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Genome-wide association studies reveal
novel loci associated with pyrethroid and
organophosphate resistance in Anopheles
gambiae and Anopheles coluzzii

Eric R. Lucas 1 , Sanjay C. Nagi1, Alexander Egyir-Yawson2, John Essandoh 2,
Samuel Dadzie 3, JosephChabi 3, Luc S. Djogbénou4, AdandéA.Medjigbodo4,
Constant V. Edi5, Guillaume K. Kétoh6, Benjamin G. Koudou5,
Arjen E. Van’t Hof 1,7, Emily J. Rippon1, Dimitra Pipini1, Nicholas J. Harding8,
Naomi A. Dyer 1, Louise T. Cerdeira1, Chris S. Clarkson9,
Dominic P. Kwiatkowski 9,10, Alistair Miles9, Martin J. Donnelly 1,9 &
David Weetman1

Resistance to insecticides inAnophelesmosquitoes threatens the effectiveness
ofmalaria control, but the genetics of resistance are only partially understood.
We performed a large scale multi-country genome-wide association study of
resistance to two widely used insecticides: deltamethrin and pirimiphos-
methyl, using sequencing data from An. gambiae and An. coluzzii from ten
locations in West Africa. Resistance was highly multi-genic, multi-allelic and
variable between populations. While the strongest and most consistent asso-
ciation with deltamethrin resistance came from Cyp6aa1, this was based on
several independent copynumber variants (CNVs) inAn. coluzzii, andon anon-
CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1,
cytochrome P450s, glutathione S-transferases and the nAChR target site of
neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of
immune genes showed evidence of cross-resistance to both insecticides.
These locally-varying, multi-allelic patterns highlight the challenges involved
in genomic monitoring of resistance, and may form the basis for improved
surveillance methods.

Vector-borne diseases such as malaria kill an estimated 700,000
people every year1 but are vulnerable to methods that target the vec-
tors that are essential for transmission. Inmalaria, the primarymethod
of disease control remains theuse of insecticides to kill themosquitoes
that transmit the disease2.Mirroring the evolution of drug resistance in
pathogens, there has been widespread evolution of insecticide resis-
tance in malaria mosquitoes3, and understanding the genetic basis of
this resistance is crucial for managing and informing malaria control

interventions. This applies both to current widely-used insecticides
and new compounds coming to market, where the opportunity exists
to understand the basis of resistance at the earliest stages of
deployment.

The primary malaria vectors in Sub-Saharan Africa are Anopheles
gambiae and An. coluzzii, two sister species of mosquito that have
largely similar genomes and well-documented capacity for hybridisa-
tion and introgression4–7. Major mutations with large effects on
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resistance, often at the insecticide’s target site of action, have been
discovered in these species, yet a large portion of the phenotypic
variance in resistance remains unexplained8. This “residual” resistance
involves a variety of detoxification mechanisms, such as increased
expression or efficacy of genes that bind, metabolise or transport the
insecticide. Identifying these mechanisms is challenging because the
pool of genes potentially involved ismuch larger than that of the target
site genes, and because modification of gene expression can occur in
many ways.

Studies of residual resistance thus require large scale data, both in
terms of genomic coverage and sample size. To this end, we set up the
Genomics for African Anopheles Resistance Diagnostics (GAARD,
https://www.anophelesgenomics.org) project, a collaboration to
investigate the genomics of insecticide resistance through large scale
whole genome sequencing. Here we investigate the genomic basis of
resistance in West Africa to two insecticides widely used in malaria
control. The first, deltamethrin, is a pyrethroid commonly used in
insecticide-treatedbednets (ITNs), which are the cornerstone of vector
control9. Since ITNs have now been in circulation for many years, the
mosquito populations in our study have a relatively long history of
exposure. The second insecticide is pirimiphos-methyl (PM), an orga-
nophosphate that is deployed in the form of indoor residual spraying
(IRS), where interior walls of buildings are coated to kill mosquitoes
when they rest. Use of PM is more recent and more sporadic, as IRS is
less widely implemented10, making PM resistance less widespread than
deltamethrin resistance (Fig. S1).

