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ABSTRACT The COVID-19 pandemic has given rise to numerous commercially avail-
able antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and
independent data with the global community requires multisite prospective diagnos-
tic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite
COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total
of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health
care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were
collected from symptomatic participants at a COVID-19 drive-through testing site in
Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were com-
pared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of
the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI],
75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The
clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United
Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of
the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains
from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study pro-
vides comparative performance of an Ag-RDT across two different settings, geo-
graphical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower
clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity
from the Brazil study fulfilled the performance criteria determined by the World
Health Organization, but the performance obtained from the UK study failed to do.
Further evaluation of Ag-RDTs should include harmonized protocols between labora-
tories to facilitate comparison between settings.

IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to
improving diagnostic responses as it gives an indication of the accuracy in real-world
scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow
tests that meet the minimum requirements for sensitivity and specificity can play a
key role in increasing testing capacity, allowing timely clinical management of those
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infected, and protecting health care systems. This is particularly valuable in settings
where access to the test gold standard is often restricted.

KEYWORDS COVID-19, RDT, diagnostics

To meet the immense diagnostic demand of the COVID-19 pandemic, the use of rapid
diagnostic tests for the detection of SARS-CoV-2 antigens (Ag-RDTs) has become a pri-

ority. To date, there are currently 321 SARS-CoV-2 Ag-RDTs on the market or in develop-
ment according to the Foundation for New Innovative Diagnostics (FIND) (accessed March
2022) (1). However, clinical evaluation of these Ag-RDTs has been relatively limited, and
performance results differ greatly between studies (2, 3). In the United Kingdom, the use
of Ag-RDTs has been integral to reducing the spread of COVID-19 (4). However, since April
2022 the UK government has ceased free Ag-RDT testing, now requiring the responsibility
of the purchase and use of the test to be placed on the individual.

In Brazil, the national SARS-CoV-2 testing approach has been insufficient in its use
of this Ag-RDTS as a diagnostic tool in the efforts to contain this pandemic (5). Many
initiatives such as recruiting capacity in university research laboratories and biotechno-
logical enterprises, investments in new laboratory infrastructure, and fast-track regula-
tory measures were launched to scale up SARS-CoV-2 quantitative reverse transcriptase
PCR (RT-qPCR) testing in Brazil. However, RT-qPCR capacity has not been sufficient to
control the progress of the pandemic (5).

Despite the commercialization of several vaccines for SARS-CoV-2, the COVID-19 pan-
demic is still ongoing due to vaccine inequity (6), uneven vaccine uptake between popula-
tions (7), and the emergence of new highly transmissible variants of SARS-CoV-2 (8).

The gold standard for diagnosis of COVID-19 remains the detection of SARS-CoV-2
RNA. However, RT-qPCR requires skilled laboratory scientists, installed capacity, and expen-
sive consumables and reagents, which can be challenging to implement in low- and mid-
dle-income countries (LMIC), where the burden of COVID-19 is disproportionately felt.
Additionally, turnaround of results of RT-qPCR can take up to 1 week (9).

In order to continue to meet the challenges of testing capacity, prospective diag-
nostic evaluation studies across multiple, independent sites are required to determine
the accuracy of COVID-19 Ag-RDTs available for purchase by the public.

In this study, the OnSite COVID-19 rapid test (CTK Biotech) was evaluated against
the SARS-CoV-2 diagnostic gold standard RT-qPCR. Testing was undertaken in Brazil
and the United Kingdom across different settings: on health care workers (HCWs) at
Hospital das Clínicas, a tertiary-care hospital affiliated with the University of São Paulo
(Brazil), and at a National Health Service (NHS) COVID-19 drive-through community
testing center in Liverpool, United Kingdom.

