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Background: Lymphatic filariasis (LF) and malaria are important vector-borne diseases that are co-endemic 
throughout Nigeria. These infections are transmitted by the same mosquito vector species in Nigeria and their 
transmission is similarly influenced by climate and sociodemographic factors. The goal of this study was to 
assess the relationship between the geospatial distribution of both infections in Nigeria to better coordinate 
interventions. 

Methods: We used national survey data for malaria from the Demographic and Health Survey dataset and 
site-level LF mapping data from the Nigeria Lymphatic Filariasis Control Programme together with a suite of 
predictive climate and sociodemographic factors to build geospatial machine learning models. These models 
were then used to produce continuous gridded maps of both infections throughout Nigeria. 

Results: The R 2 values for the LF and malaria models were 0.68 and 0.59, respectively. Also, the correlation 
between pairs of observed and predicted values for LF and malaria models were 0.69 (95% confidence interval 
[CI] 0.61 to 0.79; p < 0.001) and 0.61 (95% CI 0.52 to 0.71; p < 0.001), respectively. However, we observed a very 
weak positive correlation between overall overlap of LF and malaria distribution in Nigeria. 

Conclusions: The reasons for this counterintuitive relationship are unclear. Differences in transmission dynamics 
of these parasites and vector competence may contribute to differences in the distribution of these co-endemic 
diseases. 
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Although LF and malaria account for considerable morbid- 
ity and mortality in regions where both infections are present, 
relatively little is known regarding the interaction of these par- 
asites in human populations. A prior study on this subject 
found a counterintuitive negative spatial correlation between 
these infections in the four adjacent countries: Ghana, Burkina 
Faso, Togo and Benin in West Africa. 8 However, their study was 
based solely on previously published falciparum malaria preva- 
lence maps 9 that were then used to assess the degree of spa- 
tial correlation with bancroftian filariasis. The LF and malaria 
maps were constructed using different modelling approaches as 
well as different sets of environmental covariates. 9 , 10 Maps pro- 
duced using the same modelling methods and the same set of 
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ymphatic filariasis (LF), caused by the parasitic nematode 
uchereria bancrofti , and malaria (mostly caused by the pro- 
ozoan Plasmodium falciparum ) are important vector-borne dis- 
ases that are responsible for large public health burdens in 
ub-Saharan Africa (SSA). 1 , 2 LF and malaria are co-endemic 
hroughout Nigeria, 3 , 4 where they are predominantly transmit- 
ed by Anopheles mosquitoes. 5 Infection with W. bancrofti is of- 
en asymptomatic, although infected individuals may manifest 
ith lymphoedema, hydrocele and acute adenolymphangitis at- 
acks. 6 Falciparum malaria is a leading cause of mortality in SSA 
nd this is especially true for children < 5 y of age and pregnant

omen. 7 
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Figure 1. Location of study sites showing the prevalence of malaria (left) and LF (right) surveys in Nigeria. 
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covariates are ideal in order to maintain consistency in model
predictions. 
A mathematical modelling study found a similar negative

association and suggested that attempts to control one of
these parasites may inadvertently result in increased suscep-
tibility to infection to the other in the mosquito vector and in
humans. 11 Although these findings are in keeping with previous
work, 8 Slater et al., 11 in their co-infection model, included an
additional mortality parameter in filarial-infected mosquitoes
that was double the estimated daily death rate. Such assump-
tions may yield model results that show a negative correlation
between LF and malaria due to the dependence of vectorial
capacity on daily survival. In general, the iterative process of
fitting simulation models whereby different values of model
parameters are tested in an attempt to account for a wide
range of possible biological scenarios makes it more difficult
to interpret model outputs. It is therefore necessary to test
this hypothesis with representative data from population field
studies. 
In order to assess whether the spatial correlation between

