Air Pollution Exposure Among Adult Chronic Airway Disease Patients in the Gambia: A Pilot Case-control Study

B. I. Awokola¹, N. Mohammed², G. Okello³, O. Johnson⁴, M. Jatta⁵, M. Susso⁶, A. Gibba⁷, P. Ndow⁷, E. Awokola⁸, G. A. Amusa⁹, C. P. Jewell¹⁰, G. Devereux¹¹, K. J. Mortimer¹², A. Erhart¹³; ¹Clinical Services Department, Medical Research Council Unit at LSHTM, Fajara, Gambia, ²Statistics & Bioinformatics, Medical Research Council Unit at LSHTM, Fajara, Gambia, ³Institute of Sustainability Leadership, University of Cambridge, Cambridge, United Kingdom, ⁴Department of Mathematics, University of Manchester, Manchester, United Kingdom, ⁵Vaccine & Immunity Theme, Medical Research Council Unit at LSHTM, Fajara, Gambia, ⁶Disease Control & Elimination Theme, Medical Research Council Unit at LSHTM, Fajara, Gambia, ⁶Data Unit, Medical Research Council Unit at LSHTM, Farafenni, Gambia, ⁷Data Unit, Medical Research Council Unit at LSHTM, Farafenni, Gambia, ⁷Data Unit, Medical Research Council Unit at LSHTM, Fajara, Gambia, ¹⁰CHICAS, Lancaster Medicine, University of Jos and Jos University Teaching Hospital, Jos, Nigeria, ¹⁰CHICAS, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom, ¹¹Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ¹³Disease Control & Elimination Theme, Medical Research Council Unit at LSHTM, Fajara, Gambia, ¹⁰CHICAS, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom, ¹¹Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, ¹³Disease Control & Elimination Theme, Medical Research Council Unit at LSHTM, Fajara, Gambia.

Corresponding author's email: bawokola@gmail.com

Background: Chronic Airway Diseases (CADs) are of public health importance in both the developed countries and Low-and-middle-income countries (LMICs). Air pollution has a role in the causation of CADs and the worsening of already established CADs. This study examines the extent to which adult CAD patients and age and sex-matched controls in The Gambia are exposed to fine particulate matter and carbon monoxide. Methodology: In a clinic-based pilot case-control study, 50 adult patients with diagnosis of asthma or COPD presenting at respiratory clinics in the Western Health region in The Gambia were consecutively recruited along with 50 age and sex-matched controls who presented for non-cardiorespiratory conditions. Baseline spirometry, clinical examination and chest x-ray were done alongside the questionnaire administration. Home and personal PM_{2.5}, CO and Exhaled CO were subsequently measured. Results: The median (SD) age of cases was 51.5±26 years and controls 52.0±24.8 years. Most cases were urban dwellers, presented with wheeze, cough, shortness of breath and weight loss. Two-thirds (25/40) of the asthmatics had a poor asthma control test score, whilst 90% (9/10) of the COPD patients had CAT scores showing at least a medium impact on their lives. Three-quarters (21/50) of cases had ≥1 exacerbation in the previous year. Passive smoking occurred in one-quarter of the cases. There is slightly more personal and home exposure to PM_{2.5} among controls (61.2µg/m³) than cases (51.8µg/m³). Controls had slightly more home CO exposure 71.2 µg/m³) compared to cases (65.2 µg/m³). Cases have more personal CO exposure as the controls. Also, occupational dust exposure and exposure to burning refuse occurred among the cases. Conclusion: As compared with controls, Chronic airway disease patients in The Gambia, present with significantly advanced disease, are likely to have had at least one exacerbation in the last year, and are exposed to personal CO, second-hand smoke, occupational dust and burning refuse. There is need for concerted efforts among all stakeholders to reduce such exposure, thus preventing worsening of already established

Characteristics	Cases n (%)	Controls n (%)	Total N (%)	p-value
PM _{2.5} (Personal)				
>50 µg/m ³	24(48)	24(48)	48(48)	0.595
26-50 μg/m ³	22(44)	19(38)	41(41)	
≤25 μg/m³	04(08)	07(14)	11(11)	
PM _{2.5} (Home)				
>50 μg/m ³	15(30)	16(32)	31(31)	0.647
26-50 μg/m ³	28(56)	24(48)	52(52)	
≤25 μg/m³	07(14)	10(20)	17(17)	
PM _{2.5} (Personal)			200 - 600 M21	
Minimum	1.14	1.65	121	22
Maximum	125.8	167.0	-	
Mean/Average	51.8	61.2	-	
Median	49.2	47.7	-	
Interquartile range (IQR)	35.4	44.8	-	
PM _{2.5} (Home)				
Minimum	3.48	6.74	-	020
Maximum	159.8	173.6	120	
Mean	45.6	48.2	121	
Median	39.4	37.0	121	
Interquartile range (IQR)	22.1	26.4		
CO (Personal) ppm				
Minimum	0	0	-	-
Maximum	280	480.5	-	
Mean	47.0	16.2	-	
Median	28.8	41.5	-	
Interquartile range (IQR)	42	122.5	-	
CO (Home) ppm				
Minimum	0	0	1.7.1	3.7%
Maximum	328.5	310.5	-	
Mean	65.2	71.2	-	
Median	36.8	39.3	-	
Interquartile range	61.6	89.0	-	
Exhaled CO				
Minimum	1.0	2.0	121	228
Maximum	8.0	13.0	121	
Mean	3.0	3.6	121	

This abstract is funded by: LSTM & Aldama Foundation

Am J Respir Crit Care Med 2023;207:A3586 Internet address: www.atsjournals.org

Online Abstracts Issue