 (7.2)

Never 1,708 (55.2) 1,256 (60.6) 2,964 (57.4)

Self-reported sleep quality (%) 0.014

Very bad 21 (0.7) 17 (0.8) 38 (0.7)

Bad 291 (9.4) 188 (9.1) 479 (9.3)

Fair 633 (20.5) 474 (22.9) 1,107 (21.4)

Good 1,614 (52.2) 1,097 (53.0) 2,711 (52.5)

Very good 534 (17.3) 295 (14.2) 829 (16.1)

Fresh fruit consumption (%) <0.001

rarely or never 558 (18.0) 475 (22.9) 1,033 (20.0)

occasionally 1,111 (35.9) 863 (41.7) 1974 (38.2)

quite often 987 (31.9) 547 (26.4) 1,534 (29.7)

almost everyday 437 (14.1) 186 (9.0) 623 (12.1)

Fresh vegetable consumption (%) <0.001

rarely or never 31 (1.0) 31 (1.5) 62 (1.2)

(Continued)
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with the participants without cognitive impairment, participants with 
cognitive impairment were more likely to be female, rural residents, 
living alone, less educated, less economically well-off, and eating fewer 
fruits and vegetables. At the beginning of the follow-up, most CVRFs 
(e.g., SBP, DBP, and MAP) did not differ in the different cognitive 
functions, while they differed significantly at the end of the follow-up 
(Table 2).

Meanwhile, moderate/severe cognitive impairments (C-MMSE 
≤17) were developed in 21.4% of the participants, and severe cognitive 
impairment (C-MMSE ≤9) were observed in 11.6% of the participants 
(Supplementary Tables S1, S2). Supplementary Table S3 shows that 
patients excluded from the analysis had very different characteristics 
from those included, including age and the prevalence of heart disease 
and diabetes, among others. The included patients were younger, more 
frequently male, and more likely to be smokers but less likely to have 
diabetes, heart disease, and cerebrovascular disease.

3.2. Trajectories of changes in CVRFs during 
the follow-up

In trajectory modeling, the number of trajectories was determined by 
using a quadratic model, and all fit indices are shown in 
Supplementary Tables S4–S8. The shape of each trajectory group was 
determined by comparing the goodness of fit (2*ΔBIC > 10) between 
quadratic and cubic order terms, as shown in Supplementary Tables S9–S13. 
SBP was taken as an example to illustrate the determination of the optimal 
model. In the first step, the indicator 2*ΔBIC > 10 indicated that the 
goodness of fit is better for the n-class model than the n−1 class model. 
Also, the proportion of subjects classified in each group with a posterior 
probability >0.65 and a minimum class sample size was greater than 45 in 

TABLE 1 (Continued)

Characteristics No cognitive 
impairment (24–30)

Cognitive impairment 
(0–23)

Overall p value

occasionally 207 (6.7) 178 (8.6) 385 (7.5)

quite often 928 (30.1) 713 (34.4) 1,641 (31.8)

almost every day 1922 (62.2) 1,149 (55.5) 3,071 (59.5)

Hypertension (%) 0.007

Yes 854 (28.0) 502 (24.6) 1,356 (26.6)

No 2,196 (72.0) 1,540 (75.4) 3,736 (73.4)

Diabetes (%) 0.002

Yes 242 (7.9) 116 (5.7) 358 (7.0)

No 2,812 (92.1) 1,923 (94.3) 4,735 (93.0)

Heart disease (%) 0.006

Yes 415 (13.6) 225 (11.0) 640 (12.5)

No 2,638 (86.4) 1,822 (89.0) 4,460 (87.5)

Cerebrovascular disease (%) 0.555

Yes 207 (6.8) 148 (7.2) 355 (7.0)

No 2,840 (93.2) 1,901 (92.8) 4,741 (93.0)

Cancer (%) 0.019

Yes 64 (2.1) 25 (1.2) 89 (1.8)

No 2,962 (97.9) 2,007 (98.8) 4,969 (98.2)

Data are expressed as numbers (percentages) or median (interquartile range).

TABLE 2 CVRFs among participants with and without cognitive impairment.