In thiswork,we conduct a large-scale,multi-countrygenome-wide
association study (GWAS) of insecticide resistance in An. gambiae and
An. coluzzii, testing mosquitoes from six different populations from
four different West African countries for resistance against deltame-
thrin and PM. We find that resistance is highly multi-allelic, with dif-
ferent studypopulations showing differentmarkers of resistance, even
when the locus itself is the same, posing difficulties for genotypic
monitoring programmes. We also make recommendations for sample
size of future GWAS studies of insecticide resistance.

Results
Overview of data
We obtained sequencing data from 969 individual female mosquitoes
across 10 sample sets (defined as samples from a single location of a
given species phenotyped against one insecticides, Fig. 1 and Table 1).
The phenotype of each individual was defined by whether they were
alive (resistant) or dead (susceptible) after exposure to a given dose of
insecticide.

Given that mosquitoes were derived from larval collections, we
investigated whether our samples included close kin pairs, which
could potentially introduce population stratification. Pairwise

calculations of kinship confirmed the presence of full siblings. We
aggregated individuals into full sib groups by considering that two
individuals that share a full sibling are also full siblings, resulting in the
identification of 99 sib groups containing a total of 238 individuals
(max sib group size: 9; 73% of sib groups were of size 2). Samples from
different locationswere never found in the same sib group. Depending
on the analysis (see methods), we either discarded all-but-one ran-
domly chosen individual per sib group per sample set (thus removing
105 samples) or performed permutations in which we varied which
individuals were discarded in each sib group.

Known resistance SNPs
In An. coluzzii from Avrankou, Cyp4j5–43F (P =0.007) and Vgsc–1527T
(P = 0.02) were both associated with increased resistance to deltame-
thrin. Vgsc-402L (generated by either of two nucleotide variants:
402L(C) and 402L(T)) and Vgsc–1527T are completely linked, and thus
Vgsc-1527T here refers to the haplotype carrying both SNPs. Since
Vgsc–995F andVgsc-402L/1527T aremutually exclusive, andwild-types
are absent in our dataset (Fig. 2), the significant association of Vgsc-
402L/1527T suggests that this haplotype provides higher resistance to
deltamethrin than does Vgsc–995F. None of the established resistance
markers were associated with deltamethrin resistance in any other
populations.

Ace1–280S was highly significantly associated with resistance to
PM in all populations (P < 0.001 in all cases) except Baguida. In two
populations, we also found PM-associations with other markers: in An.
gambiae from Baguida, Vgsc–1570Y was positively associated with
resistance (P =0.01), which is a surprising finding for a pyrethroid
target site mutation, whilst in An. coluzzii from Korle-Bu, Vgsc–995F
(P = 0.04) and Gste2–114T (P = 0.02) were negatively associated with
PM resistance.

Copy number variants
Mutations that increase the number of genomic copies of a gene,
known as copy number variants (CNVs), have been shown to be
commonly associated with insecticide resistance in insects, including
Anopheles mosquitoes11. We identified CNVs in genes associated with
metabolic resistance, using both gene copy number (using sequencing
coverage to estimate the number of copies of each gene) and
screening for known An. gambiae CNV alleles (CNVs for which the
precise start and end points have been previously identified12, 13). We
found CNVs in Cyp6aa1/2 and the Gste cluster at high frequency in An.
coluzzii populations, while CNVs in Cyp9k1 were far more common in
An. gambiae (Figs. 3 and S2).
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Fig. 1 | Sampling locations for the study. From each site, samples used for whole
genome sequencing were An. gambiae (blue) or An. coluzzii (red). Axes show lati-
tude and longitude.

