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Abstract
Malaria control uses insecticides to kill Anopheles mosquitoes. Recent successes in 
malaria control are threatened by increasing levels of insecticide resistance (IR), re-
quiring insecticide resistance management (IRM) strategies to mitigate this problem. 
Field trials of IRM strategies are usually prohibitively expensive with long timeframes, 
and mathematical modeling is often used to evaluate alternative options. Previous 
IRM models in the context of malaria control assumed IR to have a simple (monogenic) 
basis, whereas in natural populations, IR will often be a complex polygenic trait de-
termined by multiple genetic variants. A quantitative genetics model was developed 
to model IR as a polygenic trait. The model allows insecticides to be deployed as se-
quences (continuous deployment until a defined withdrawal threshold, termed “insec-
ticide lifespan”, as indicated by resistance diagnosis in bioassays), rotations (periodic 
switching of insecticides), or full-dose mixtures (two insecticides in one formulation). 
These IRM strategies were compared based on their “strategy lifespan” (capped at 
500 generations). Partial rank correlation and generalized linear modeling was used 
to identify and quantify parameters driving the evolution of resistance. Random for-
est models were used to identify parameters offering predictive value for decision-
making. Deploying single insecticides as sequences or rotations usually made little 
overall difference to their “strategy lifespan”, though rotations displayed lower mean 
and peak resistances. Deploying two insecticides in a full-dose mixture formulation 
was found to extend the “strategy lifespan” when compared to deploying each in se-
quence or rotation. This pattern was observed regardless of the level of cross resist-
ance between the insecticides or the starting level of resistance. Statistical analysis 
highlighted the importance of insecticide coverage, cross resistance, heritability, and 
fitness costs for selecting an appropriate IRM strategy. Full-dose mixtures appear 
the most promising of the strategies evaluated, with the longest “strategy lifespans”. 
These conclusions broadly corroborate previous results from monogenic models.
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1  |  INTRODUC TION

Long-lasting insecticide-treated nets (LLINs) and indoor residual 
spraying (IRS) play a dominant role in reducing the burden of ma-
laria (Bhatt et al., 2015). The evolution of insecticide resistance (IR) 
poses a major threat to sustained reductions in malaria transmission 
and prevalence (e.g., Hemingway et al., 2016). Pyrethroids are the 
primary insecticide class used on LLINs, but pyrethroid resistance is 
geographically widespread (Hancock et al., 2020) and is increasing in 
frequency and intensity (Ranson & Lissenden, 2016).

How entomological outcomes (i.e., greater mosquito survival) 
translate into impacts on malaria epidemiology is uncertain and 
complex (Van Hul et al., 2021). However, tools designed to kill mos-
quitoes or prevent them from blood-feeding, which cease to be 
capable of doing so because of resistance (Asidi et al., 2012; Irish 
et al., 2008), are clearly suboptimal.

The Global Plan for Insecticide Resistance Management (GPIRM) 
was developed to help mitigate the potential impact IR (WHO, 2012). 
Compared to agriculture, public health has relatively few insecticide 
classes available (Ranson & Lissenden, 2016). Insecticides for malaria 
control are mainly deployed to target adult mosquitoes indoors as 
either LLINs or IRS, requiring the insecticides to be safe for close 
human contact, which constrains the development of novel prod-
ucts. LLINs are designed to have 3-year lifespans, whilst IRS is usually 
deployed annually (WHO, 2020). Therefore, insecticides used in an 
insecticide resistance management (IRM) strategy for public health 
cannot be changed rapidly, unlike agriculture where re-application 
can occur monthly or even weekly. This necessity for safe and long-
lasting insecticides has led to an over-reliance on a small number of 
insecticides, predominantly pyrethroids (Oxborough, 2016).

There is a need to evaluate IRM strategies designed to prolong 
the operational lifespan of insecticides to ensure future insecticides 
are not rapidly lost to resistance. This is especially important consid-
ering the new insecticides being developed by the Innovative Vector 
Control Consortium and industry partners. Evaluating IRM strat-
egies in the laboratory and field is challenging due to the number 
of potential IRM strategies, the need for replication over different 
ecological/epidemiological settings, and the long study durations 
needed to observe phenotypic changes in resistance. Cluster ran-
domized control trials used for evaluating the epidemiological effec-
tiveness of malaria vector control tools generally last no longer than 
2–3 years (Wilson et al., 2015), which is unlikely to be of sufficient 
duration to detect the benefit of any one IRM strategy over another.

Mathematical modeling and computer simulations can simulate 
the IR response to IRM strategies over decades, and therefore pro-
vide a valuable evaluation tool (Tabashnik, 1986). Computer simu-
lations can be run over numerous scenarios to provide insights into 
which IRM strategies are optimal/sub-optimal under different eco-
logical, epidemiological, and operational contexts. Evaluating IRM 
strategies using computer simulations allows for the identification 
of potential problems with IRM strategies prior to implementation in 
the field where expensive and time-consuming errors can be made.

Theoretical and mathematical modeling of IRM for agricul-
ture and public health has a long history (e.g., Comins,  1977; 
Curtis, 1985; Mani, 1985; Wood, 1981). However much of this pre-
vious work has modelled IR as a monogenic trait i.e., a trait encoded 
by a single mutation in a single gene. Few modeling studies have 
considered IR to be a polygenic trait (but see, for example, Gardner 
et al.,  1998; Haridas & Tenhumberg,  2018; Via,  1986), of which 
none have evaluated IRM strategies in a public health context. 
In more recent years, mathematical models have been developed 
which take advantage of increased computational power allowing 
for improved evaluation of IRM strategies in agriculture (e.g., Helps 
et al.,  2017) and public health (e.g., Hastings et al.,  2022; Levick 
et al., 2017; Madgwick & Kanitz, 2022b), of which these examples 
are monogenic models.

Public health IRM recommendations from models are therefore 
currently limited to scenarios where resistance in the field is mono-
genic. However mosquitoes are known to harbor a diverse array 
of resistance genes and mechanisms, including target site, meta-
bolic, cuticular and behavioral resistance mechanisms (Balabanidou 
et al.,  2018), alongside nonspecific, largely environmentally influ-
enced factors associated with increased tolerance to insecticides, 
for example mosquito age, and physiological condition (Lissenden 
et al., 2021).

Resistance management strategies often have confusing nam-
ing systems resulting from the often-independent development and 
evaluation of resistance management strategies across disciplines 
(Peck, 2001; Rex Consortium, 2007). Therefore, we define our ter-
minology here for the three IRM strategies to investigate, and how 
this relates to terms used in previous work:

•	 Sequences, involve continuously deploying a particular insecti-
cide formulation until a designated level of resistance is reached 
(the withdrawal threshold), at which point it is replaced by another 
insecticide to which there is less resistance. This strategy is also 
referred to as responsive alternation or series application in the 
literature (Rex Consortium, 2013). The threshold for withdrawing 
the current insecticide and replacing with the next insecticide the 
sequence is usually based on a bioassay survival threshold or, in 
the case of monogenic traits, an allele frequency threshold.

•	 Rotations, also referred to as cycling, alternation, or periodic ap-
plication (Rex Consortium, 2013), involve the periodic preplanned 
switching between insecticide formulations over time, such that 
one insecticide is temporarily replaced with another insecticide.

•	 Mixtures are confusingly also occasionally referred to as combi-
nations (Rex Consortium, 2013) or pyramiding when referring to 
transgenic crops (Roush, 1998). In public health, the term combi-
nation would more generally refer to the use of two different in-
secticides within the same household, but not in the same control 
tool, such as deploying both LLINs and IRS (WHO, 2012). We de-
fine mixtures as the use of two insecticides in a single formulation 
such that the target insect inevitably encounters both insecticides 
simultaneously.
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A comprehensive review of IRM modeling highlighted a lack of 
models including quantitative resistance and cross resistance (Rex 
Consortium,  2010). Quantitative genetic modeling assumes many 
genes determine IR level and each gene has only a minor phenotypic 
effect. It is the accumulated effect of these genes which combine to 
give larger phenotypic effects (Walsh & Lynch, 2018). In this study 
we model IR as a quantitative trait, assuming a polygenic basis of 
resistance and allowing for cross-resistance between insecticides.

We present a flexible quantitative genetics model (“polyres”) for 
the evaluation of IRM strategies. The model is calibrated primarily 
for Anopheles gambiae but can be adapted for other vector species. 
We investigate how insecticides could be deployed temporally, as 
either sequences, rotations, or mixtures. Based on the results from 
monogenic models, we would hypothesize the difference between 
the rotation and sequence strategies to be small, and for the mixture 
strategy to perform best.

2  |  METHODS

2.1  |  An overview of the quantitative genetics 
model

In the “polyres” model, IR is assumed to be a classically quantita-
tive genetic trait encoded by a large number of genes, each with 
very small effect on the phenotype (this assumption means genetic 
variances do not change substantially over selection). The model 
assumes discrete nonoverlapping generations of mosquitoes, a 
standard assumption in both quantitative and population genetics 
modeling.

Female mosquitoes lay eggs, which hatch, develop, and mature 
into adults. Adult mosquitoes of both sexes may then encounter the 
deployed insecticide(s). Female mosquitoes then lay the eggs that 
constitute the next discrete generation and then die, that is, the 
model allows for only a single insecticide exposure per generation. 
We assume mating between male and female mosquitoes occurs 
after the insecticide encounters, that is, after insecticide selection 
which is consistent with equivalent monogenic models (e.g., Levick 
et al., 2017; Madgwick & Kanitz, 2022b), and all females successfully 
mate. This ordering of insecticide exposure, mating, then dispersal 
is important as this impacts the level of selection (Sudo et al., 2018).