CVRFs
No cognitive 
impairment 

(24–30)

Cognitive 
impairment 

(0–23)
p value

No. of participants 3,093 (59.9) 2,071 (40.1)

Beginning of the follow-up

SBP (mmHg) 134.81 (20.06) 133.82 (19.87) 0.084

DBP (mmHg) 81.92 (11.41) 82.04 (11.45) 0.701

BMI (kg/m2) 21.38 (3.77) 20.03 (3.72) <0.001

MAP (mmHg) 99.56 (12.16) 99.27 (12.15) 0.413

PP (mmHg) 52.93 (17.98) 51.69 (17.56) 0.016

End of the follow-up

SBP (mmHg) 140.17 (21.05) 138.80 (22.10) 0.028

DBP (mmHg) 80.54 (11.41) 79.46 (12.07) 0.002

BMI (kg/m2) 22.40 (4.01) 20.85 (4.00) <0.001

MAP (mmHg) 100.39 (12.84) 99.18 (13.38) 0.001

PP (mmHg) 59.55 (17.52) 59.16 (18.80) 0.464

Changes in CVRFs

SBP (mmHg) 5.41 (26.62) 5.03 (27.76) 0.636

DBP (mmHg) −1.36 (15.10) −2.60 (15.76) 0.006

BMI (kg/m2) 1.01 (3.97) 0.81 (4.35) 0.094

MAP (mmHg) 0.86 (16.22) −0.10 (16.70) 0.045

PP (mmHg) 6.66 (23.48) 7.49 (24.93) 0.240

Data are expressed as mean (standard deviation). Changes in CVRFs during the study was 
calculated as their values at the end of the follow-up minus those at baseline. SBP, systolic blood 
pressure; DBP, diastolic blood pressure; BMI, body mass index; MAP, mean arterial pressure; 
PP, pulse pressure.
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the four-class model. Considering all metrics, clinical plausibility, and 
interpretability, the four-class model was chosen as the optimal model for 
the SBP trajectory group. The optimal SBP trajectory model was 
determined after assessing the goodness of fit (maximum 2*ΔBIC) for the 
four-trajectory solution shapes (Supplementary Table S14). Based on the 
same indicators and principles, the optimal trajectory models for DBP, 
MAP, PP, and BMI were also determined (Supplementary Table S14). 
Supplementary Table S15 presents the parameter estimation results of 
modeling the trajectories of CVRFs.

Figure 1 shows the trends and trajectories of changes in CVRFs, 
including SBP, DBP, and BMI. During the follow-up visits, SBP trajectory 
was classified into four classes: (1) high stable SBP (n = 1,046, 20.26%) 
with consistently high SBP level at about 150 mmHg, (2) normal stable 
SBP (n = 3,863, 74.81%) with the stable SBP at about 130 mmHg, (3) 
lowered SBP (n = 204, 3.95%) with decreasing SBP from 149 mmHg to 

137 mmHg, and (4) greatly elevated SBP (n = 51, 0.99%) with a large 
increase in SBP from 157 mmHg to 188 mmHg. The three-class DBP 
trajectory was obtained as follows: (1) normal stable DBP (n = 4,472, 
86.60%) with a maintained normal stable DBP at about 81 mmHg, (2) low 
stable DBP (n = 394, 7.63%) with consistently low DBP around 74 mmHg, 
and (3) high stable DBP (n = 298, 5.77%) with consistently high DBP at 
about 92 mmHg. For the four-class BMI trajectory, 7.01% (n = 362) of the 
participants were progressively obese (from 26 kg/m2 to 29 kg/m2), 
55.62% (n = 2,872) were stably slim, 36.43% (n = 1,881) maintained a 
stable normal weight of about 23 kg/m2, and only 0.95% (n = 49) had 
declined weight from 29 to 27 kg/m2. MAP was classified as (1) low stable 
MAP (n = 483, 9.35%), (2) normal stable MAP (n = 4,196, 81.25%), and 
(3) high stable MAP (n = 485, 9.39%) (Supplementary Figure S2). PP 
included (1) elevated PP (n = 385, 7.46%), (2) normal stable PP (n = 4,668, 
90.40%), and (3) lowered PP (n = 111, 2.15%) (Supplementary Figure S3).