Table 1 | Number of samples sequenced in each of the sam-
ple sets

Location (country) Species Insecticide N dead/
alivea

Final N dead/
aliveb

Aboisso (Côte
d’Ivoire)

An. gambiae PM 5/33 5/32

Avrankou (Benin) An. coluzzii Delta 40/48 34/45

Baguida (Togo) An. gambiae PM 33/42 30/35

Baguida (Togo) An. gambiae Delta 43/61 34/54

Korle-Bu (Ghana) An. coluzzii PM 55/62 48/57

Korle-Bu (Ghana) An. coluzzii Delta 88/61 83/59

Madina (Ghana) An. gambiae PM 33/40 27/38

Madina (Ghana) An. gambiae Delta 48/79 37/64

Obuasi (Ghana) An. gambiae PM 56/62 50/54

Obuasi (Ghana) An. gambiae Delta 51/29 51/27

GPS coordinates of collection sites are given in Supplementary Data 1.
PM pirimiphos-methyl, Delta deltamethrin.
aSample size after sequencing QC.
bSample size after removal of siblings.
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Copy number of Cyp6aa1 was positively associated with delta-
methrin resistance in An. coluzzii. This was significant in Korle-Bu
(P = 0.01), with a trend in the same direction in Avrankou (P =0.07).
CNVs encompassing Cyp6p3 and Cyp6p5 exist at appreciable fre-
quencies inAn. gambiae fromMadina (17% and21%of samples showing
increased copy number respectively) but with no significant associa-
tion with resistance.

Whenbreaking down theCyp9k1CNVs into distinct alleles (Fig. S2),
it is apparent that one allele (Cyp9k1_Dup10) is shared by both An.
gambiae andAn. coluzzii. Haplotype clustering analysis showed that the
CNV in both species was present on the same genetic background (Fig.
S3), which was nested within the An. coluzzii part of the haplotype tree,
indicating that the mutation spread through introgression from An.
coluzzii to An. gambiae. There was however no association between
Cyp9k1 copy number and resistance to either deltamethrin or PM.

The CNV in Ace1, known to be associated with PM resistance6, was
at high frequency (>85%) in all populations except An. coluzzii from
Avrankou (Figs. 3 and S2), and Ace1 copy number was strongly asso-
ciated with resistance to PM in all populations (P < 10−5 in all cases)
except Baguida. No other genes showed a significant association
between copy number and resistance.

Windowed measures of differentiation/selection to identify
genomic regions associated with resistance
We identified regions of the genome associated with phenotype within
each sample set using three different metrics (FST, PBS and ΔH12) cal-
culated in 1000 SNP windows (Figs. S4–S7). FST is a measure of genetic
differentiation between two groups of samples but does not indicate
whether either group displays signals of selection, which is expected if
the genetic difference is associated with resistance. Peaks of FST were
therefore investigated further to identify high-frequency haplotypes

significantly associated with resistance (Supplementary Data 2). PBS14 is
a measure of selection that is particularly effective at identifying recent
selection from standing genetic variation. PBS identifies genomic
regions showing greater evolutionary change in one group (here, the
resistant samples) relative to a closely related group (susceptible sam-
ples) and an outgroup. While originally designed to detect positive
selection, it has also been used to detect phenotypic association6.H12 is
a measure used to detect genomic regions undergoing selective
sweeps15,16. To identify regions in which swept haplotypes are more
frequent in resistant compared to susceptible individuals, we calculated
the difference in H12 value between groups, which we refer to as ΔH12.
Detailed breakdowns of all regions associated with resistance can be
found in the Github repository https://github.com/vigg-lstm/GAARD_
work/tree/main/supplementary/html_summaries/summary_files17.

Based on these metrics, the cytochrome P450 Cyp9k1 was fre-
quently associated with resistance to both deltamethrin and PM, but
curiously the association signal never localised to the gene itself (Figs.
S4 and S8). We found signals on the telomeric side (Madina deltame-
thrin, Madina PM, Obuasi PM) and the centromeric side (Avrankou
deltamethrin, Obuasi deltamethrin, Baguida PM, Korle-Bu PM) or both
(Korle-Bu deltamethrin), with distances fromCyp9k1 ranging from 200
to 1200Kbp. We also found recurrent, cross-insecticide signals in
Thioester-containing protein (Tep) genes, with peaks in Tep1
(AGAP010815) for Obuasi PM, and Tep4 (AGAP010812) for Madina
deltamethrin (Fig. S4).