RESULTS
Clinical evaluation. The demographics of both the Brazilian and UK study cohorts are

shown in Table 1. In Brazil the median number of days from onset of symptoms was 3 (Q1
(lower quartile) to Q3 (higher quartile), 2 to 4), with a vaccination rate of 96.5% (including
partially and fully vaccinated participants). In the United Kingdom, the median number of
days from symptom onset was 2 (Q1 to Q3, 1 to 3) and the vaccination rate was 84.9%
(including partially and fully vaccinated participants). Significantly higher SARS-CoV-2 RT-
qPCR positivity was detected in the United Kingdom (36.5%; 95% confidence interval [CI],
0.29 to 0.43) than in Brazil (6.5%; 95% CI, 0.05 to 0.09) (P, 0.05).

The clinical sensitivity of the Onsite Ag-RDT across evaluation sites was heterogeneous,
with a clinical sensitivity of 90.3% (95% CI, 75.1 to 96.7%) in Brazil and 75.3% (95% CI, 64.6 to
83.6%) in the United Kingdom (Table 2). The difference in sensitivities between sites was not
statistically significant (P = 0.128). The clinical specificity of the Onsite Ag-RDT was 99.4%
(95% CI, 98.1 to 99.8%) in Brazil and 95.5% (95% CI, 90.6 to 97.9%) in the United Kingdom.

In Brazil, of the 496 participants included, 32 were SARS-CoV-2 RT-qPCR positive (6.5%)
(Table 2). Twenty-eight of the RT-qPCR-positive samples (90.3%) were Ag-RDT positive,
while 3 (9.7%) were Ag-RDT negative and one was invalid (3.1%). Invalid results were
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removed for further analysis. Of the 464 RT-qPCR-negative samples, 3 were Ag-RDT posi-
tive (0.6%). The sensitivity and specificity of the OnSite Ag-RDT on RT-qPCR were 90.3%
(95% CI, 75.1% to 96.7%) and 99.4% (95% CI, 98.1% to 99.8%), respectively (Table 2).
Sensitivity for#7 days since symptom onset was 96.2% (95% CI, 81.1 to 99.3%). Sensitivity
according to cycle threshold (CT) value was 95.0% (95% CI, 75.1 to 99.8%) for a CT value of
#25 and 90.3% (95% CI, 75.1% to 96.7%) for a CT value of #33 (Table 3). No statistically
significant difference was found in sensitivity between different CT value groups.

In the United Kingdom, of the 211 participants recruited, 77 (36.5%) were SARS-CoV-2 RT-
qPCR positive (Table 2). Fifty-eight (75.3%) of the 77 RT-qPCR-positive samples were also Ag-
RDT positive, while 19 (24.7%) were Ag-RDT negative. Of the 134 RT-qPCR-negative samples,
128 (95.5%) were also Ag-RDT negative and 6 (4.5%) were Ag-RDT positive. For the UK evalu-
ation, the sensitivity and specificity were 75.3% (95% CI, 64.6 to 83.6%) and 95.5% (95% CI,
90.6 to 97.9%), respectively. Sensitivity for#7 days since symptom onset was 76.7% (95% CI,
65.8 to 84.9%). CT values of#20,#25,#33, and#40 had a sensitivity of 90.5% (95% CI, 77.4
to 97.3%), 80.3% (95% CI, 69.2 to 88.1%), 76.3% (95% CI, 65.5 to 84.5%), and 75.3% (95% CI,
64.6 to 83.6%), respectively. Sensitivity was statistically higher among samples with CT values
of#20 compared with samples with CT values of#33 (P = 0.029) and#40 (P = 0.044).