3.3. Effects of CVRF trajectories on the risk 
of cognitive impairment

The hazard ratios (HRs) of cognitive impairment by different CVRF 
trajectories using Cox regression are presented in Table 3. With the 
normal stable SBP group as a reference, a higher risk of cognitive 
impairment was observed in the lowered SBP group [adjusted HR 
(aHR) = 1.67; 95% CI: 1.24–2.25] in a univariate model. After adjusting 
for different covariates, including sociodemographic characteristics, 
lifestyle, and physical examination, sequentially from Model 2 to Model 
4, the lowered SBP group had a higher risk of cognitive impairment 
(aHR = 1.59; 95% CI: 1.17–2.16) compared to the normal stable SBP 
group, and the low stable DBP group had a lower risk of cognitive 
impairment (aHR = 0.80; 95% CI: 0.67–0.95) compared to the normal 
stable DBP group in a univariate model. After additional adjustments 
for covariates, a lower risk of cognitive impairment was still observed in 
the low stable DBP group than in the normal stable DBP group 
(aHR = 0.80; 95% CI: 0.66–0.96). Compared with the group with stable 
normal weight, both the progressively obese group and the stable slim 
group had a higher risk for cognitive impairment in Model 4 (aHR = 1.28, 
95%CI: 1.02–0.62 for the former and aHR = 1.13, 95%CI: 1.02 –1.25 for 
the latter). Figure 2 shows the adjusted cumulative hazard function 
curves of cognitive impairment by SBP, DBP, and BMI trajectories, 
consistent with the main results.

Compared to the participants with normal stable PP, the participants 
with lowered PP were more likely to suffer from cognitive impairment 
(aHR = 2.64; 95% CI: 1.66–4.19 in Model 4), while the participants with 
elevated PP had a lower risk of cognitive impairment (aHR = 0.76; 95% 
CI: 0.63–0.92 in Model 4). However, there was no statistically significant 
association between the MAP trajectory groups and the risk of cognitive 
impairment. The adjusted cumulative hazard of cognitive impairment 
by MAP and PP trajectories, also show consistent results 
(Supplementary Figures S4, S5).

3.4. Subgroup analyses

According to the baseline characteristics, such as gender, residence 
areas, and living pattern, the associations between CVRF trajectories and 
cognitive impairment across different subgroups were broadly consistent 
with our main findings. Across subgroups, the positive association 
between the lowered SBP group and the risk for cognitive impairment 

A

B

C

FIGURE 1

Latent trajectories of SBP (A), DBP (B), and BMI (C) for Chinese older 
people. Estimated trajectories (solid lines), observed group means for 
each survey (dot symbols). Dashed lines are approximated 95% 
pointwise CIs on the estimated trajectories. SBP, systolic blood 
pressure; DBP, diastolic blood pressure; BMI, body mass index.
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remained significant (Supplementary Table 16), and the effect of living 
pattern on appreciable modification of SBP was significant (interaction 
value of p < 0.05). Low stable DBP was associated with a lower risk of 
cognitive impairment only in men (aHR = 0.63, 95%CI: 0.47–0.85), and 
only the effect of gender on appreciable modification of DBP was 
significant (Supplementary Table 17). The associations of trajectories of 
other CVRFs with cognitive impairment were unchanged after 
stratification by gender, residence areas, and living pattern, showing no 
statistically significant interactions (Supplementary Tables S18–S20).

3.5. Sensitivity analyses

When moderate/severe cognitive impairment (C-MMSE ≤ 17) and 
severe cognitive impairment (C-MMSE ≤ 9), were separately used as the 
outcome variables (Supplementary Tables S21, S22), the results were 
similar to the main findings. The results remained consistent in general 
after excluding subjects with a history of hypertension, diabetes, heart 
disease, cerebrovascular disease and cancer at the baseline 
(Supplementary Table S23). After imputing missing values of all 
covariates using multiple imputations, all results remained the same 
(Supplementary Table S23). The restricted cubic splines were further 
adopted to explore the relationships between changes in CVRFs during 
the life course and risk of cognitive impairment after adjustment for 
possible confounders (Supplementary Figures S6–S10). The more 
amount of reduction in SBP contributed to a higher hazard of cognitive 
impairment. The increments in SBP ranging from 5 to 42 mmHg, 
decreased the risk of cognitive impairment. However, the associations 
of changes in SBP with risk of cognitive impairment did not reach the 
predetermined level of statistical significance. More DBP lowering and 
≥40 mmHg growth in DBP lead to an increasing hazard of cognitive 

impairment. When PP increased by 7–25 mmHg, the risk of cognitive 
impairment reduced, and when PP increased by over 25 mmHg, the 
hazard of cognitive impairment rose. The risk for cognitive impairment 
grew with the reduction in MAP during the study. The declines in BMI 
were associated with a higher likelihood of cognitive impairment.