The model tracks IR in two locations. First, the intervention site, 
where insecticidal interventions can be deployed, and operational 
decisions are made. Second, the refugia, where the insecticides 
under consideration are not deployed. We assume mating occurs 
within the respective locations that is, intervention or refugia. Mated 
female mosquitoes can then migrate between the intervention site 
and “refugia”. Since mating occurs within the intervention site/refu-
gia, all females successfully mate prior to migration and as females 
mate only once the model need not consider migration of males (be-
cause there would be no un-mated females available to mate with). A 
list of our model assumptions can be found in Table 1 and a headline 
summary of the model methodology can be found in Table 2.

2.2  |  Developing a quantitative IR scale

To develop a polygenic model which allows for the tracking of quan-
titative IR, the first step is to develop an underlying scale of IR that 
can be converted to a measurable phenotype, in this case mosquito 
survival to insecticide exposure (see Supplement S1 for details). In 
the field, the IR status of a mosquito population is typically meas-
ured using standardized diagnostic dose bioassays such as CDC bot-
tle or WHO cylinder bioassays. These bioassays give the proportion 
of mosquitoes surviving contact with the insecticide (the measura-
ble phenotype). We created a scale termed the Polygenic Resistance 
Score (PRS), denoted by z, which we use as a measure of resistance, 
and is described in more detail below. This underlying PRS scale pro-
duces a bioassay survival phenotype described by the Hill-variant 
of the Michaelis–Menten equation (where n = 1) which converts the 
PRS to bioassay survival.

KB

i
 is the proportion of mosquitoes surviving in a diagnostic dose bio-

assay to insecticide i  when they have a population mean PRS of zI for 
corresponding resistance trait I . Kmax is the maximum proportion of 
mosquitoes that could survive in a bioassay, which is 1. The z50 value is 
the PRS that gives 50% bioassay survival. For ease of interpretability, 
we have scaled the PRS such that zI=100 equates to 10% bioassay sur-
vival. The z50 for this scale is therefore calculated from Equation 1a to 
be 900. Our criterion for withdrawing an insecticide is >10% bioassay 
survival (<90% mortality) which is defined as the point when resistance 
is confirmed (WHO, 2018) so the evolution of resistance occurs over a 
scale of z = 0 (the starting point) to z = 100 (the withdrawal threshold).

We note our withdrawal threshold is set optimistically low, and in 
part this is done to help “force” one strategy to be better than other, 
if the withdrawal threshold is set high then all strategies would run 
to the end of the simulation and therefore all appear equally good. 
This relationship between PRS and bioassay survival is shown in 
Figure 1. This calibration of Kmax = 1 and z50 = 900 is stable (i.e., bio-
assay mortality = 10% when z = 100) for population standard devi-
ations up to 25 (Supplement S3, Table S2). A full description of all 
model parameters can be found in Table 3.

2.3  |  Converting bioassay survival to field survival

The PRS must then be converted from bioassay survival to field sur-
vival. As mosquito survival in bioassays has been found to be corre-
lated with mortality in experimental huts (Churcher et al., 2016), we 
can update Equation 1a:

where KF

i
 is the survival to insecticide i in experimental huts, which we 

use as an approximation for field survival. KB

i
 is the bioassay survival to 

(1a)KB

i
=

Kmax ∗ zI
n

z50 + zI
n

(1b)KF

i
= �1K

B

i
+ �2
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TA B L E  1  Assumptions for the quantitative genetics model.

Number Assumption Rationale/explanation

1 Mating in the population is random Standard assumption of quantitative genetics/population genetics 
modeling

2 The population size is sufficiently large to prevent inbreeding 
depression

Standard assumption of quantitative genetics modeling and likely 
to reflect reality for most wild mosquito populations

3 Fitness costs are constant regardless of the level of insecticide 
resistance

Fitness costs must occur within the Normal distribution. As the 
standard deviation stays constant the difference between the 
most and least resistant individuals remains constant

4 Only a single generation is tracked at any one time point, which 
does not interbreed with older or younger generations

Standard assumption of quantitative genetics modeling and 
population genetics modeling

5 The relative population size is directly proportional to 
intervention coverage in the intervention site and refugia

We define intervention coverage as the proportion of the mosquito 
population covered by the intervention

6 Male insecticide exposure is proportional to, and generally less 
than, female insecticide exposure

Female mosquitoes are the ones that blood feed and are therefore 
more likely to encounter insecticides used indoors

7 Deployment decisions are made at the same generation as 
bioassays are conducted

This is currently done for ease of computation. In the real-world 
bioassays would need to be done in sufficient time to allow 
for the results to be used to inform insecticide purchasing and 
deployment decisions

8 Resistance mechanisms are limited to those which would affect 
bioassay survival. Behavioral resistance is not accounted for

Behavioral resistance is likely to be based around mosquitoes 
reducing their exposure to the insecticide; and is therefore not 
readily measured in standard bioassays

8 There is only dispersal between the intervention site and 
refugia

Standard assumption in two-patch models (see Comins, 1977)

10 There are ten mosquito generations per year The number of generations can be updated if necessary for other 
insect species. This would then require a recalculating of the 
Exposure Scaling Factor (Beta) to calibrate the simulations to 
the desired timescale

11 There is always an insecticide in deployment We would expect constant coverage of interventions such 
as LLINs. The current model does not allow for gaps in 
deployment of insecticides. IRS deployments are more likely 
to be an on–off system; mainly being used to cover the main 
transmission seasons

12 Decisions are made at the specified withdrawal and return 
thresholds

Withdrawal of an insecticide does not happen until the threshold 
is reached (e.g., 10% survival). This means that if the survival 
at the next deployment interval is 9.9%, the insecticide will be 
redeployed

13 Insecticides are deployed in the numerical sequence (1, 2, 3 etc) The optimal insecticide (based on mosquito survival) is not 
necessarily the one deployed

14 Insecticide survival in the field is directly correlated with 
bioassay survival

Churcher et al. (2016) found a linear relationship between bioassay 
mortality and mortality in experimental hut trials

15 The deployment interval/frequency is fixed for a single 
simulation. The choice of what insecticide to deploy can 
only be made at that timepoint

Interventions are likely to be distributed at fixed timepoints (e.g., 
IRS to cover the high transmission wet seasons)

16 The populations (intervention site and refugia) are isolated; 
there is no immigration/emigration outside these areas

Standard quantitative/population genetic assumption

17 Intervention site and refugia remain fixed sizes throughout the 
simulation

Model is deterministic

18 Dispersal rates remain fixed throughout the simulation Model is deterministic

19 Heritability of resistance remains fixed throughout the 
simulation

Model is deterministic. The heritability can be different for each 
insecticide

20 Insecticides simulated are in public health used only and there 
are no nonpublic health insecticides deployed that may 
show cross-resistance with the insecticides being simulated

This means that all insecticide selection pressures are known and 
accounted for and makes the model more applicable for the 
evaluation of new insecticides

21 Only a single mosquito species is present Operational decisions are made only on the resistance status of a 
single mosquito species which is often the case

Note: This Table identifies the key model assumptions with an explanation of why they were made.
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insecticide i (which we calculate from Equation 1a in our simulations), 
�1 = 0.48 and �2 = 0.15 are regression coefficients obtained from our 
linear model (see Supplement S2 for details).

2.4  |  The response to selection

The changes in population mean PRS (z) are tracked using the 
Breeder's equation. The Breeder's equation is synonymously known 
as the Lush equation (Walsh & Lynch, 2018):

R is the response to selection, that is, the inherited change in the mean 
value of the PRS between generations. h2 is the narrow sense heritabil-
ity of the trait and S is the selection differential. The selection differen-
tial is the within-generation change of the mean PRS of the population 
due to insecticide selection.

where zP is the mean PRS of the parents (i.e., those that either 
do not encounter insecticide, or encounter and survive insecti-
cide, and go on to produce offspring), and z is the mean PRS prior 
to selection. Only female mosquitoes blood-feed, and because 

(2a)R = Sh2

(2ai)S = zP − z

TA B L E  2  Headline summary of polyres model methods.

Methods section Headline summary

Developing a Quantitative Insecticide Resistance 
Scale

Insecticide resistance is quantified as Polygenic Resistance Scores, which is measurable 
in standard bioassays

Converting Bioassay Survival to Field Survival Bioassay survival is converted to expected field survival

The Response to Selection The between generation changes in resistance is calculated using the Breeder's equation

Fitness Costs Fitness costs are included as a proportion of the response

Accounting for Mosquito Dispersal After insecticide selection, mosquitoes are allowed to disperse between the two sites: 
Intervention Site and Refugia

Tracking the Polygenic Resistance Score The polygenic resistance score is tracked across discrete nonoverlapping generations

Special Case 1: Cross-resistance and cross-selection 
between insecticides

Cross-resistance is included through correlated responses

Special Case 2: Inclusion of Mixtures Insecticides can also be deployed in mixture

Special Case 3: Cross-resistance and Selection 
with Mixtures

Cross-resistance can also occur when mixtures are deployed

F I G U R E  1  The relationship between the polygenic resistance score (PRS) and bioassay survival. The PRS was developed as a quantitative 
scale of IR. The PRS is converted to bioassay survival as described in Equation 1a. The bioassay survival is converted to field survival based 
on a linear model of experimental hut survival predicted by WHO cylinder bioassay survival. The black line indicates the relationship 
between the PRS, and bioassay survival as calculated from Equation 1a. The green line indicates the relationship between the PRS, and 
field survival as calculated from Equation 1b. The dashed blue line is the withdrawal threshold (10% bioassay survival). The dashed orange 
line indicates the z50 of the polygenic resistance score scale, which was set at 900 (Panel a). Panel b is restricted to PRS values below our 
withdrawal threshold of PRS = 100.
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TA B L E  3  Quantitative genetic model parameters and descriptions.