Subgroup analyses of the Brazilian and UK evaluation cohorts (Table 4) were performed
to determine any associated differences in sensitivity compared to vaccination status and
days from symptom onset. In the Brazilian cohort, the sensitivity of the OnSite Ag-RDT was
significantly lower on samples from patients with .7 days since symptom onset compared
to samples with 0 to 3 days since symptom onset (P = 0.02924) and samples with 0 to
7 days of onset (P = 0.03115), but no differences in sensitivity were found between groups
of different vaccination statuses. In the UK, no difference in sensitivity was observed
between groups of different days since symptom onset and vaccination status (all P values

TABLE 2 Results and clinical sensitivity and specificity of the OnSite COVID-19 Ag device
based on COVID-19 RT-qPCR results in Brazil and the United Kingdoma

Result of OnSite
COVID-19 Ag
device

No. confirmed by RT-qPCR in country:

Brazilb United Kingdomc

Positive Negative Total Positive Negative Total
Positive 28 3 31 58 6 64
Negative 3 461 464 19 128 147
Total 31 464 495 77 134 211
aRT-qPCR, real-time quantitative reverse transcriptase PCR; CT, cycle threshold; CI, confidence interval.
bFor results from Brazil, clinical sensitivity was 90.3% (95% CI, 75.1 to 96.7%; N = 31), clinical specificity was 99.4%
(95% CI, 98.1 to 99.8%, N = 464), and the invalid rate was 0.2% (n/N = 1/496).

cFor results from the United Kingdom, clinical sensitivity was 75.3% (95% CI, 64.6 to 83.6%, N = 77), clinical
specificity was 95.5% (95% CI, 90.6 to 97.9%, N = 134), and the invalid rate was 0% (n/N = 211/211).

TABLE 1 Demographics of Ag-RDT clinical evaluation cohorts for Brazil and the United
Kingdom

Category

Value for country:

Brazil United Kingdom
Age, yr [mean (minimum–maximum), N] 38.1 (16–69), 496 40.8 (20–86), 211
Gender [% Fb (n/N)] 71.5% (354/495)a 52.4% (110/210)a

Symptoms present [% yes (n/N)] 99.6% (494/496) 100% (211/211)
Days from symptom onset [median (Q1–Q3), N] 3 (2–4), 494 2 (1–3), 211
Days 0–3 (n, %) 294, 59.3% 169, 80.1%
Days 4–7 (n, %) 186, 37.5% 36, 17.1%
Days 81 (n, %) 14, 2.8% 6, 2.8%
Vaccinated (n, %) 460, 92.7% 132, 62.6%
Partially vaccinated (n, %) 19, 3.8% 47, 22.3%
Not vaccinated (n, %) 10, 2.0% 32, 15.2%
Vaccination not disclosed (n, %) 7, 1.4% 1, 0.5%
SARS-CoV-2 positivity [% (n/N)] 6.5% (32/496) 36.5% (77/211)
aGender was not disclosed for two participants.
bF, female.
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of .0.05). In Brazil, 52% of the positive samples were classified as Delta and 39% as
Gamma. In the United Kingdom, variant determination was not performed, but at the time
of enrollment, 100% of genome submissions corresponded to the Delta variant (10).

Analytical sensitivity. The limit of detection (LOD) of the OnSite Ag-RDT was 1.0 �
103 PFU/mL, 1.0 � 103 PFU/mL, 1.0 � 102 PFU/mL, 5.0 � 103 PFU/mL, and 1.0 � 103 PFU/
mL when tested on the wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages,
respectively. This gave a viral copy equivalent of approximately 2.1 � 105 copies/mL, 2.1 �
104 copies/mL, 1.6 � 104 copies/mL, 3.5 � 106 copies/mL, and 8.7 � 104 copies/mL for the
Ag-RDT for the WT, Alpha, Delta, Gamma, and Omicron lineages, respectively.

DISCUSSION

The study aimed to evaluate the diagnostic performance of the OnSite COVID-19
Ag rapid test (CTK Biotech) in two different settings. Evaluating rapid diagnostic tests
in diverse populations is vital to improving diagnostic responses as it gives an indica-
tion of the diagnostic accuracy in real-world scenarios. In the case of rapid diagnostic
testing within this pandemic, lateral flow tests which meet the minimum requirements
for sensitivity and specificity can play a key role in increasing testing capacity, allowing
timely clinical management of those infected and protecting health care systems (11).
This is particularly valuable in settings where access to the gold standard RT-qPCR is of-
ten not available. Ag-RDTs are low cost, are easy to use, and do not require specialized
skills or equipment, which is essential to promote universal access.