LF and malaria can also be found in Nigeria, we built on prior
work on the geospatial distribution of LF in Nigeria. 3 In this
study we used nationally representative prevalence data for
both LF and malaria and a suite of explanatory environmental
and sociodemographic covariates to train a machine learning
model. The trained model was then used to produce predictive
prevalence maps for locations that did not have survey data. We
then used spatial data to assess the degree of correlation for the
distribution of LF and falciparum malaria in Nigeria. 
2 
Methods 
LF and malaria prevalence data 
LF data were from pre-intervention site-level parasitological
surveys conducted by the Nigerian Ministry of Health during the
national mapping of LF from 2000 to 2013. 12 This is a nationally
representative dataset of baseline LF prevalence for Nigeria
(Figure 1 ). A full description of these data were provided in
our previous studies 3 , 13 and in the Neglected Tropical Disease
Master Plan of the Nigerian Ministry of Health. 12 Briefly, states in
Nigeria are subdivided into local government areas (LGAs), which
represent the third administrative unit of government. Surveys
were conducted to ensure that all LGAs had at least one survey
location, although more than one location was surveyed in larger
LGAs. Locations for survey sites were selected based on distances
between them; all survey sites were at least 50 km apart. 12 At
each site, the survey aimed to enrol between 50 and 100 adults
(age > 15 y). Testing for the presence of filarial antigenemia in
finger prick blood was done using rapid immunochromatographic
card tests (ICTs; Alere, Scarborough, ME, USA). This modelling
exercise used 1327 survey data points with ICT results from
approximately 143 000 survey participants. 
Our study used malaria prevalence data collated from the

2015 Nigerian Malaria Indicator Survey (NMIS). 14 The survey
was jointly implemented by the National Malaria Elimination
Programme, National Population Commission and the National
Bureau of Statistics with technical support provided by ICF Inter-
national under the Demographic and Health Surveys Programme
of the United States Agency for International Development. The
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ain objectives of the NMIS were to provide information on key 
alaria indicators such as prevalence, treatment and prevention 
ractices and to determine the dominant Plasmodium species 
hat were circulating within the population. 
The primary sampling frame for the NMIS was the cluster, 
hich is a collection of households within an enumeration 
rea (EA). These EAs were used for national censuses and are 
omprised of communities within an LGA. For the 2015 NMIS, 
5 households were selected in each cluster by equal probability 
ystematic sampling. All children 6–59 months old within a 
ousehold were eligible for inclusion. Finger (or heel) prick blood 
amples were collected for detection of malaria parasitaemia 
y microscopy. The dataset used for this modelling exercise 
ontained a total of 333 clusters (138 clusters in urban areas 
nd 195 clusters in rural areas) and they included data from 

 8000 households. A complete description of the survey design 
nd testing procedures can be found in the 2015 NMIS report 
 https://dhsprogram.com/pubs/pdf/MIS20/MIS20.pdf). 14 

nvironmental and sociodemographic data 
 suite of environmental and sociodemographic covariates 
ere obtained from open access sources. All covariates con- 
idered for this work had biologically plausible links to both 
F and malaria. Continuous gridded maps of altitude, rainfall 
nd temperature were processed from the WorldClim database 
 https://www.worldclim.org/ ), which provides long-term ( > 50 y) 
verages of data collated from weather stations distributed 
cross the world. Data on Anopheles spp. distribution were down- 
oaded from the Malaria Atlas Project ( https://malariaatlas.org/ ). 
his resource curates malariometric data that includes factors 
hat influence malaria transmission and intervention coverages. 
inally, data on healthcare access and poverty were downloaded 
rom the WorldPop database ( https://www.worldpop.org/ ), which 
rovides modelled estimates of various developmental and de- 
ographic indicators. Incorporating potential disease drivers 
ithin a geostatistical framework is known to improve model 
redictions. Also, in addition to these explanatory covariates, we 
ncluded the geographical coordinates of the observed data to 
ccount for the effects of spatial heterogeneity of the survey loca- 
ions. This practice is known to further improve model predictions 
hen machine learning models are used for spatial analysis. 15 
All input grids were resampled to a common spatial resolution 

f 5 km ×5 km using the nearest neighbour algorithm. 16 The 
tack of raster files were aligned and clipped to the geographical 
xtent of mainland Nigeria. 