Symbol Parameter Description Values

K
B

i
Bioassay Survival The probability of a mosquito with a Polygenic Resistance 

Unit Score of zI surviving in a WHO cylinder bioassay to 
insecticide i

Internally calculated

Kmax Michaelis–Menten Parameter The maximum proportion of mosquitoes that can survive in the 
bioassay

1

zI Polygenic Resistance Score The Polygenic Resistance Score of trait I  to insecticide i Internally calculated

z50 Half Population Survival The Polygenic Resistance Score which gives a 50% survival 
probability in a WHO cylinder bioassay

900

n Slope of the Michaelis–Menten The slope in the Michaelis–Menten equation 1

K
F

i
Field Survival Probability The survival probability in the field to insecticide i Internally calculated

�1 Field-Bioassay linear model coefficient A linear model coefficient obtained from performing a linear 
model on paired experimental hut trials and WHO cylinder 
bioassays

0.48

�2 Field-Bioassay linear model intercept The linear model intercept obtained from performing a linear 
model on paired experimental hut trials and WHO cylinder 
bioassays

0.15

R Response The response (change in the mean trait value) between the 
parents and offspring

Internally calculated

S Selection Differential The change in the value of a polygenic trait within a generation Internally calculated

z
P Mean Trait Value Parents The mean polygenic trait value in the parents of the next 

generation
Internally Calculated

z Trait Mean The mean value of a polygenic trait in a population Internally calculated

S♀ Female Selection Differential The selection differential for female mosquitoes Internally calculated

S♂ Male Selection Differential The selection differential for male mosquitoes Internally calculated

� Insecticide Exposure Scaling Factor A factor which converts the insecticide exposure to the 
selection differential

10

rt Dispersal from Intervention The relative number of mosquitoes dispersing from the 
intervention site to the refugia

Internally calculated

ru Dispersal from Refugia The relative number of mosquitoes dispersing from the refugia 
to the intervention site

Internally calculated

z
I

t

′ Mean Polygenic Resistance Score in the 
Intervention Site

The mean Polygenic Resistance Score of the mosquito 
population in the intervention before selection has 
occurred that generation

Internally calculated

z
I

t

′′ Mean Polygenic Resistance Score in the 
Intervention Site after Selection

The mean Polygenic Resistance Score of the mosquito 
population in the intervention site after insecticide and 
fitness cost based selection

Internally calculated

z
I

u

′ Mean Polygenic Resistance Score in the 
Intervention Site after Migration

The mean Polygenic Resistance Score of the mosquito 
population in the intervention site after mosquito migration

Internally calculated

z
I

u

′′ Mean Polygenic Resistance Score in the 
Refugia

The mean Polygenic Resistance Score of the mosquito 
population in the refugia before selection has occurred that 
generation

Internally calculated

The following input parameters were allowed to vary in the simulations:

�ΓI Degree of Cross-Resistance Degree of cross-resistance from one insecticide on the trait not 
associated with that insecticide

−0.5 to 0.5 at 0.1 
intervals

h2 Heritability The heritability of a polygenic trait Uniform
0.05 to 0.30

x Female Insecticide Exposure Proportion of female mosquitoes in the intervention site that 
encounter and are exposed to the deployed insecticide

Uniform
0.4 to 0.9

m Male Insecticide Exposure Proportion of male mosquitoes in the intervention site that 
encounter and are exposed to the deployed insecticide as a 
proportion of the exposure of female mosquitoes

Uniform
0–1

ψ Fitness cost The fitness cost associated with insecticide resistance as a 
proportion of the response

Uniform
0.01–0.2
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many control measures target host-seeking females it is likely that 
there will be sex-specific differences in insecticide exposure, and 
hence selection pressure. This can be incorporated by allowing the 
Breeder's Equation to account for sex-specific selection (Walsh & 
Lynch, 2018):

The selection differential for females and males is:

 

where x is exposure to the insecticide (proportion of females encoun-
tering the insecticide in a generation) and beta is a scaling factor (see 
below). The term m is the proportion of male An. gambiae exposed to 
the insecticide as a proportion of the female mosquitoes, which there-
fore accounts for female An. gambiae mosquitoes being more likely to 
encounter insecticides especially in the form of an LLIN or IRS. The 
male and female selection pressures can then be implemented back 
into Equation 2b:

Note that insecticide deployments that do not differentially im-
pact males and females (e.g., spraying larval breeding sites) could be 
investigated simply by setting m = 1.

An important operational difficulty in applying the breed-
er's equation (i.e., 2a) to selection in the field is that neither 
the selection differentials imposed by insecticides in the field, 
nor the field heritability of traits are known (heritability in the 
field will be much lower than in the laboratory due to the much 
larger environmental variance in field heritability). We therefore 
included an exposure scaling factor (�) to incorporate this un-
certainty. Details of the calibration (Figure 2) of � are found in 
Supplement S1.

2.5  |  Fitness costs

Insecticide resistant mosquitoes may be less fit than insecticide sus-
ceptible individuals (Osoro et al., 2021; Tchouakui et al., 2020). We 

incorporated fitness costs by defining it proportional to response in 
the simulation (see Equation 4) i.e.,

It is assumed that the fitness costs remain constant regardless 
of the magnitude of the IR level, z. Note that we assume that z = 0 is 
evolutionary stable (i.e., resistance levels are at their basal, prede-
ployment level) and fitness costs cannot reduce z to less than zero, 
for example when the insecticide is not being deployed. Additional 
details are available in Supplement S1.

2.6  |  Accounting for mosquito dispersal

Mosquitoes may disperse between the intervention site and an 
insecticide-free refugia. Dispersal from intervention to refugia is 
given in Equation 6a and from refugia to intervention site Equation 6b 
(see supplementary Information in Hastings et al., 2022 for details).

 

where rt is the number of mosquitoes migrating from the insecticide-
treated location to the insecticide-free refugia. and ru is the number 
of mosquitoes migrating from the insecticide-free refugia to the 
insecticide-treated location. C is the coverage of the insecticide (i.e., 
the proportion of the population covered by the intervention), and �e is 
the proportion of mosquitoes dispersing.

2.7  |  Tracking the polygenic resistance score

The impact of the insecticide selection pressure and fitness costs as-
sociated with IR during insecticide deployment in the location where 
the insecticide is deployed is quantified as the change over a gen-
eration and is given by the response to insecticide selection and the 
fitness costs of IR as explained previously.

where the superscript I represents the insecticide-resistance trait (re-
sistance to insecticide i ), and the subscript t represents the interven-
tion site.

(2b)R =
h2

2
S♀ +

h2

2
S♂

(3a)S♀ = x�

(3b)S♂ = xm�

(4)R = �
h2x(1 + m)

2

(5)Δcz = − ψR

(6a)rt = (1 − C)�e

(6b)ru = �eC

(7a)zI
t
′ = zI

t
+ R − ψR

Symbol Parameter Description Values

C Intervention Coverage The proportion of the total mosquito population that is covered 
by the intervention site

Uniform
0.1–0.9

�e Dispersal Rate The rate of mosquito exchange between the intervention site 
and the refugia

Uniform
0.1–0.9

TA B L E  3  (Continued)
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After the effect of insecticide selection and fitness costs are im-
plemented, dispersal occurs:

The mean PRS in the site depends on the PRS in the proportion 
of the mosquitoes staying in the treated site zI

t
′
(

1 − rt
)

 and the pro-
portion of the mosquitoes that have immigrated from the refugia to 
the insecticide-treated location. zI

u
′ rt.

When an insecticide is not deployed in the treatment location 
(e.g., because it has been rotated out) there is no insecticide selec-
tion but there are fitness costs which are calculated as explained 
previously.

The impact of mosquito dispersal is then allowed as in 
Equation 7b i.e.,:

In the insecticide-free refugia (subscript u), only IR costs are pres-
ent as there is never any insecticide deployment.

Migration is also allowed to occur, with mosquitoes dispersing 
from or to the refugia.

where zI
u
′
(

1 − ru
)

 is the mean resistance of the individuals staying in 
the refugia site and zI

u
′ rt is the mean resistance of those joining from 

the intervention site.
Note the use of primes: the single prime (e.g., zI

u
′) indicates the 

value of z after insecticide selection and the double prime (e.g., zI
u
′′ 

is the value after both insecticide selection and mosquito dispersal. 
It is the double prime value that becomes the mean PRS value in the 
next generation.

2.8  |  Special case 1: Cross resistance and cross-
selection between insecticides

Cross resistance between insecticides is often considered an impor-
tant factor when selecting insecticides for an IRM strategy espe-
cially relevant to the mixture strategy (e.g., Curtis, 1985), yet is often 
not included in mathematical models evaluating IRM strategies (Rex 
Consortium, 2010). Via (1986) included genetic correlation, but in a 
model which tracked the median lethal dose (LD50) to the respec-
tive insecticides and therefore needed a more complex method to 
calculate the genetic correlation. We note the terms cross selection 
and cross resistance are often used interchangeably, but to aid our 
readers we use the term cross resistance as we expect readers to be 
more familiar with this concept.