The sensitivity and specificity of the OnSite Ag-RDT in a hospital setting in Brazil fulfilled
the performance criteria determined by the World Health Organization (WHO). However, the

TABLE 3 COVID-19 RT-qPCR results in Brazil and the United Kingdom

Category

Value for country:

Brazil United Kingdom
PCR CT [median (Q1–Q3); N] 19.6 (17.52–23), 31 19.5 (17.3–22.8), 77

CT (n, %)
.33 0, 0% 1, 1.3%
.30 1, 3.2% 5, 6.5%
.25 7, 22.6% 11, 14.3%

Sensitivity by CT (95% CI), N
#20 100.0% (76.8–100%), 14 90.5% (77.4–97.3%), 42
#25 95.0% (75.1–99.8%), 20 80.3% (69.2–88.1%), 66
#33 90.3% (75.1–96.7%), 31 76.3% (65.5–84.5%), 76
#40 NAa 75.3% (64.6–83.6%), 77

aNA, not available; maximum RT-qPCR cutoff was#33 in Brazil.

TABLE 4 Ag-RDT result by onset of symptoms and vaccinated individuals in Brazil and the United Kingdomc

Category

Brazil United Kingdom

Ag-RDT
positive
(n, %)

Ag-RDT
negative
(n, %)

Sensitivity,
%a 95% CI

Ag-RDT
positive
(n, %)

Ag-RDT
negative
(n, %)

Sensitivity,
%a 95% CI

Days from symptom onset
0–3 16, 5.4% 278, 94.6% 100.0% 76.9–100.0% 52, 30.6% 117, 69.4% 79.7% 67.2–89.0%
4–7 12, 6.4% 173, 93.6% 91.7% 61.5–99.8% 10, 27.8% 26, 72.2% 64.3% 35.2–87.3%
81 3, 21.4% 11, 78.6% 60.0% 14.7–94.7% 2, 33.3% 4, 66.7% 66.7% 9.4–99.2%

Vaccination received
Vaccinatedb 31, 6.5% 447, 93.5% 93.3% 77.4–99.2% 52, 29.3% 126, 70.7% 78.3% 65.8–87.9%
Not vaccinated 1, 10.0% 9, 90.0% 0% NA 11, 34.4% 21, 65.6% 62.5% 35.4–84.8%
Not disclosed 0, 0% 7, 100.0% NA NA 1, 100.0% 0, 0% 100% 2.5–100.0%

aCompared to RT-qPCR.
bVaccinated defined as 1 or more doses.
cRT-qPCR, real-time quantitative reverse transcriptase PCR; CI, confidence interval; NA, not available.
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sensitivity obtained in a community setting at a drive-through testing site in the United
Kingdom missed the minimum recommendations (12) for both sensitivity and specificity. In
guidance published by the WHO, minimum performance requirements for an Ag-RDT include
a sensitivity of .80% and specificity of .97% (12). Analytical evaluation of the OnSite Ag-
RDT detected wild-type, Alpha, Delta, and Omicron viruses, meeting the recommendations in
the WHO target product profile for SARS-CoV-2 Ag-RDT of an acceptable analytical LOD of
1.0 � 106 RNA copies/mL (13) with the Gamma variant slightly outside this threshold. In the
Brazilian cohort, the Gamma variant was responsible for 39% of infections and the Delta vari-
ant was responsible for 52%. This is an interesting finding as it does not reflect the wider vari-
ant circulation in Brazil during this period as the Gamma variant was responsible for over
93% of infections in July 2021 and 70% of infections in August 2021 followed by Delta at 5%,
rising to 29%, respectively (14). In the United Kingdom, positive RT-qPCR results were not
sequenced, but it is assumed that all infections were Delta (B.1.617.2) due to the.99% circu-
lation of this variant in the United Kingdom during the time of collection (15).