eospatial analysis 
e used the quantile regression forest (QRF) model to produce 
mooth prevalence maps of LF and malaria for areas without 
round-truth data. 17 QRF is an ensemble machine learning 
lgorithm for classification and regression that handles complex 
nd multidimensional data well. It has been demonstrated to 
utperform traditional regression models under comparable 
odelling scenarios. 18 A complete description of this modelling 
ramework can be found in our previous publications. 3 , 19 
For this analysis, we first implemented a random forest (RF) 
odel. The RF model is used to tune parameters for use in 
he QRF model. This process informs the optimum number of 
ovariates to be considered for each recursive node split in the 
RF model. For each directly modelled response variable (in this 
ase, LF and malaria), we trained the model on a random subset 
f 70% of the data points, while the remaining 30% were used 
or model validation. We performed a 10-fold cross-validation 
n out-of-bag samples, repeating this process five times. 
For model performance metrics, we computed the root mean 

quared error (RMSE), R 2 and Pearson’s coefficient between pairs 
f observed vs predicted values for both the LF and malaria 
odels. We used a two-step process to compute the association 
etween LF and malaria prevalence. We first used observed 
revalence data for LF for every location with ground-truth data 
nd then extracted corresponding values from raster layers of 
he modelled predictions for malaria. Then we performed this 
nalysis in reverse by using ground-truth prevalence data for 
alaria to extract corresponding values for LF from the predicted 
odel output for LF. We then used these two data sets to 
ompute Pearson’s coefficients to determine the relationship 
etween paired observed vs predicted values for LF and malaria. 
n addition, using our ground-truth LF prevalence data, we 
xtracted corresponding values for malaria prevalence using 
reviously modelled malaria prevalence maps for the year 2000 
nd 2005. 20 The purpose of this extra analysis was to test our 
odel on malaria data prior to large-scale uptake of malaria 

nterventions such as bed net usage. This rules out any temporal 
ffects that may have occurred from malaria interventions. 
All analyses were done in R (version 4.1.3; R Foundation for 

tatistical Computing, Vienna, Austria). 21 The raster package was 
sed for processing and preparing of environmental covariates. 
F and QRF models were implemented using the randomForest 
nd quantregForest packages, respectively. Output raster maps 
f final model predictions were projected at a spatial resolution 
f 5 km ×5 km. These raster layers were then imported into 
rcGIS (version 10.6.1; Esri, Redlands, CA, USA) for visualization. 

esults 
odel performance indicators 
able 1 shows the performance indicators for the trained QRF 
odels for LF and malaria. Here, R 2 values were 68% and 59% 

or LF and malaria, respectively. This indicates that the covari- 
tes used in model fitting were able to explain the majority of 
he variability in model predictions. Highly significant Pearson’s 
oefficients between observed and predicted values for LF (0.69 
95% confidence interval {CI} 0.61 to 0.79], p < 0.001) and malaria 
0.61 [95% CI 0.52 to 0.71], p < 0.001) also indicate the validity 
f these models. 

ariable importance plot 
igure 2 shows the variable importance plot of the QRF model 
rained using LF and malaria prevalence data. Here, the percent- 
ge increment in mean squared error shows that the climatic 
ariables rainfall, temperature and altitude as well as Anopheles 
ambiae distribution were the most informative variables in the 
alaria model. For the LF model, sociodemographic variables 
3 
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Table 1. Model performance indicators 

Disease RMSE R 2 Correlation between pairs of observed and predicted values (95% CI) p-Value 

Lymphatic filariasis 1.18 0.68 0.69 (0.61 to 0.79) < 0.001 
Malaria 1.23 0.59 0.61 (0.52 to 0.71) < 0.001 

Healthcare access

Anopheles funestus distribution

Poverty index

Anopheles gambiae distribution
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Annual mean temperature

Annual mean rainfall
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Variable importance for the malaria model
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Figure 2. Variable importance for the trained malaria and LF models. 
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such as poverty index and healthcare access as well as altitude
and A. gambiae distribution were important predictors. 