The degree of genetic correlation between the level of IR to in-
secticide i  (trait I) and � (trait Γ) is quantified as 

(

�IΓ
)

. As all the traits 
measured in this model are on the same scale (e.g., z = 100 for trait I  
is 10% bioassay survival to insecticide i , and z = 100 for trait J is 10% 
bioassay survival to insecticide j), there is no need for regression/
variance coefficients to translate between different scales.

(7b)zI
t
′′ = zI

t
′
(

1 − rt
)

+ zI
u
′ rt

(8a)zI
t
′ = zI

t
− ψR

(8b)zI
t
′′ = zI

t
′
(

1 − rt
)

+ zI
u
′ rt

(9a)zI
u
′ = zI

u
− ψR

(9b)zI
u
′′ = zI

u
′
(

1 − ru
)

+ zI
t
′ ru

F I G U R E  2  Histogram of the Insecticide Lifespan Assuming the Exposure Scaling Factor (β) = 10. Calibration of the exposure scaling factor 
is needed to convert selection to the desired timescale of expected insecticide lifespans (i.e., Equation 4). The exposure scaling factor was 
varied until the peak of the histogram was approximately 10 years, as we expect insecticides to last this length. The red vertical lines are at 8 
and 12 years, indicating the range inside which we would expect insecticides to most frequently reached the reach the 10% bioassay survival 
withdrawal threshold and therefore reach the end of its insecticide lifespan.
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Equation  8a is updated to include cross resistance/selection, 
such that when insecticide i is not deployed and insecticide � is de-
ployed, there is also selection on trait I from insecticide � based on 
the genetic correlation trait Γ and trait I, termed �ΓI.

where � ∈ {j, k, l …}, the set of the other insecticides that may be de-
ployed in the mixture.

Where Γ ∈ {J,K, L …}, the set of traits that correspond to IR to 
the corresponding insecticide.

Equation 8a(i) is passed to Equation 9a as previously described to 
allow migration to occur as previously described. The refugia equa-
tions do not need updating as we assume no insecticides under con-
sideration in the IRM are deployed in the refugia.

2.9  |  Special case 2: Inclusion of mixtures

Insecticide mixtures describe the simultaneous deployment of two 
(or, in theory, more) insecticides in the same formulation. Given 
that LLINs and IRS formulations currently submitted for WHO pre-
qualification do not include more than two insecticides, mixtures 
are limited to contain only two insecticides in our simulations. The 
primary idea behind mixtures is that if one insecticide in the mixture 
fails to kill the mosquito, the other insecticide of the mixture will do 
so. This requires Equation  7a to be updated. When an insecticide 
mixture contains both insecticides i  and j the mosquito must survive 
the encounter with one part of the insecticide before selection can 
occur. In this example, prior to selection on trait I the mosquito must 
first survive its encounter with insecticide j.

where KF
j
 is the average probability of a mosquito surviving exposure 

to insecticide j in the field when deployed at the full dose, which 
depends on the concurrent value of zJ and is obtained from 
Equation 1b. When insecticide i  is not deployed in a mixture, then 
the model proceeds through Equation  8a as normal. The refugia 
Equations 9a and 9b remained unchanged apart from being passed 
the updated zI

t
′ from Equation 7a(ii).

2.10  |  Special case 3: Cross resistance and 
selection with mixtures

When an insecticide mixture is deployed that consists of insecticide 
i  and insecticide j and there is cross resistance between insecticides 
there is both direct and indirect selection on trait I which is then 
scaled by the survival probability to the second insecticide in the 
mixture.

Equation 7a(ii) is therefore updated so that the survival proba-
bility to the second insecticide in the mixture acts on the changes in 
resistance intensity.

where the second term incorporates direct selection, and the third 
term incorporates indirect selection by cross resistance. Note that 
if cross-selection is absent �ΓI = 0 so Equation  7a(iii) is, as expected, 
equivalent to Equation 7a(ii). These are then passed to Equations 7b 
and 8b to allow for migration. The refugia Equations 9a and 9b, re-
main unchanged besides being passed the updated zI

t
′ from either 

Equations 7a(iii) or 8a(ii).
The mathematical model described above is coded in R (R Core 

Team, 2020), version 4.0.3. Model code is written following modern 
coding practices including the use of modular coding, unit testing 
and maintenance in a version-controlled repository.

2.11  |  Description of the simulations

We define several key terms and model rules here:
Insecticide Armory: The number of different insecticide formula-

tions available for deployment. Only insecticide formulations in the 
armory can be deployed. Insecticides can be withdrawn from the ar-
mory and returned to the armory based on the withdrawal threshold 
and return threshold described below.

Withdrawal Threshold: Is the resistance threshold whereupon an 
insecticide is considered to have failed and is withdrawn from the 
armory. We set the withdrawal threshold at 10% bioassay survival 
(90% bioassay mortality) as a ≥10% bioassay survival indicates there 
is confirmed resistance in the mosquito population (WHO,  2018). 
The withdrawal threshold can be set by the user to be higher or 
lower.

Return Threshold: The bioassay survival an insecticide must 
reach for a previously failed insecticide to be return to the insec-
ticide armory and become re-available for deployment. This is to 
prevent an insecticide that has recently failed being immediately 
returned to deployment. In our presented simulations the return 
threshold was set at 8% bioassay survival, though this can be set 
by the user. For example, if an insecticide reaches the withdrawal 
threshold of 10% bioassay survival the insecticide remains un-
available for re-deployment until its bioassay survival falls below 
8%. We use 8% as this value allows withdrawn insecticides to have 
the potential redeployed, as lower return thresholds are unlikely 
to ever be reached in the simulations. The withdrawal threshold 
value can therefore impact the difference between sequences and 
rotations, if set too low a withdrawn insecticide (in sequence) is 
not returned to the armory before the second insecticide is with-
drawn. An illustrative example of the process of withdrawing and 
returning insecticides is presented in the sequence simulation ex-
ample in Figure 3.

Deployment Interval/opportunity: The deployment interval is the 
timeframe (in mosquito generations) between insecticide deploy-
ments and deployment decisions. For LLINs this is 30 generations 
(~3 years) and for IRS 10 generations (~yearly), hence there is only 
a deployment opportunity (i.e., the opportunity to change the de-
ployed insecticide) every 3 or 1 year. The model does allow for a 
user input of the deployment interval, allowing for 2 IRS sprays a 
year (for locations with two transmission seasons) or more frequent 

(8ai)zI
t
� =

(

zI
t
− ψiRi

)

+ �ΓI(R
� − ψ�R� )

(7aii)zI
t
′ = zI

t
+ KF

j
(R − ψR )

(7aiii)zI′
t
= zI

t
+
(

KF
j

(

Ri − ψiRi
)

)

+
(

KF
i
�JI

(

Rj − ψjRij
))
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replenishment of LLINs. The deployment interval is constant 
throughout each simulation.

IRM Strategies:
The three primary IRM strategies evaluated are sequences, rota-

tions, and mixtures. Illustrative examples for each IRM strategy are 
given in Figure 3.

•	 Sequences: the first insecticide is deployed continually until it 
reaches the withdrawal threshold. At which point it is withdrawn 
at the next deployment opportunity and replaced with the second 
insecticide. The second insecticide is then deployed continually 
until it also reaches the withdrawal threshold. If the first insecti-
cide has fallen below the return threshold of 8% WHO bioassay 
survival it can be redeployed.

•	 Rotations: the insecticide in deployment is switched at each de-
ployment interval. In this strategy, the simulation also stops when 
the insecticide is unable to be rotated out and replaced, that is if 
previously deployed insecticide would be deployed in sequence. 
This deployment restriction is relaxed for simulations where 
unique insecticides are used (see Adaptive Rotations description 
later).

•	 Mixtures: both insecticides are deployed simultaneously within a 
single formulation and the mixture is therefore deployed as a se-
quence. The mixture consists of both insecticides being deployed 

at their recommended single-formulation dosage. The simulation 
stops either when bioassay survival to either insecticide in the mix-
ture exceeds 10% (even if overall mortality to the mixture remains 
below the withdrawal threshold), or at 500 generations. We do 
this for two main reasons: (i). Diagnostic doses have thus far been 
made only for the single insecticide, rather than the mixture. (ii). 
Procurement/logistical failures leading to the deployment of just 
a solo insecticide, and therefore the insecticide is still available.

For simulations where insecticides are given unique properties, 
we must adapt the rotations strategy so that this strategy does not 
appear artificially ineffective due to the previously described rota-
tions rules:

•	 Adaptive rotations: In adaptative rotations we relax the restriction 
that prevents an insecticide being immediately redeployed. This 
means when only one insecticide is available for deployment (be-
cause the other is above the return threshold), it continues to be 
deployed. However, at the first deployment opportunity where 
the other insecticide becomes available (i.e., has fallen below the 
return threshold), the strategy defaults back to rotations.