In both settings, the Ag-RDT had a higher sensitivity in samples with lower RT-qPCR cycle
threshold (CT) values; this is consistent with other Ag-RDT studies (16). The sensitivity of the
Ag-RDT was also highest when time since symptom onset was 3 days, decreasing between
4 and 7 days and again after 8 days since symptom onset in both settings. Interestingly, in
the United Kingdom cohort, the sensitivity slightly increased between 4 and 7 days and 81
days, from 64.3% to 66.7%. However, the sample size of the 81-day group was too small to
be statistically significant, and therefore, a larger sample set would be needed to provide
significance. In Brazil, 93.3% of the cohort was vaccinated due to the vaccination efforts of
the country and the prioritization of health care workers in the vaccination program (17). In
the United Kingdom, there was a larger number of nonvaccinated people; however, the dif-
ferences in vaccinated and nonvaccinated people were not statistically significant for either
cohort. A larger sample set would have to be used, and further analysis of these subgroups
would have to take place, in order to provide any significant data.

This study has several strengths: it is a multicenter and multinational evaluation across
two different settings with differing testing capacities, prevalences of SARS-CoV-2, and
population characteristics. In Brazil, samples were taken from a very exclusive population,
health care workers in a health care setting with a high vaccination uptake compared to
the rest of the population (18). In the United Kingdom, data were collected from a diverse
population, any person over the age of 18 presenting with COVID-19 symptoms at a gov-
ernment-run, drive-through COVID-19 testing facility. It is important to evaluate Ag-RDTs
in a heterogeneous population and setting to obtain meaningful diagnostic accuracy data.

The main limitation for the study is that the drive-through testing setting in the United
Kingdom did not allow for Ag-RDT testing to be performed at the point of care just after
sample collection as recommended by the instructions for use (IFU). Guidance in the United
Kingdom restricted testing of suspected COVID-19-positive individuals to high-containment
laboratories. Currently, there are limited studies on the stability of Ag-RDTs. A systematic
review on Ag-RDTs did not find a significant difference between 96 data sets that involved
fresh specimens for antigen testing and 23 data sets including freeze-thawed specimens for
antigen testing (19). Although, it is not stated whether the swabs were freeze-dried or used
with transport buffer. However, one review of Ag-RDT performance in sub-Saharan Africa
suggested that a delay in performing the test (Coris COVID-19 Ag Respi-strip) may impact
its stability if samples are stored at 4°C rather than frozen at 220°C immediately (20).
Conversely, studies have shown that SARS-CoV-2 RNA remains stable for up to 9 days in dry
swabs at an ambient temperature of 20°C (21), and proteins have been shown to be more
stable than RNA (22). Therefore, further investigation must take place to determine whether
time from sample collection to Ag-RDT testing has a significant impact on the sensitivity.

Two other limitations of this study are that the RT-qPCR methodologies varied
between the two cohorts and that there were differences in SARS-CoV-2 prevalence.
These factors have been described as a major cause of index case diagnostic accuracy
(23). For future evaluations, quantification of the viral copy numbers rather than CT val-
ues is recommended to mitigate differences in RT-qPCR assay performances. This CT
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variability has been estimated to be .1,000-fold in viral copy numbers per milliliter
(23), as the RT-qPCR used in the United Kingdom has an LOD 10-fold more sensitive
(10 genome copies/mL) than that of the RT-qPCR used in Brazil (100 genome copies/
mL) (24). The higher sensitivity of the RT-qPCR assay used in the United Kingdom, to-
gether with the higher cutoff used (CT of 40 versus CT of 32 to 33 in Brazil), could have
contributed to higher numbers of false negatives in the index test than in the Brazilian
cohort. Additionally, there is a significant difference in sample size and in confirmed
RT-qPCR positives (SARS-CoV-2 prevalence) between the two cohorts, with a low num-
ber of positive samples found in the Brazilian evaluation (6.3%) compared to the
United Kingdom evaluation (36.5%). It has been reported that differences in prevalence
can have an effect on the sensitivity and specificity of index tests (25, 26).