For deltamethrin, the most consistent signal was at the
Cyp6aa/Cyp6p gene cluster. At this locus, we found PBS and FST peaks
in An. gambiae from Obuasi and Madina, and a peak in ΔH12 in An.
coluzzii from Korle-Bu. The strongest of these signals came from the
Obuasi sample set, where the FST peak spanned 17 windows spread
over nearly 250 Kbp. The window covering the Cyp6aa/Cyp6p cluster
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contained a haplotype cluster that accounted for over a third of the
sample set (56 out of 156 haplotypes) which was positively associated
with resistance to deltamethrin (P =0.005). In Madina, the peak con-
sisted of two significant windows, the nearest one being around 6 Kbp
away from the cluster. This window contained a haplotype group
accounting for over half (109 out of 202) of the haplotypes in the
sample set and was positively associated with resistance to deltame-
thrin (P =0.002).

To determine whether the haplotypes driving the FST signal in
Obuasi and Madina were the same, we combined the deltamethrin-
phenotyped samples from these two locations and re-analysed the
significant window covering Cyp6aa1. The main haplotype cluster was
indeed the same in Obuasi and Madina (Fig. 4) and the significance of
association for the combined analysis was increased (P =0.001). The
haplotype cluster contained many SNPs (Fig. 4), of which four were
non-synonymous in Cyp6aa1 (2R positions 28480960:N501I,
28480993 + 28480994 (combine to make S490I) and 28482335:Y77F)
and one in Cyp6aa2 (28483525: M428V), but none of these SNPs were
completely absent from the non-cluster haplotypes, suggesting that
they may not be driving the sweep.

Several peaks were associated with genes from the superfamilies
of metabolic genes typically associated with resistance (P450s, GSTs
and carboxylesterases). We found PBS signals at Cyp6m2 (Obuasi),
Cyp6ag1/2 (Avrankou) and Cyp6aj1 (Madina) and an FST signal near the
carboxylesteraseCoe22933 inAn. coluzzii fromKorle-Bu (Fig. S4). InAn.
coluzzii from Avrankou, one FST peak was adjacent to the P450 redox
partner gene NADPH cytochrome P450 reductase (Cpr, AGAP000500)
and contained a haplotype group positively associated with resistance
(P = 0.048). There were also several independent signals in NADH
dehydrogenase (ubiquinone) 1, with significant PBS peaks near beta
subunit 2 (AGAP002630) in both An. gambiae from Madina and An.
coluzzii from Korle-Bu. Furthermore, the PBS peak near Cyp9k1 in
Korle-Bu covers NADH dehydrogenase beta subunit 1 (AGAP000849),
but the proximity to Cyp9k1makes it hard to determine whether this is
coincidental.

For PM, we found strong peaks in the Ace1 region in all popula-
tions except An. gambiae from Baguida (Fig. S4). Additionally, in

An. coluzzii from Korle-Bu, a PBS and FST peak that included the Gste
gene family contained a haplotype cluster negatively associated with
PM resistance (P =0.003) and a small cluster (n = 30 haplotypes out of
210) positively associated with resistance (P =0.03). There was also a
significant peak in ΔH12 in An. gambiae from Madina at the Gste locus
(Figs. S4 and S6).

In An. gambiae from Obuasi, the broadest peak consisted of 19
windows on chromosome 3L ranging from 30477135 to 30697180,
which includesmethuselah-like protein 7 (Gprmthl7, AGAP011643) and
is around 23 kbp away from an odorant receptor Or11 (AGAP011631).
However, the haplotype cluster in these windows is negatively asso-
ciated with PM resistance (P <0.0006). Interestingly, there was also a
FST/PBS peak of a single window on chromosome 3R, which contained
the gene coding for the beta-2 subunit of nicotinic acetylcholine
receptor (AGAP010057), the target site of neonicotinoid insecticides.
The main haplotype in this region was positively associated with
PM resistance (P =0.0008) and contained a non-synonymous
SNP (N418Y).