We limit our simulations to containing only two insecticides as 
this is the current number in mixture IRS and LLINs. We therefore 

F I G U R E  3  Example Simulations of the Sequence, Rotation and Mixture Strategies. Sequence strategy: Insecticide 1 (red) is deployed 
continuously until it reaches the withdrawal threshold and is replaced by the Insecticide 2 (blue) at the next deployment opportunity. 
Insecticide 2 is deployed continuously until it too reaches the withdrawal threshold. When Insecticide 1 is not deployed, fitness costs reduce 
resistance. Once the resistance has reached the return threshold (at 300 generations), it becomes re-available for deployment. The sequence 
simulation terminates at 420 generations as neither insecticide is available for deployment. Rotation Strategy: The deployed insecticide 
deployed is changed at each deployment interval. The simulation was terminated at 500 generations, with both insecticides still available 
for deployment as neither had yet reached the withdrawal threshold. Mixture Strategy: Insecticide 1 and 2 are deployed together as a single 
formulation, in a de facto sequence. The simulation was terminated at 500 generations, with both insecticides still available for deployment 
as neither had yet reached the withdrawal threshold. These simulations are presented only to explain how each IRM strategy works. The 
parameter inputs were: deployment interval = 10 generations, cross resistance = 0, start resistance = 0, heritability = 0.2028686, male 
insecticide exposure = 0.2500806, female insecticide exposure = 0.8645515, fitness cost = 0.1730878, intervention coverage = 0.6885651, 
dispersal = 0.8844445.
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look at purely evaluating the differences between strategies, and 
not the complexities associated with allowing for additional insec-
ticides and extending the armory of strategies. We note that the 
research, development, and economic complexities with creating a 
mixture formulation may not be equivalent to creating two separate 
single insecticide formulations.

2.12  |  Simulations to directly compare strategies

This set of simulations assumes each insecticide in the parameter 
combination has the same properties (i.e., heritability, fitness cost 
and starting resistance are the same for both insecticides). This al-
lows for better comparison of the effect of the IRM strategy itself 
as the efficacy is not dominated by a single insecticide to which re-
sistance evolves very slowly or inhibited by an insecticide to which 
resistance evolves very rapidly (this assumption is relaxed in the 
next section).

The parameter space is described on Table 3 and was sampled 
using Latin hyperspace sampling (Carnell,  2020). A total of 5000 
randomly generated parameter inputs were used. Cross resistance/
selection values were used from −0.5 to 0.5 at 0.1 intervals, giv-
ing 11 different values. Simulations were started assuming both 
insecticides were novel (z = 0, in both intervention site and refugia) 
or both insecticides had previously been used and there was some 
resistance present (z = 50, corresponding to ~5% bioassay survival). 
Therefore, a total of 220,000 (5000 random parameter values × 11 
cross resistance values × two starting resistance values × two de-
ployment intervals) unique parameter inputs were available for each 
IRM strategy. The same 220,000 parameter inputs were used for 
each IRM strategy to allow for direct comparisons between strat-
egies. Three IRM strategies were evaluated so a total of 660,000 
(220,000 × 3) simulations were conducted.

2.13  |  Simulations with unique 
insecticide properties

We ran a set of simulations which allowed for each insecticide in 
the armory to have different, unique properties. In these simulations 
the two insecticides were allowed to have different heritability, fit-
ness cost and starting resistance (PRS). For the starting PRS, this was 
sampled within a uniform distribution between 0 and 80 (ensuring 
the PRS was below 100 as this is our criteria for a failed insecti-
cide). For each insecticide, the starting PRS was the same in both 
the intervention site and the refugia. Cross resistance was included 
between the insecticides and was sampled within a uniform distri-
bution between −0.5 and 0.5. Latin hyperspace sampling was used 
again (Carnell, 2020). This allows for the comparison of IRM strate-
gies under more realistic conditions, where insecticides have differ-
ent properties and may have been subject to previous selection and 
have different rates of evolution. A total of 50,000 simulations were 
run for each of sequences, rotations, mixtures and the adaptative 
rotation strategy. The same 50,000 parameter sets were used for 

each strategy, allowing for direct comparisons between the strate-
gies. Therefore 200,000 (50,000 parameter sets × 4 IRM strategies) 
simulations were run.

2.14  |  Outcome measures

One challenge with any study of different strategies/interventions/
policies is defining how best to evaluate them (see discussions in 
Madgwick & Kanitz,  2022a). For evaluating IRM we consider that 
there are three potential main outcomes of interest. First is the 
“strategy lifespan”, second is the average level of resistance and third 
is the highest level of resistance achieved. We consider the “strategy 
lifespan” to be the primary outcome.

Strategy Lifespan: The total duration of the simulation in gener-
ations. The simulation stops either when (i). neither insecticide is 
available for deployment (because both are above the return thresh-
old) or (ii). when the simulation has run for 500 generations. The 
reason for capping at 500 generations is if there are no obvious 
difference between deployment strategies at this point, which rep-
resents a ~50-year time horizon, then the strategies are equivalent 
over any notional policy timeframe. When one strategy has a longer 
strategy lifespan than another for the same parameter inputs, we 
define that strategy as having won and the other strategy to have 
lost. If two (or more) strategies have the same strategy lifespans, we 
say they have drawn. We presume the longer an IRM strategy lasts, 
the better the IRM strategy. We report the number of wins, losses 
and draws as percentages of the totals. We also note the size of the 
win in terms of percentage difference in lifespan on the insecticides.

We expect a strategy to have a strategy lifespan of at least 10% 
longer to justify using a potential more logistically complex or eco-
nomically expensive IRM strategy. We therefore define any win 
where the strategy lifespan increased by 10% or more to another 
as an “operationally relevant win”. This is especially the case where 
the benefit of one IRM strategy over another may not be seen for 
over 30 years, which is beyond the timeframe used for operational 
planning. This threshold was used as a soft cut-off as used similarly 
by Madgwick and Kanitz (2022b).

If the strategy lifespan is ≥10% longer than another strategy 
(under the same conditions) we describe that strategy as having an 
“operationally relevant win”. This helps to identify simulations where 
there would likely be a benefit in choosing one strategy over another.

When two strategies have equal strategy lifespans (for the same 
parameter inputs), we say they have drawn. Draws can occur if both 
simulations run out of insecticides (i.e., all insecticides have bioassays 
survival <10%) at the same timepoint, or a pair of simulations both 
reach the 500-generation maximum. Where the sets of simulations 
draw, the secondary outcomes can be compared. Secondary out-
comes are compared only in simulations with equal strategy lifespans.

The secondary outcomes are:

1.	 The mean bioassay survival to the currently deployed insecti-
cide(s) during the simulation. We report this rather than the 
corresponding field survival (Equation  1b) as bioassay survival 
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is measured in operational settings to inform decisions. We 
assume insecticide-based interventions are more effective when 
bioassay survival is lower as the killing effect on the population 
size and age structure would be greater. Therefore, a lower 
mean bioassay survival is preferrable.

2.	 The peak bioassay survival reached during the simulation by any 
insecticide at any timepoint. As bioassay survival increases, we 
may expect an increase in the potential for compensatory genes 
to evolve to counteract the effect of fitness costs, and therefore 
a lower peak bioassay survival is preferable.

2.15  |  Statistical analysis

All statistical analysis and data visualization was conducted in R 
version 4.0.3 (R Core Team,  2020). The following R packages were 
used: epiR (Stevenson et al., 2020) for partial rank correlation, mgcv 
(Wood,  2011) for generalized additive models, MASS (Venables & 
Ripley, 2002) for the negative binomial GLM, and randomForest (Liaw 
& Wiener, 2002) for the random forest models. Data visualization used 
ggplot2 (Wickham, 2009). We separate our analysis into three parts.

•	 First, we directly compare strategies deploying a single insecti-
cide at a time (sequences and rotations) against one another.

•	 Second, we compare deploying insecticides singularly (sequences 
and rotations) against deploying the same insecticides together in 
a mixture.

•	 Thirdly, model sensitivity analysis was conducted using partial 
rank correlation, generalized linear modeling, and random forest 
models to identify parameters driving IR and offering predictive 
value in informing the IRM decision-making process.

2.15.1  |  Partial rank correlation

Partial rank correlation was used to assess the degree of correla-
tion between the randomly generated parameter input values and 
the strategy lifespans of the IRM strategies where the insecticides 
were given equal properties. This identified the main factors driv-
ing the evolution of IR and was conducted separately for each IRM 
strategy, each level of starting resistance, and each cross-selection 
value. Two-sided partial rank correlation was used to determine the 
direction of the correlation.

2.15.2  |  Generalized linear modeling and 
generalized additive modeling

Simulations which ran to completion (i.e., terminated at 500 gen-
erations) were excluded from the analysis as these simulations were 
artificially terminated and their inclusion could lead to an underesti-
mation of effect sizes. A total of 86,566 simulations were included 
after these runs were excluded. Initial exploration with a Poisson 
GLM, indicated the data were over-dispersed (dispersion = 5.937677, 

p < 2.2e−16). A negative binomial generalized linear model was there-
fore fitted. The model parameters of heritability, female insecticide 
exposure, male insecticide exposure, intervention coverage, fitness 
cost and dispersal were used as predictors. The IRM strategy was 
input as a factor. The starting resistance was converted to a factor, 
with 0 being defined as a “novel insecticide” and 50 being a “pre-
used insecticide”, in this set of simulations insecticides only started 
at either 0 or 50 PRS. The deployment interval was input as a factor. 
Generalized additive models were conducted to assess for nonlin-
ear relationships. Where notable nonlinear relationships were found 
(Supplement S4, Figure S4), splines were included in the model.

2.15.3  |  Random forest models

Random forest models can then be used to identify which individual 
parameters provide information which gives the best predictive 
accuracy. Eight random forest models were fit to predict the op-
erational outcome. Such that the models would be predicting the 
optimal IRM strategy using the following comparisons.