In conclusion, the data indicate that the OnSite Ag-RDT had lower performance
quality than that published by the manufacturers for the detection of SARS-CoV-2 in
clinical samples and varied greatly between the two settings in this study. Further eval-
uation of the use of Ag-RDTs should strictly follow the IFU of the test and include
harmonized protocols between laboratories to facilitate comparison between settings.
In particular, the use of viral copy numbers rather than CT values has been suggested
to minimize the variability between laboratories.

MATERIALS ANDMETHODS
Clinical evaluation. This was a prospective evaluation of consecutive participants enrolled in two

different settings.
(i) Brazil. Health care workers (HCWs) with suspected COVID-19 symptoms (fever, cough, shortness

of breath, tight chest, runny nose, sore throat, anosmia, ageusia, headache, and diarrhea) were enrolled
at the HCW service of Hospital das Clínicas in São Paulo from July to October 2021. Ethical approval was
obtained from the Hospital’s Ethics Committee with the CAAE number 35246720.0.0000.0068. Informed
consent was obtained from all study participants for respiratory samples and clinical data collection.

Participants were clinically evaluated, and RT-qPCR for SARS-CoV-2 was performed from combined
nasopharyngeal (NP) and oropharyngeal swabs (Goodwood Medical Care LTD/[DG] China) following the
national standard of care. Following the RT-qPCR swabs, nasopharyngeal (NP) swabs were collected for
Ag-RDT testing. The OnSite Ag-RDT was performed at the point of care by HCWs following the manufac-
turer’s instructions for use (IFU).

For SARS-CoV-2 RT-qPCR, RNA was extracted from 0.9% saline solution with an automated method
using magnetic beads (RNA sample preparation system; Abbott, IL, USA). SARS-CoV-2 RT-qPCR was per-
formed using an adapted protocol described by Corman et al. (27) to detect the E gene as the first-line
screening tool, followed by confirmatory testing with an assay detecting the N gene (Abbott, USA) and the
commercial SARS-CoV-2 N11N2 RT-qPCR kit to detect N1 and N2 genes (Qiagen, USA). A SARS-CoV-2 RT-
qPCR result was considered positive with an amplification cycle threshold (CT) value of#32 and a CT value
of#33, respectively.

For the detection of SARS-CoV-2 variants, samples were amplified using the TaqPath one-step RT-qPCR
master SARS-CoV-2 mutation panel assay (40�) (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. The RT-qPCR mixture was prepared, and samples were tested for the presence
of each S-gene mutation. The mutation panel was customized to detect each variant as follows: Alpha
(P681H[1], E484K[2], K417N[2], L452R[2], T20N[2], P681R[2], L452Q[2]), Beta (E484K[1], K417N[1],
P681H[2], L452R[2], T20N[2], P681R[2], L452Q[2]), Gamma (E484K[1], T20N[1], K417N[2], L452R[2],
P681H[2], P681R[2], L452Q[2]), Delta and Kappa (L452R[1], P681R[1], E484K[2], K417N[2], T20N[2],
P681H[2], L452Q[2]), Zeta (E484K[1], K417N[2], L452R[2], T20N[2], P681H[2], P681R[2], L452Q[2]), and
Lambda (L452Q[1], E484K[2], K417N[2], P681H[2], L452R[2], T20N[2], P681R[2]) (28–30). Data were ana-
lyzed by QuantStudio design and analysis software v2.5.1. in the genotyping module. The variant was identi-
fied according to the positivity for each mutation tested.