Predicted LF and malaria prevalence 
The 5 km ×5 km predicted maps of LF and malaria for Nigeria are
presented in Figure 3 . As can be seen, the endemicity patterns
in these maps are largely dissimilar. Importantly, there was a
very weak positive correlation in the association between LF and
malaria; the Pearson’s coefficient computed using pairs of data
from observed prevalence values for LF and corresponding values
extracted from predicted prevalence of malaria was 0.08 (95%
CI 0.02 to 0.13; p = 0.006). When this analysis was computed in
reverse, i.e. using observed malaria prevalence and extracting
corresponding values from predicted LF prevalence, the Pear-
son’s coefficient was 0.062 (95% CI 0.03 to 0.12; p = 0.006).
Furthermore, when we performed this analysis using previously
modelled malaria prevalence for Nigeria for 2000 and 2005, 20 
the Pearson’s coefficient was −0.01 (95% CI −0.06 to 0.04;
p = 0.71) and −0.0006 (95% CI −0.05 to 0.05; p = 0.98) for 2000
and 2005, respectively. 
As districts (i.e. LGAs) constitute the primary administrative

division for mass drug administration (MDA) programs for LF and
4 
bed net distribution and other interventions against malaria,
we have reprojected these maps to delineate district-level es-
timates. Maps presented in Figure 4 are the district-level mean
predicted prevalence of malaria and LF in Nigeria. States in the
northwestern, northcentral (especially Plateau and Nasarawa
states) and pockets in the southeastern region appear to be
highly endemic for LF. In contrast, the malaria endemicity map
indicates high or moderate endemicity in most areas of Nigeria
apart from the northern-most regions. 

Discussion 

This study has used extensive nationally representative datasets
for bancroftian filariasis and falciparum malaria to examine
correlations and the extent of geographical overlap of these
two vector-borne infections in Nigeria. Our results show that the
distribution of these infections is only weakly correlated despite
the fact that they are both transmitted by anopheline vectors.
Indeed, some areas with the highest LF prevalence had little
malaria, and vice versa. This counterintuitive result has been
previously reported. 8 , 11 , 22 , 23 Confirmatory studies from other
countries are extremely important to elucidate whether the lack
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Figure 3. Mean predicted maps of endemicity of malaria and LF for Nigeria at 5 km ×5 km spatial resolution. 

o
p
o

w
h
t
l
m
a
m
L
f
t
2
i
B
a
t
i
c
o
b

f
O
m
a
i
F  

d

N
t
r
c
a
i
m
i

l
i
t
o
t
i
c
s
I
v

m
t
i
A
t
t
i
L
d
a
i

D
ow

nloaded from
 https://academ

ic.oup.com
/inthealth/advance-article/doi/10.1093/inthealth/ihad029/7140553 by guest on 04 M

ay 2023
f positive association between the two Anopheles transmitted 
arasites, W. bancrofti and P. falciparum , is a local phenomenon 
r a common rule in larger parts of Africa. 
Previous studies suggest that a possible explanation for the 
eak relationship between LF and malaria may be related to 
istorical vector control interventions. 8 Nigeria had received ex- 
ensive bed net coverage and indoor residual spraying (albeit to a 
esser extent) for many years. Taken together, these interventions 
ay well have been sufficient to reduce the transmission of LF to 
 greater extent than for malaria due to the inefficiency of trans- 
ission of the filarial parasite. 24 Given the mismatch in dates of 
F and malaria surveys that were used in this work (i.e. LF data 
rom 2000 to 2013 and malaria data for 2015), we further tested 
his hypothesis by applying our models on malaria prevalence for 
000 and 2005. This was prior to extensive scale-up of malaria 
ntervention campaigns. Using previously modelled maps from 