1.	 Equivalent Insecticides, Sequence vs Rotations, all intervention 
coverages.

2.	 Unique Insecticides, Sequences vs Adaptive Rotations, all inter-
vention coverages.

3.	 Equivalent Insecticides, Sequences vs Rotations vs Mixtures, all 
intervention coverages.

4.	 Unique Insecticides, Sequences vs Adaptive Rotations vs 
Mixtures, all coverages.

This model fitting process was repeated but restricted to include 
only simulations where the intervention coverage was ≥0.5. when 
coverage is >0.5, the no operational win outcome was no longer the 
dominant outcome (Supplement S4, Figure S5).

5.	 Equivalent Insecticides, Sequence vs Rotations, intervention 
coverage ≥0.5.

6.	 Unique Insecticides, Sequences vs Adaptive Rotations, interven-
tion coverage ≥0.5.

7.	 Equivalent Insecticides, Sequences vs Rotations vs Mixtures, in-
tervention coverage ≥0.5.

8.	 Unique Insecticides, Sequences vs Adaptive Rotations vs 
Mixtures, intervention coverage ≥0.5.

The random forest models were fit against a random sample of 
70% of the respective simulations (a training dataset) and was used 
to predict the operational outcome for the remaining 30% of the 
samples to estimate the accuracy of the model in predicting the cor-
rect outcome. The variable importance of each of the parameters 
from each model is then reported and corresponds to how much 
the prediction error is affected by removing the parameter (Liaw 
& Wiener,  2002). Therefore, parameters with greater importance 
correspond with higher model accuracy, and are likely to be more 
beneficial to measure in the field as a basis for IRM decision-making.
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3  |  RESULTS

3.1  |  Comparing sequences versus rotations

When comparing the strategy lifespans at the “global level” (i.e., 
crude averages, not accounting for any other parameters), then the 
sequence and rotation strategies appear to perform broadly equally, 
with a similar number of wins and operational wins for each strat-
egy (Table 4). However, when accounting for the starting resistance, 

deployment interval and the degree of cross resistance more dis-
tinct patterns can be observed. When the cross resistance between 
the two insecticides is positive, sequences become the preferable 
strategy to maximize the strategy lifespan. If cross resistance is 
zero or negative (i.e., resistance to one enhances susceptibility to 
the other) rotations become the favored strategy, unless the insec-
ticides have pre-existing resistance. In this case there is little differ-
ence with a 10-generation deployment interval, but sequences are 
favored with a deployment interval of thirty generations (Figure 4). 

TA B L E  4  Comparing sequences and rotations.

Outcome: Considers the absolute length of the simulations
Operational outcome: Any strategy must have a 10% longer duration 
to be considered better

Sequences win 31,119 (14%) Sequence operational win 15,590 (7%)

Rotations win 30,544 (14%) Rotation operational win 14,110 (6%)

Draw 158,337 (72%) Operational draw 190,300 (87%)

Note: Sequences and rotations were each run for the same set of input variables (Table note 1 below) and deployment intervals, for a total of 220,000 
sets of input variables. The winning strategy was determined as described in Table note 2 below.
Variables include for example, heritability, male exposure, female exposure, starting resistances, cross-resistance values etc. In the first “absolute 
criterion” the winning strategy was the one with the longest time before resistance had reached the 10% withdrawal threshold for all the insecticides 
in the armory. A draw was recorded if both lasted the same time, or both lasted until the end of the simulation (500 generations, ~50 years). The 
“operational criteria” works in an analogous manner, but a “win” only occurs if a strategy lasts >10% longer than the other. The rationale behind 
this “operational “criterion is that if the difference is less than 10% then the choice of “best” strategy will likely depend on operational or logistic 
considerations.

F I G U R E  4  Frequency distributions comparing the strategy lifespans between sequences and rotations for insecticides with identical 
properties. Values above zero indicate rotations (red) are the favored IRM strategy, values below zero indicates sequences (blue) were the 
better performing strategy. Draws (identical strategy lifespans, where the difference was 0 generations) were excluded from the plots. 
Left plot is the overall global distribution without any stratification. The four plots on the right are stratified by the deployment interval 
(top-bottom: 10 or 30 generations) and starting resistance (left–right; novel (z = 0, 0% bioassay survival) or pre-used (z = 50, ~5% bioassay 
survival)). Each row in these plots is the frequency distribution of the percentage difference in strategy lifespan for depending on the 
amount of cross-resistance. For the cross-selection plots, the numbers on the right-hand side of each plot indicate how many comparisons 
are plotted in the distribution (that is, the number of comparisons where the simulations did not draw).
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Due to the large number of draws in strategy lifespans (72% of 
comparisons are tied) it is useful to also consider the secondary 
bioassay survival outcomes. When sequences and rotations draw, 
rotations outperform sequences by having both lower peak bioas-
say survival and a lower mean bioassay survival to the deployed in-
secticide, regardless of the starting resistance, deployment interval, 
or degree of cross resistance (Figure 5). This is expected because 
most draws occur when both strategies last for the maximum of 
500 generations and sequences by model rule definition explicitly 
run insecticides up to the withdrawal threshold. In contrast, rota-
tions often hold both insecticides at lower PRS over the duration of 
the simulations.

3.2  |  Comparing sequences and rotations 
versus mixtures

Where it is chemically possible to combine two insecticides together 
into a single mixture insecticide formulation, should these insecti-
cides be deployed as a single mixture formulation or as two sepa-
rate single insecticide formulations? Mixtures were found never to 
perform worse when compared against sequences (Figure 6) or ro-
tations (Figure 7) regardless of the starting resistance, deployment 

interval or degree of cross resistance between the two insecticides 
when both insecticides were given identical properties.

3.3  |  Comparing sequences, rotations, adaptive 
rotations and mixtures with unique insecticides

When allowing the insecticides to have unique properties (starting 
resistance, heritability, and fitness cost), the rotation strategy per-
formed badly. However, this is due to the deployment rules of the 
rotation model, which prevent immediate redeployment that is, if 
one insecticide has failed there is no longer anything available to 
be rotated so the simulation is terminated, meaning that the strat-
egy can no longer be implemented. When the deployment rules are 
relaxed allowing rotations to be adaptive rotations (defaulting to be 
in sequence when necessary), adaptive rotations generally outper-
formed sequences (Figure 8). This is expected because the adaptive 
rotation strategy rotates but with facility to become a temporary 
sequence when required.

When the insecticides in the mixtures were given unique prop-
erties (starting resistance, heritability, and fitness cost), there are 
occasions when mixtures are no longer the dominant strategy, al-
though these situations were rare when compared to the number 

F I G U R E  5  Difference in the peak and mean bioassay survival for drawn sequences versus rotations simulations for insecticides with 
identical properties. Left Panel is difference in the peak bioassay survival, where values above zero favor rotations and values below zero 
favor sequences. Right panel is difference in the mean bioassay mortality to the deployed insecticide, where values above zero favor 
rotations and values below zero favor sequences A total of 158,337 simulation pairs (same parameter inputs) which drew are included. 
In summary, rotations never appear to perform worse (when evaluated on the secondary outcomes) in the draws as they maintain the 
resistance at a lower level.
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F I G U R E  6  Frequency distributions comparing the strategy lifespans between sequences and mixtures for insecticides with identical 
properties. Percentage differences above zero indicate mixtures were the favored strategy, values below zero favor sequences. Draws 
(identical strategy lifespans, difference = 0) were excluded from the plots. The left plot is the overall global distribution without any 
stratification. The four plots on the right are stratified by the deployment interval (top-bottom) and starting resistance (novel: z = 0, pre-
used: z = 50; left–right). Each row in these plots is the frequency distribution of the percentage difference in strategy lifespan for whether 
cross-resistance was positive, negative, or not included. Difference values above 0 (green) favor mixtures. For the cross-selection plots, the 
numbers on the right-hand side of each plot indicate how many comparisons were in each distribution (that is, the number of comparisons 
where the simulations did not draw). In summary, mixtures never appear to be inferior to sequences when both insecticides have equivalent 
properties.

F I G U R E  7  Frequency distributions comparing the strategy lifespans between rotations and mixtures for insecticides with identical 
properties. This figure has exatly the same structure and interperetion as Figure 6, it simply compares rotations (rather than sequences) 
agianst mixtures.
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of mixture wins (Figure 8). In these situations, the insecticides were 
very dissimilar from one another in terms of their starting PRS and 
heritability (Supplement S4, Figure S2). This indicates that only one 
insecticide in the mixture failed, and the other insecticide would re-
main available to be deployed singularly as a sequence.

3.4  |  Identifying parameters driving IR to inform 
decision-making

There are situations where while on average two or more IRM strat-
egies may perform equally well (Tables  4 and 5), but under a nar-
rowed parameter space one strategy is preferential to another. It is 
important here to identify what conditions lead to such events and 
which parameters or subset of parameters lead to such outcomes 
occurring. These are identified using three statistical methods in the 
subsections below. This can inform what field data would be most 
valuable to collect to help choose between IRM strategies.

3.4.1  |  Partial rank correlation and generalized 
linear modeling

Details of the results from the Partial Rank Correlation and 
Generalized Linear Model are found in Supplement S4. In summary, 
the following parameters were identified as driving faster evolution 
of IR: male insecticide exposure, female insecticide exposure, inter-
vention coverage and heritability. Fitness costs were associated with 
the slowing of the evolution of IR. Mosquito dispersal was found to 
have a nonlinear effect.