(ii) United Kingdom. In the United Kingdom, adults presenting with symptoms of COVID-19 (fever,
cough, shortness of breath, tight chest, runny nose, sore throat, anosmia, ageusia, headache, diarrhea,
and tiredness) at a national community testing facility, the Liverpool John Lennon Airport drive-through
COVID-19 test center, were asked to participate in the study. Participants were recruited between July
and August of 2021 under the Facilitating Accelerated COVID-19 Diagnostics (FALCON) study. Ethical ap-
proval was obtained from the National Research Ethics Service and the Health Research Authority (IRAS
identifier [ID], 28422; clinical trial ID, NCT04408170).

Swabs were taken systematically; first an NP swab sample in universal transport medium (UTM) was
collected from the patient for the reference RT-qPCR test, and then an NP swab sample was taken to per-
form the Ag-RDTs. Due to biosafety restrictions at the drive-through center, Ag-RDT testing was not
done immediately after sample collection as per the IFU. All samples were transported in insulated
UN3373 transit bags to the Liverpool School of Tropical Medicine (LSTM) and processed upon arrival by
trained laboratory researchers following the IFU. Processing happened within a maximum of 3 h of col-
lection. Ag-RDTs were performed, and the UTM NP swab samples were aliquoted and stored at 280°C
until RNA extraction. RNA was extracted using the QIAamp 96 Virus QIAcube HT kit (Qiagen, Germany)
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on the QIAcube (Qiagen, Germany) and screened using TaqPath COVID-19 (ThermoFisher, United
Kingdom) on the QuantStudio 5 thermocycler (ThermoFisher, United Kingdom). The SARS-CoV-2 RT-
qPCR result was considered positive if any two of the three targets (N, ORFab, and S) were amplified
with a cycle threshold (CT) value of#40.

Analytical sensitivity (United Kingdom only). Viral culture methods to propagate SARS-CoV-2 iso-
lates and to calculate PFU per milliliter followed those previously described (31). Briefly, isolates of SARS-
CoV-2 from the wild-type (Pango, B1) (REMRQ0001/Human/2020/Liverpool, GISAID ID EPI_ISL_464183),
Alpha (B.1.1.7) (SARS-CoV-2/human/GBR/FASTER_272/2021, GenBank ID MW980115), Delta (B.1.617.2)
(SARS-CoV-2/human/GBR/Liv_273/2021, GenBank ID OK392641), Gamma (P.1) (hCoV-19/Japan/TY7-503/
2021, GISAID ID EPI_ISL_792683), and Omicron (BA.1) (SARS-CoV-2/human/GBR/Liv_1326/2021, Genebank
ID OP630952) lineages were used to evaluate the limit of detection (LOD) of the OnSite Ag-RDT. For the
determination of the LOD, a fresh aliquot was serially diluted from 1.0 � 105 PFU/mL to 1.0 � 102 PFU/mL.
Each dilution was tested in triplicate. Twofold dilutions were made below the 10-fold LOD dilution to
confirm the lowest LOD (LLOD).

Viral RNA was extracted from each dilution using the QIAamp viral RNA minikit (Qiagen, Germany)
according to the manufacturer’s instructions and quantified using Genesig RT-qPCR (Primer Design,
United Kingdom). Genome copy number (gcn) per milliliter was calculated as previously described (32).

Statistical analysis. The sensitivity and specificity, with 95% confidence intervals (CIs), were calculated
based on the results of the reference method by RT-qPCR assay. Statistical analyses were performed using R
scripts, Epi Info, and GraphPad Prism 9.1.0 (GraphPad Software, Inc., CA). The 95% confidence interval (CI) for
the sensitivity and specificity was calculated using Wilson’s method. Two-tailed Fisher’s exact and chi-square
tests were used to determine nonrandom associations between categorical variables. Statistical significance
was set at,0.05.
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