Some sample sets (Avrankou deltamethrin, Korle-Bu PM, Madina
PM) also showed phenotypic associations for many SNPs within the
2La chromosomal inversion. Strong linkage disequilibrium and the
large size of this inversion makes identification of the region respon-
sible for the association unfeasible.

GWAS analysis
As well as the windowed approach above, we implemented a SNP-
wise association analysis across the genome in each sample set.
Preliminary analysis identified significant associations that were later
revealed to be an artefact of bacterial sequence data; we therefore
repeated the analysis after removing SNPs associated with this
contamination.

After false-discovery rate (FDR) control, no SNPs remained sig-
nificant for deltamethrin resistance in any of the populations, while the
PM sample sets either contained no significant SNPs (Baguida and
Obuasi) or predominantly SNPs in the Ace1 region (Korle-Bu and
Madina). This likely reflects a combination of the effect size of resis-
tance mutations, the sample sizes in our study, and the stringent false

Fig. 4 | A shared haplotype cluster around the Cyp6aa/Cyp6p cluster at high
frequency inAngambiae fromMadinaandObuasi is positively associatedwith
resistance to deltamethrin. a Hierarchical clustering dendrogram of haplotypes
with leaves labelled by population and phenotype. The tree was cut at a height of

dxy =0.001 to obtain haplotype clusters. b SNPs that were significantly more fre-
quent on the haplotype than in the rest of the population (Fisher test, alpha =
0.001) are shown and labelled as non-synonymous (red), synonymous (yellow) and
non-coding (blue, including UTRs).
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discovery rate control when such a large number of tests are con-
ducted. We reasoned that if mutations in a given region or cluster of
genes are associated with resistance, several mutations in the same
region may all contribute separately to resistance, or may lead to
association of nearby variants through selective sweeps. We would
then expect to see groups of clustered variants all associated with
resistance. We therefore adopted an alternative approach in which we
took the 1000 most highly significant SNPs in each sample set and
looked for regions of the genome in which these SNPs were con-
centrated (100,000bp windows that contained at least 10 SNPs from
among the top 1000). For convenience, we refer to these as candidate
SNPs. A summary of candidate SNPs can be obtained from the GitHub
repository (https://github.com/vigg-lstm/GAARD_work/tree/main/
supplementary/html_summaries/summary_files/gwas_
summary.html)17.

For deltamethrin, in An. coluzzii from Avrankou, the majority of
the candidate SNPs were found across the 2La chromosomal inver-
sion, mirroring what was found in the FST/PBS analysis. Aside from
this, there were no candidate SNPs within gene sequences. In An.
gambiae fromBaguida, candidate SNPs were found in several regions
of the genome, including a cluster ofTepgenes (Tep2 (AGAP008366),
Tep14 (AGAP008368) and Tep15 (AGAP008364)), with a non-
synonymous mutation in Tep14. Interestingly, we also found a win-
dow of candidate SNPs in An. coluzzii from Korle-Bu that was around
50 kbp from a different cluster of Tep genes, including Tep1
(AGAP010815). We also found candidate SNPs around the cyto-
chrome P450 Cyp306a1, including one within a splice site, and
around the carboxylesterase Coe22933. In An. gambiae from Obuasi,
the main signal came from the region around Cyp6aa1, as was found
with the Fst analysis.