3.4.2  |  Random forest models

A total of eight random forest models were fitted on the operational 
outcome predicted by the model inputs, with the aim to identify pa-
rameters useful for predicting which strategy to use. Random forest 
models allowed for the identification of parameters which offer pre-
dictive power in determining which IRM strategy to use. Parameter 
importance is identified by the mean decrease in accuracy. Where 
higher values indicate these parameters are more important in the 
model, and therefore more important in terms of providing informa-
tion on which to make informed IRM decisions.

Figure  9 shows the parameter importance when choosing 
between sequences and rotations. Figure  9a being the parame-
ter importance when both insecticides had equal properties, and 
highlights intervention coverage and the degree of cross resistance 
between the insecticides as important predictors. Figure 9b shows 
the parameter importance when both insecticides were allowed 
to have unique properties, here intervention coverage and cross 
resistance were also found to be the predictors with the greatest 
importance. Figure  10 shows the parameter importance when 
choosing between sequences, rotations, and mixtures. Figure 10a 
is for when both insecticides had the same properties and high-
lights the importance of intervention coverage followed by heri-
tability. Figure 10b is when the insecticides had unique properties 
intervention coverage became more important (relative to the 
other predictors), with cross resistance the next most important 
predictor.

Intervention coverage being an important predictor is intuitive 
because it dictates the amount of insecticide selection. However, 
its use as a predictor lies more in deciding whether an IRM strategy 

F I G U R E  8  Frequency distribution of the percentage difference in strategy lifespan when insecticides have unique properties. Top-Left: 
Comparing sequences versus rotations. Top-Middle: Comparing sequences versus adaptive rotations. Top-Right: Comparing sequences 
versus mixtures. Bottom-left: comparing rotations versus adaptive rotations. Bottom-middle comparing rotations versus mixtures. 
Bottom-right:comparing adaptive rotations versus mixtures. Plots only include comparisons where the difference in strategy lifespan 
was ≥10%, where N is the number of comparisons (out of a potential 50,000) included in each plot. Colors represent which strategy won: 
Blue = Sequences, Red = Rotations, Purple = Adaptive Rotations, Green = Mixtures. Note, the sequence versus rotation plot highlights the 
issue with the restrictive deployment rules of the rotation strategy when comparing insectcides with unique properties.
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is needed at all, because at lower intervention coverages, the “no 
operational win category” is dominant because all strategies are 
likely to run to the maximum of 500 generations (Supplement S4, 
Figure S5). Therefore, a second set of random forest models was 
fit, but including only simulations where the intervention coverage 
was greater than or equal to 0.5, to better identify parameters which 
help to choose between IRM strategies.

Figure 11 shows the parameter importance for this random for-
est model when choosing between sequences and rotations. The 
intervention coverage parameter is no longer the most important 
predictor, being replaced by the cross resistance between the insec-
ticides, with heritability and fitness costs also being important pre-
dictors for simulations where the insecticides had equal properties 

(Figure 11a). When allowing the insecticides to have unique prop-
erties cross resistance is the most important parameter alongside 
heritability (Figure  11b). Figure  12 shows the parameter impor-
tance for choosing between sequences, rotations, and mixtures. 
Heritability and cross resistance being important predictors when 
the insecticides have equal properties (Figure 12a) or unique prop-
erties (Figure 12b).

4  |  DISCUSSION

We modeled polygenic IR as a quantitative trait by devising a 
Polygenic Resistance Score that can be measured as WHO cylinder 

Outcome: Considers the absolute 
length of the simulations

Operational outcome: Any strategy must have a 10% 
or more longer duration to be considered better

Draw 138,105 (63%) No operational win 146,285 (66%)

Mixtures win 73,835 (34%) Mixture operational win 65,978 (30%)

Rotations lose 2050 (1%) Rotation operational loss 2620 (1%)

Sequences lose 6010 (3%) Sequence operational loss 5117 (2%)

Note: The methods and winning criteria are as described on Table 4. The difference between this 
Table and Table 4 is that mixtures can beat one strategy (e.g., sequences), while losing to the other 
(e.g., rotations; this example would be classed as a “Sequences Lose).

TA B L E  5  Comparing mixtures against 
sequences and rotations.

F I G U R E  9  Parameter importance from random forest model for choosing between sequences and rotations. Panel a (blue bars) is the 
parameter importance for when both insecticides have equivalent properties and it has a predictive accuracy of 87.65%. Panel b (green 
bars) is the parameter importance when the insecticides are given unique properties and has a predictive accuracy of 90.98%. The x axis 
shows the decrease in predictive accuracy when the parameter is removed from the analysis so larger values indicate greater predictive 
importance. Parameters are ordered by importance.
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bioassay survival. Previous models have applied a quantitative 
genetics framework to IR traits (Gardner et al.,  1998; Haridas & 
Tenhumberg,  2018), but did not investigate the implications for 
resistance management strategies utilizing multiple insecticides. 
Gardner et al. (1998) looked at the impact of different dosing strate-
gies on the rate of the evolution of polygenic resistance, a tactic not 
readily available in public health where uniform insecticide dosing is 
intended through the use or LLINs or IRS. Utilizing quantitative ge-
netics has allowed for a conceptually simplistic method for incorpo-
rating cross resistance/selection into our model, a process generally 
absent from monogenic models (Rex Consortium, 2010). We used 
genetic correlations allowing us to explore the possible implications 
of cross resistance for IRM. A headline summary of the results from 
all figures can be found in Table 6. These modeling results are likely 
to be highly applicable when considering IRM for other diseases, 
especially for Culex mosquitoes and sandflies, where the methods 
of control are also LLINs and IRS. We would note that the time-
scales to resistance may be different, which can be accounted for in 
our model by changing the number of generations per year (e.g., a 
LLIN deployment lasts for 60 generations if a vector species has 20 
generations per year) and the exposure scaling factor. There are of 
course important caveats of the model to address to provide con-
text to our results.

4.1  |  Model caveats

The first caveats concern the rules of insecticide deployment and 
withdrawal used. We highlight our simulations were terminated 
under idealistic deployment conditions when mosquito survival is 
still relatively low (i.e., <10% in bioassays). Setting the withdrawal 
threshold higher (e.g., 20%, 30% or 50% bioassay survival), would 
inevitably lead to more strategies drawing (as they would run to 500 
generation completion), and requiring comparison based only on 
the secondary outcomes. Or setting a higher withdrawal threshold 
would require re-calibrating the simulations such that the exposure 
scaling factor is increased also to maintain an average 10-year insec-
ticide lifespan under continuous deployment.

Insecticide deployments in the models are based on clearly de-
fined pre-set rules required for implementation in computing. In 
practice, deployments are often affected by logistical factors such as 
unreliable supply chains, human resource limitations, and slow, cen-
tralized decision making. The primary outcome of strategy lifespan 
does not readily allow for suitable comparison between different de-
ployment intervals. This is because the deployment interval dictates 
the frequency at which the model can be interrogated and stopped 
if an IRM strategy has failed (i.e., if both insecticides are above the 
withdrawal threshold of 10% bioassay survival). If both insecticides 

F I G U R E  1 0  Parameter importance from random forest model for choosing between sequences, rotations and mixtures. Panel a (blue 
bars) is the parameter importance for when both insecticides have identical properties and has a predictive accuracy of 96.14% %. Panel b 
(green bars) is the parameter importance when the insecticides are given unique properties and has a predictive accuracy of 91.16%. The x 
axis shows the decrease in predictive accuracy when the parameter is removed from the analysis so larger values indicate greater predictive 
importance.
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reach the 10% bioassay threshold in ten-generation deployment in-
terval five generations after deployment, then the simulation termi-
nates five generations later. However, if the deployment interval was 
30 generations, the simulation would continue for a further 25 gen-
erations before terminating, artificially inflating the apparent strat-
egy lifespan. We feel this reflects the operational reality as LLINs are 
designed for 3-year deployments (~30 generations) and IRS for 1-
year deployments (~10 generations) and it is unlikely that detection 
of resistance would result in replacement of nets after 1.5 years or 
IRS after 6 months. Insecticides are also deployed “perfectly” in our 
models, and we do not account for economic constraints dictating 
the continued use of cheaper insecticides. This is especially import-
ant when considering mixtures, as these formulations are expected 
to be more expensive and there will be an economic temptation to 
reduce the concentration of each insecticide in the mixture. Neither 
do we allow for any logistical constraints with regard to insecti-
cide deployment. Insecticide deployments always occur instanta-
neously at the set time (without the delays often noted in practice). 
Insecticide choices are also made “perfectly”, the resistance in the 
field is tracked without error and information is available to make 
instantaneous, correct decisions regarding insecticide deployment. 
There is likely to be a considerable lag between insecticide suscep-
tible testing, insecticide procurement and insecticide deployment 

resulting from inadequate surveillance systems and the release of 
procurement funds (Chanda et al., 2015). In operational reality, in-
secticides are highly unlikely to be deployed in the idealistic ways 
the rules the model demands. It is also unlikely that a single IRM 
strategy would remain fixed for eternity, with an amalgamation of 
sequences, rotations and mixtures potentially being used in a sin-
gle intervention site. We could only realistically investigate the IRM 
strategies under these idealized conditions of “perfect” deployment 
because space restraints prevented a more extended investigation 
of how operation factors may alter the relative merits (although the 
model can later be used to investigate specific examples of opera-
tional problems). We can however speculate on how operation lim-
itations may affect the strategies. Mixtures are likely to be the most 
robust because no replacement decisions are required (Figure  3) 
supporting our conclusion that full-dose mixtures are overall the 
“best” IRM strategy. Sequences and rotations performed very sim-
ilarly in our simulations but as noted by Curtis (1987) and Hastings 
et al.  (2022). the fact that rotations have preplanned insecticide 
replacement already in place may make them more operationally 
robust than sequences whose unpredictable replacement intervals 
require rapid responses.