hatt et al., 20 we found no significant correlation between LF 
nd malaria. It is also possible that the interplay between the 
ransmission of both infections at a population level may be 
nfluenced by years of MDA with ivermectin for onchocerciasis 
ontrol. Although ivermectin is primarily used for the treatment 
f filarial worm infections, studies have found that it reduces 
oth the survival and density of Anopheles mosquitoes. 25 –27 
Also, seasonality, specific climate and sociodemographic 

actors may explain the mismatch in transmission patterns. 
ur analysis on the variable importance for the LF and malaria 
odels indicate that climatic variables like rainfall and temper- 
ture had the greatest influence on the distribution of malaria 
n Nigeria. This is distinctively shown in the maps presented in 
igures 3 and 4 , where malaria is seen to be less prevalent in the
ryer northernmost parts closer to the Sahara desert regions of 
igeria and in rainy southern rainforest regions. There is evidence 
hat mosquito populations do not thrive in areas with heavy 
ainfall, as this tends to wash out breeding sites. 28 Conversely, so- 
iodemographic factors such as the poverty index and healthcare 
ccess were important correlates for filariasis distribution. This is 
nteresting and suggests that perhaps LF infection is more com- 
on in poor rural settings without access to adequate healthcare 

nfrastructure and less related to climate than malaria. 
The different transmission dynamics of both parasites could 

ead to different relationships between biting density and disease 
ncidence. Unlike malaria, filarial parasites do not replicate within 
he vector and the number of infective larvae inoculated by 
ne mosquito will not lead to infection. It has been estimated 
hat thousands of infective bites are required for a patent LF 
nfection, 29 whereas a single inoculation with sporozoites can 
ause malaria. Therefore the intensity of exposure required to 
ustain community transmission is lower for malaria than LF. 
n addition, vector competence to each parasite and overall 
ectorial capacity are species specific. 
Although it is known that A. gambiae is the dominant 
osquito vector for both LF and malaria in SSA, 2 , 5 concurrent 
ransmission of LF and malaria parasites by a single vector is rare 
n nature. 30 Furthermore, there are several subspecies within the 
. gambiae complex ( A. gambiae s.l). Souza et al. 31 highlight that 
hese anophelines differ in terms of distribution, host preference, 
ransmission potential, resistance status and immunity. For 
nstance, they report that Anopheles melas is a more competent 
F vector because it has a less extensive cibarial armature that 
amages microfilariae on ingestion. 31 Extensive diversity among 
nophelines within a given geographical region may differentially 
nfluence transmission of LF and malaria. In addition, it is thought 
5 
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Figure 4. District-level mean predicted prevalence maps of malaria and LF. 
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that infection with W. bancrofti increases the susceptibility of
mosquitoes to P. falciparum infection, because migration of
microfilariae can disrupt the peritrophic midgut membrane and
facilitate Plasmodium invasion. 32 
The World Health Organization has recommended integrated

vector management (IVM) for the control of LF and malaria in co-
endemic areas and areas where both diseases share mosquito
vectors. 33 We and others agree with that recommendation. 34 –36 
However, this can only be a supplemental intervention strategy
for LF elimination and malaria control. Targeted deployment of
IVM may be more effective if it is informed by district-level data
on vector ecology, on the epidemiology of both diseases and on
compliance with MDA with ivermectin plus albendazole for LF
elimination. 
Our findings further demonstrate a very weak correlation

between the spatial distributions of malaria and LF in Nigeria.
A stronger correlation would have increased the importance of
large-scale integration of control activities and surveillance for
these diseases. Although we have suggested several possible ex-
planations for this counterintuitive result, we cannot fully explain
it at this time. Field studies specifically designed to test for the
presence of LF and malaria parasites within the same human
and vector populations may shed more light on interactions
between these parasites. 
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ublic, the DHS Programme can provide access to the datasets after for- 
al application and registration. 
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