For PM, in An. coluzzii from Korle-Bu and An. gambiae from
Madina, all clusters of candidate SNPs were found in the Ace1 region.
In other populations, candidate SNPs were found in and around
several clusters of possible detoxification genes (the carbox-
ylesterases Coeae2g-6g in An. gambiae from Obuasi, and the P450s
Cyp12f1-f4, Cyp4d15-17, Cyp4k2, Cyp4ar1, Cyp4h19 and Cyp4h24 in An.
gambiae from Baguida). In Baguida, there was also a cluster of can-
didate SNPs covering a region around 39.2Mb on chromosome 2L,
containing many cuticular proteins (RR1 family AGAP006838-
AGAP006867). InAn. gambiae fromObuasi, as well as a group inAce1,
candidate SNPs were found near gustatory receptors (Gr26
(AGAP006717) and Gr27 (AGAP006716)) and a cluster of Tep genes
(including five non-synonymousmutations in Tep1), as well as around
Gprmthl7 (including three non-synonymous mutations), as found in
the FST analysis.

GWAS sample sizes
Although we found significant associations of individual SNPs in our
analysis of established resistance markers for deltamethrin resistance,
our agnostic SNP-level GWAS returned no markers passing FDR con-
trol. Using our results, we explored what sample size would have been
required in order for these significant established markers to have
been detected in the agnostic genome-wide analysis. Over 500 simu-
lations, we found that a sample size of 300 (150 of each phenotype)
would only have detected 11 or 25% of associated SNPs, depending on
whether wemodelled the observed allele frequencies of Vgsc_1527T or
Cyp4j5_43F, respectively, in Avrankou. However, with a sample size of
500, this rose to 54 and 67%, respectively.

Discussion
Overall, our results show different genomic signals of resistance to
deltamethrin and PM, but with clear points of overlap. The pyrethroid
deltamethrin is a common constituent of ITNs and has been amainstay
of vector control since the end of the twentieth century18. The first
genetic marker of resistance against pyrethroids in An. gambiae,

discovered almost 25 years ago,was the target sitemutation kdr-1014F,
now referred to as Vgsc–995F19. Since then, this SNP has spread and
massively increased in frequency20, with at least five independent ori-
gins of the mutation, leaving the wild-type allele completely absent in
our current dataset (collected in 2017). A recent decline in the fre-
quency of Vgsc–995F in An. coluzzii is associated with the rise of an
alternative resistance haplotype in the Vgsc gene, carrying the Vgsc-
402L and Vgsc–1527T mutations instead21. While there is debate as to
the relative benefits of Vgsc–995F vs Vgsc-402L/1527T, both provide
target site resistance22. It is in this context of ubiquitous target site
resistance to deltamethrin that our study was conducted, making it
poised to address three questions: Is there a difference in the level of
resistance conferred by Vgsc–995F and the Vgsc–402L/1527T haplo-
type? Do other SNPs around Vgsc–995F provide additional resistance
to deltamethrin? And what other mutations in the genome help to
explain the residual variation in resistance?

We found that Vgsc–402L/1527T was associated with significantly
higher resistance to deltamethrin than Vgsc–995F. This is opposite to
what has previously been found in laboratory colonies22. This differ-
ence may be explained by the effect of additional non-synonymous
mutationson theVgsc–995Fhaplotypebackground. The effect ofmost
of these SNPs for resistance, likely to be through epistatic interaction
with Vgsc–995F given their exclusive presence on this genetic back-
ground, have yet to be established. Such mutations were not exhaus-
tively investigated in the laboratory colonies, and the relatively
increased resistance of the Vgsc–995F haplotype in the colonies could
thus be explained if this mutation was backed up by supporting SNPs
elsewhere, or by differences in advantage between field and laboratory
conditions.

Outside of the Vgsc, the main deltamethrin resistance-associated
signals were in and around the Cypaa/Cyp6p cluster of cytochrome
P450 genes. The importance of Cyp6aa1 for deltamethrin resistance
has been previously demonstrated in An. gambiae from East and
Central Africa, where the rapidly spreading CNV Cyp6aap_Dup1 was
found tobe associatedwith resistance23. Similarly inour data,we found
that copy number ofCyp6aa1was associated with resistance in at least
one population of An. coluzzii. Unlike East Africa, where a single CNV
allele dominates, we found at least 6 CNV alleles in our sample sets of
An. coluzzii, and more are known from other data12,13.