Second are caveats concerning nonpublic health insecticide se-
lection pressure. The model only tracks insecticides in the armory 

F I G U R E  11  Parameter importance from random forest model for choosing between sequences and rotations restricted to simulations 
where intervention coverage ≥0.5. Random forest model was restricted to comparisons where intervention coverage ≥0.5. Panel a (blue 
bars) is the parameter importance for when both insecticides have equivalent properties and has a predictive accuracy of 79.09%. Panel b 
(green bars) is the parameter importance when the insecticides are given unique properties and has a predictive accuracy of 84.73%. The x 
axis shows the decrease in predictive accuracy when the parameter is removed from the analysis so larger values indicate greater predictive 
importance.
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and assumes these insecticides are only ever deployed (and there-
fore encountered by mosquitoes) as part of a public heath deploy-
ment. Other insecticides, which mosquitoes may encounter such 
as agricultural insecticides or personal household insecticides (i.e., 
coils and aerosols) were not considered in the model as they are not 
part of the armory and we assumed they had no cross resistance 
with insecticides in the armory. Agricultural insecticide use is asso-
ciated with increased IR in malaria vectors (Abuelmaali et al., 2013; 
Nkya et al., 2014; Reid & McKenzie, 2016). This further extends to 
the model's intervention site and refugia existing “isolated” from 
rest of the world. It would be possible to build these “external” se-
lection pressures into our model (through Equations 3a and 3b) and 
to allow them to act even in refugia (by adding an additional term 
representing external selection in Equation 9a) but this is a specific 
operational question we could not realistically address in this study 
due to time constraints.

4.2  |  Model interpretation

With these caveats in mind, we can say, from a purely IRM per-
spective the overall best strategy appears to be full-dose mix-
tures (Figures 6 and 7). This broadly corroborates with the results 
from monogenic models (e.g., Madgwick & Kanitz, 2022b; South & 

Hastings,  2018) for favoring full-dose mixtures. There appears to 
be little difference between rotations and sequences when com-
paring operational longevity at the “global level” (Figure 4) agreeing 
with monogenic modeling results (Hastings et al.,  2022), although 
rotations are slightly more beneficial when considering mean and 
peak bioassay survival (Figure 5). The reason for this would appear 
to be that sequences are in practice a type of rotation Hastings 
et al.  (2022) that is, because the first insecticide in the sequence 
can later be re-deployed if resistance has fallen below its redeploy-
ment threshold. A blend of these two strategies (which we defined 
as adaptive rotations) generally was the better strategy when con-
sidering solo insecticide deployments (Figure 8).

These conclusions ignore important operational and economic 
factors required for the IRM implementation, for example the in-
creased costs of a mixture LLIN/IRS, the infrastructure and supply 
chains required for annual rotations, and so on. However, these re-
sults highlight a vital conclusion from our study that is, the underly-
ing assumption of a purely monogenic or purely polygenic basis of 
IR does not overly impact the general conclusions from mathemat-
ical models; lending further support to mixtures being the gener-
ally optimal IRM strategy. Validating IRM models with field data is 
challenging, probably impossible, because of the need for long field 
surveillance of the levels of resistance the need to measure other 
parameters associated with quantifying the degree of selection, and 

F I G U R E  1 2  Parameter Importance from Random Forest Models for choosing between sequences, rotations and mixtures restricted 
to simulations where Intervention Coverage ≥0.5. Panel a (blue bars): Random Forest model parameter importance for simulations where 
insecticides were given equal parameters, model accuracy 94.32%. Panel b (green bars): Random Forest model parameter importance for 
simulations where insecticides were given unique properties, model accuracy 87.63%. The x axis shows the decrease in predictive accuracy 
when the parameter is removed from the analysis so larger values indicate greater predictive importance.
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the need for replication over several IRM sites to draw robust em-
pirical conclusions. Therefore, mathematical modeling studies using 
different approaches and assumptions yet yielding qualitatively 
similarly conclusions suggests there is some robustness to the con-
clusions made.

One advantage of taking a quantitative genetics approach is 
the ability to easily incorporate cross resistance/selection using 
correlated responses. One important concern with mixtures 
has been the role cross resistance could play (e.g Curtis,  1985). 
Importantly, the presence of cross resistance between insecticides 
in the mixture does not appear to invalidate the conclusion that 
mixtures are the more beneficial IRM strategy (Figures 6 and 7), 
despite previous speculation cross-resistance would compromise 
mixtures as an IRM strategy. There are two possible explanations 
for this. First, because cross resistance also reduces the strategy 
lifespan of sequences and rotations through indirect selection oc-
curring on the non-deployed insecticide. Second, our mixture con-
sists of both insecticides at full-dose and this double-dose effect 

likely overcomes the detrimental impacts of cross resistance. In 
the few examples where a monogenic model has included cross 
resistance this pattern was also observed (Birch & Shaw,  1997; 
Roush,  1998; Sudo et al.,  2018). This is certainly not to say we 
(nor indeed the authors of the previous studies) recommend mix-
ing two insecticides where cross-resistance or cross-selection is 
likely, but that if these two insecticides were to be deployed in 
the same area mixtures would very likely be a better IRM strategy 
deploying them singularly as sequences or rotations. We would 
instead emphasize the importance of insecticides in the entire in-
secticide armory being chosen that have as a little cross-resistance 
as possible. Note, the simulations were terminated when mosquito 
survival was still relatively low (i.e., <10% in bioassays). At higher 
resistance levels mosquito survival increases, and the protective 
effect of each mixture component therefore decreases. Whether 
cross-resistance becomes more detrimental under lower insecti-
cide doses and higher resistances needs investigation, as these are 
both real-world problems.

TA B L E  6  Summary of results presented in the figures.

Figure Take home message(s)/purpose

1 Polygenic Resistance Score (PRS) measured as bioassay survival
Bioassay survival converted to expected field survival

2 The model is calibrated such that an “average” insecticide lasts 10 years

3 Explains how insecticides are deployed and the concept of the withdrawal and return thresholds

4 Sequences and Rotations perform equally at the “global level”
Rotation better than sequences negative cross-resistance
Sequences slightly better than rotations with positive cross-resistance

5 When sequences and rotations draw on strategy lifespan rotations have:
•	 Lower peak bioassay survival
•	 Lower mean bioassay survival to deployed insecticide.

6 Mixtures outperform sequences regardless of cross-resistance

7 Mixtures outperform rotations regardless of cross-resistance

8 When insecticides have unique properties:
•	 Mixtures perform best
•	 Rotations perform worst
•	 Adaptive rotations best solo deployment strategy

9 Highest importance variables for choosing between sequences and rotations:
•	 Intervention Coverage
•	 Cross-Resistance
•	 Heritability
•	 Fitness Cost

10 Highest importance variables for choosing between sequences, rotations, and mixtures:
•	 Intervention coverage
•	 Heritability
•	 Cross-Resistance
•	 Start Resistance

11 Highest importance variables for choosing between sequences and rotations:
•	 Cross-resistance
•	 Heritability
•	 Fitness Cost
•	 Start Resistance

12 Highest importance variables for choosing between sequences, rotations, and mixtures:
•	 Heritability
•	 Cross-Resistance
•	 Intervention Coverage
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Mathematical modeling allows insights into how decisions could 
or should be made from a policy or operational perspective, and also 
identifies important research and knowledge gaps through the iden-
tification of understudied yet operationally important variables. Our 
analysis highlights the importance of cross resistance between insec-
ticides, intervention coverage, IR heritability and the fitness costs as-
sociated with IR as being important predictors for which IRM strategy 
to deploy (Figure 12). Unfortunately, the heritability of resistance is 
challenging to reliably measure in the laboratory (Rosenheim, 1991) 
and, in any case, such estimates are unlikely to reflect heritability in 
the field where environmental variance will be much higher. Fitness 
costs are also challenging, as these can affect a wide range of life-
history traits and are difficult to measure outside unrealistic labora-
tory settings. There is also large variation in the design and execution 
of fitness studies (Freeman et al., 2021) due to the large number of 
traits measured. Our model included the fitness costs as a single 
global value to account for cumulative detrimental effects fitness 
costs can play across the whole life-history of a mosquito.

For malaria, the primary purpose for deploying insecticides 
is reducing its transmission and the associated burden of disease 
rather than managing IR in the mosquito population. The choice of 
IRM strategy should of course not be conducted at the detriment of 
inadequate malaria control. For example, removing the insecticide 
selection pressure entirely would allow for any fitness costs to re-
turn the population to susceptibility but in doing so there is no mos-
quito control and therefore no disease control. But at the same time, 
immediate reductions in malaria transmission (to meet a particular 
policy objective) without considering the longer-term sustainabil-
ity of such insecticidal deployment could lead to the loss of future 
transmission reductions and the resurgence of malaria transmission. 
There is a need to manage the longer-term effectiveness of insecti-
cides alongside the immediate epidemiological benefits of deploy-
ing insecticides and we argue that computer simulation is the most 
feasible way to identify best-practice in deployment of insecticides 
used for vector control.
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