4. Discussion

In this nationwide cohort of elderly in China, the developmental 
trajectories of CVRFs over time were identified using LGMM, and their 
relationships with cognitive impairment were further explored. The 
results indicated that the lowered SBP, lowered PP, progressively obese, 
and stable slim were associated with a higher risk of cognitive 
impairment, and the low stable DBP and elevated PP were associated 
with a lower risk of cognitive impairment. The associations were not 
modified by sociodemographic characteristics, lifestyle, and medical 
examination, and sensitivity analysis was also conducted to demonstrate 
the robustness of the results.

In this cohort, the incidence density of cognitive impairment 
(C-MMSE ≤ 23) in the participants over 60 years was 50.2 per 1,000 
person-years. Also, the incidence densities of moderate/severe cognitive 
impairment (C-MMSE ≤ 17) and severe cognitive impairment 
(C-MMSE ≤ 9) were 26.7 and 14.5 per 1,000 person-years, respectively. 
The estimates of the incidence of cognitive impairment varied 
considerably by country. For example, a 4.7-year follow-up study in the 
United  States showed that the incidence density of mild cognitive 
impairment was 51 per 1,000 person-years among people over 65 years 
(Manly et al., 2008). Another study in Italy investigating mild cognitive 
impairment among participants over 65 years reported an incidence 
density of 76.8 per 1,000 person-years during a 4-year follow-up period. 

TABLE 3 Effects of CVRF trajectories on the risk of cognitive impairment.

Variables Model 1 Model 2 Model 3 Model 4

Normal stable SBP as reference

High stable SBP 0.94 (0.84, 1.06) 0.92 (0.82, 1.04) 0.94 (0.83, 1.05) 0.92 (0.81, 1.03)

Greatly elevated SBP 0.82 (0.51, 1.32) 0.74 (0.46, 1.19) 0.73 (0.45, 1.18) 0.75 (0.46, 1.21)

Lowered SBP 1.67 (1.24, 2.25)* 1.68 (1.24, 2.27)* 1.66 (1.23, 2.25)* 1.59 (1.17, 2.16)*

Normal stable DBP as reference

High stable DBP 0.98 (0.80, 1.19) 0.99 (0.81, 1.20) 1.00 (0.82, 1.21) 1.02 (0.84, 1.25)

Low stable DBP 0.80 (0.67, 0.95)* 0.83 (0.70, 0.99)* 0.81 (0.68, 0.97)* 0.80 (0.66, 0.96)*

Stable normal weight as reference

Progressively obese 1.255 (1.003, 1.570)* 1.28 (1.02, 1.61)* 1.30 (1.04, 1.64)* 1.28 (1.02, 1.62)*

Stable slim 1.25 (1.14, 1.38)* 1.14 (1.04, 1.26)* 1.12 (1.02, 1.24)* 1.13 (1.02, 1.25)*

Lowered weight 1.46 (0.82, 2.58) 1.30 (0.73, 2.32) 1.30 (0.73, 2.31) 1.18 (0.66, 2.11)

Normal stable MAP as reference

Low stable MAP 1.01 (0.87, 1.17) 1.03 (0.88, 1.20) 1.02 (0.87, 1.18) 1.01 (0.86, 1.18)

High stable MAP 1.07 (0.91, 1.24) 1.02 (0.87, 1.19) 1.03 (0.88, 1.20) 1.02 (0.87, 1.20)

Normal stable PP as reference

Elevated PP 0.78 (0.65, 0.93)* 0.76 (0.64, 0.92)* 0.77 (0.64, 0.93)* 0.76 (0.63, 0.92)*

Lowered PP 2.58 (1.65, 4.04)* 2.79 (1.78, 4.36)* 2.75 (1.75, 4.30)* 2.64 (1.66, 4.19)*

SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial pressure. PP, pulse pressure. Hazard ratios (95% confidence intervals) are presented. Model 1 was adjusted for no 
covariates. Model 2 was adjusted for gender, category of residence areas, living pattern, education level, and self-reported economic status based on model 1. Model 3 was adjusted for model 2 plus 
smoking, drinking, regular exercise, self-reported sleep quality, fresh fruit consumption, and vegetable consumption. Model 4 was adjusted for model 3 plus hypertension, diabetes, heart disease, 
cerebrovascular disease, and cancer. *p < 0.05.
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FIGURE 2

Curves of the cumulative hazard function of cognitive impairment by trajectory classes of SBP (A), DBP (B), and BMI (C) in the final adjusted model. SBP, 
systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index.
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In contrast, the observed prevalence of cognitive impairment in our 
study population approached the developed-country level. Because 
cognitive impairment represents an intermediate stage between normal 
aging and dementia, recognition of cognitive impairment plays an 
important role in early intervention and prevention of dementia 
(Eshkoor et al., 2015). As the population ages, more and more elder 
people will suffer from cognitive impairment, especially in China. This 
makes identifying people at risk of developing dementia at an early stage 
important public health implications.

Four and three unique trajectories were determined for BP and PP, 
respectively. The percentages of groups with normal stable BP and PP 
were over 70%, indicating that the vast majority of elderly in our study 
had little change in blood pressure. Because our subjects were older and 
had fewer deleterious BP changes compared with the general population, 
our study had a higher proportion of people with normal BP than in 
previous studies (Smitson et al., 2017). Similar to our study, a cohort 
study of the elderly with a median age of 77 years conducted in the 
United States identified trajectories of increased, little changed, and 
declined SBP by hierarchical cluster analysis (Smitson et  al., 2017). 
Cheng et al. (2021) also demonstrated four unique BP/PP trajectories: 
normal, stabilized, elevated, and persistently high BP/PP in the Chinese 
elderly. In previous studies, the differences in the baseline characteristics 
and risk of heart disease and cerebrovascular disease among BP/PP 
trajectory groups were similar to our study (Smitson et al., 2017; Cheng 
et al., 2021). Thus, the occurrence of lowered BP in our study should not 
be  considered a complication of heart disease and cerebrovascular 
diseases. Further epidemiological studies will be needed to examine the 
specific mechanisms that generate these abnormal trajectories. Hakala 
et  al. (2021) also identified four trajectory groups of BMI among 
participants between young adulthood and midlife based on a 31-year 
cohort study, consistent with our findings. In general, our results are 
consistent with previous findings and represent real dynamic trajectories 
of CVRFs. This suggests heterogeneity in the trajectories of CVRFs in 
older adults and that subpopulations respond similarly to repeated 
measures of CVRFs over time.

Our study indicated that lowered SBP change was detrimental to 
cognitive function and increased the incidence of cognitive impairment 
by 59% among the elderly. Similarly, a 32-year follow-up study of 1,890 
middle-aged and elderly Japanese-American men also demonstrated 
that people with dementia had a faster decline in SBP compared to 
those without dementia (Stewart et al., 2009). In Sweden, a 37-year 
follow-up study showed that among female participants with a mean 
age of 45 years at the baseline, those with dementia had a greater 
decline in SBP later in life than those without (Joas et al., 2012). Our 
study observed that low stable DBP (around 74 mmHg) was associated 
with a lower risk of cognitive impairment, but excessive reduction of 
DBP increased its risk. Similar to our findings, a cross-sectional study 
showed that those with a mean DBP of 77 mmHg had the highest 
cognitive function scores among those 65 years and older (Morris et al., 
2002). In a 9-year longitudinal study, Glynn et  al. (1999) found a 
U-shaped association between cognitive impairment and DBP and 
demonstrated that lower DBP (<70 mm Hg) and higher DBP (≥80 mm 
Hg) were associated with an increased risk of cognitive impairment. 
Gao et al. (2021) also found that persistently low stable rather than 
significantly reduced DBP might be  protective against cognitive 
impairment. Furthermore, our results suggested that lowered PP was 
associated with an increased risk of cognitive impairment. Molander 
et al. (2010) also confirmed a larger decrease in PP in dementia cases, 
consistent with our findings. However, not entirely consistent with 

previous findings (Li et al., 2022), our results showed that elevated PP 
was a protective factor against cognitive impairment, but ≥25 mmHg 
growth in PP increased the risk of cognitive impairment. The possible 
mechanisms of blood pressure worsening cognitive function include 
promoting disturbances in amyloid clearance, reduced cerebral 
perfusion, and white matter damage (Bink et al., 2013; Wanleenuwat 
et al., 2019). The findings suggest that it is feasible to identify people 
who are more likely to develop cognitive impairment based on changes 
in blood pressure and are of great significance to improving cognitive 
function, delaying the onset of dementia, and reducing family and 
social burdens.

In our study, stable slim and progressively obese were observed to 
increase the risk of cognitive impairment. Similar to our study, two 
cohort studies on the Chinese elderly showed that significant weight loss 
or being underweight might be significant risk factors for cognitive 
impairment (Ren et al., 2021; Wu et al., 2021). However, the evidence 
for the relationship between obesity and cognitive impairment is 
conflicting, with obesity-related favorable and detrimental factors 
conjointly determining cognitive outcomes. Obesity is thought to affect 
hypertension, type 2 diabetes, and cardiovascular disease, thereby 
increasing the risk of dementia (Luchsinger and Gustafson, 2009) 
consistent with our findings. However, according to clinical data from 
the U.S. National Alzheimer Coordinating Center, a high BMI is 
associated with slower progression of amnestic mild cognitive 
impairment (Besser et al., 2014). Perhaps, this can be explained by the 
neuroprotective effect of leptin, which rises with obesity (Lieb et al., 
2009). More research is still needed to elucidate this association.

The strength of our study is the use of a large, exceptional cohort, 
which provides higher statistical power. Second, the prospective cohort 
study design allowed us to obtain complete data on changes in CVRFs 
and analyze confirmed cognitive impairment. Third, considering CVRFs 
are not static but change with age over the course of life, we used LGMM 
to model the trajectory of CVRFs over time and explored the 
relationships between long-term trajectories of CVRFs and cognitive 
impairment. Our study fills certain knowledge gaps in the relationships 
between long-term trends in CVRFs and cognitive function among the 
Chinese elderly. Fourth, our study detects the associations between 
CVRF trajectory and various degrees of cognitive impairment. 
Meanwhile, the robustness of our findings was further evaluated using 
a series of sensitivity analyses.

Admittedly, some limitations of our study should be noted when 
interpreting the results. First, we  adjusted for the key personal 
characteristics and lifestyle behaviors in the analyses, but other 
unmeasured confounders, such as antihypertensive drugs and plasma 
glucose, may still influence our results. Second, the information on 
lifestyle behaviors was self-reported by participants at the baseline. 
Therefore, we could not rule out the possibility of information bias. 
Third, the lifestyle behaviors were assessed at the baseline and not 
updated during the follow-up because there might be a reverse causal 
relationship between lifestyle changes and cognitive impairment as the 
population ages. Fourth, our estimates are based on observational data 
and do not imply certain causality. Fifth, although CLHLS is a nationally 
representative sample, we excluded more than 20,000 participants and 
only included 5,164 adults who had at least three visits during the 
follow-up duration. However, the excluded participants had different 
baseline characteristics from those included, which might indicate 
selection bias. Sixth, we did not investigate whether the participants 
developed dementia during the follow-up, nor could we explore the 
relationship between CVRFs and dementia. Seventh, the derived classes 
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from LGMM were used in another program for survival analysis, and 
potential posterior bias was inevitable.

5. Conclusion

Our study used LGMM to describe the direction and magnitude of 
changes in CVRFs over time. SBP and BMI were divided into four 
trajectory subgroups, and DBP, MAP, and PP were classified into three 
trajectory subgroups. The results showed that lowered SBP and PP in the 
elderly were associated with an increased risk of cognitive impairment. 
Although low stable DBP decreased the risk of cognitive impairment, 
more DBP lowering would lead to the occurrence of cognitive 
impairment. The elevated PP decreased the hazard of the cognitive 
impairment, but ≥25 mmHg growth in PP contributed to a higher risk 
of cognitive impairment. Participants with progressively obese and 
stable slim were more likely to suffer from cognitive impairment. The 
study has important implications in preventing the occurrence of 
cognitive impairment by controlling SBP, DBP, BMI, and PP of 
the elderly.
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