We found further signals of association between Cyp6aa1 and
deltamethrin resistance in two populations of An. gambiae (Madina
andObuasi). Interestingly, this signalwas not associatedwith any CNV,
suggesting an alternative mechanism of resistance. This non-CNV
resistance haplotype, along with the large number of CNVs in the
region, shows that metabolic resistance associated with Cyp6aa1 is
highly multi-allelic.

Other signals of association with deltamethrin resistance were
found around the carboxylesterase Coe22933 and the cytochrome
P450s Cyp9k1, Cyp6m2, Cyp6ag1/2, Cyp6aj1, Cyp306a1, as well as Cpr
(the obligatory cytochrome P450 electron donor, whose knock-
down increases susceptibility to permethrin24). There was also a
signal of association of deltamethrin resistance with the beta sub-
complex of NADH dehydrogenase (ubiquinone), a large mitochon-
drial complex of the respiratory chain. We found such signals in
populations from two species (An. gambiae from Madina and An.
coluzzii from Korle-Bu), and possibly two regions of the genome
(subunit 2 on chromosome 2R and subunit 1 on chromosome X),
although the proximity of subunit 1 to Cyp9k1 makes it hard to
establish whether this is genuinely an independent signal of asso-
ciation. A previous study of deltamethrin resistance in a laboratory
colony of An. coluzzii from Burkina Faso found that resistance was
associated with elevated expression of genes with NADH dehy-
drogenase activity or involved in cellular respiration25. Our results
suggest that this putative mechanism of resistance is present in
other populations and species.
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In contrast to deltamethrin, PM has been introduced more
recently for mosquito control10, although previous use of organo-
phosphates as agricultural insecticides is likely to have led to prior
exposure of at least somemosquito populations26. Furthermore, while
Vgsc target site resistance to deltamethrin consists of presence/
absence of a SNP, target site resistance to PM, through the Ace1–280S
SNP, is moderated by the copy number of the CNV in Ace16. This copy
number is variable, and is likely to be highlymutable as recombination
between CNV haplotypes leads to changes in copy number. For these
reasons, variation in target site resistance persists, and our results
show that this locus continues to dominate the association analyses in
several populations.

Beyond Ace1, we found signals of association with PM resistance
around cytochrome P450s (Cyp4k1,Cyp12f1-4,Cyp4h19/24,Cyp9j5) and
carboxylesterases (Coeae2g-6g), as well as at the glutathione S-trans-
ferase epsilon (Gste) genes. Expression and sequencemutation inGste2
has been associated with resistance, primarily to DDT27–29, but also to
pyrethroids28,30,31. While direct evidence of an association with resis-
tance to PM is lacking, GSTs are known to detoxify organophosphates
and have frequently been associated with resistance to them in both
Anopheles and Aedes29,32,33.

Another intriguing signal was found at the beta-2 subunit of
nicotinic acetylcholine receptor, where we found a haplotype with
relatively strong association with PM resistance (P =0.0008). This
receptor is the target site for neonicotinoid insecticides34 and is not
known to be involved in resistance to PM, but its function is to respond
to acetylcholine, the neurotransmitter that is broken downbyAce1.We
can speculate that mutations in this receptor might in some way pro-
tect against the toxic accumulation of acetylcholine that occurs when
Ace1 is inhibited by PM.

Curiously, we also found marginally significant signals of asso-
ciation between PM resistance and SNPs in the Vgsc region
(Vgsc–1570Y positively associated in Baguida and Vgsc–995F nega-
tively associated in Korle-Bu). The negative association could be
explained if the physiological cost of carrying the Vgsc–995Fmutation
compared to Vgsc-402L/1527T22,35 contributed to weakness in the face
of stress. The effects of the Vgsc–1570Y mutation on fitness costs is
unknown. If part of its effect is to reduce the fitness cost of Vgsc–995F,
this may similarly explain its effect on PM resistance. These remain
speculative arguments that require further investigation.

Given the importance of cross-resistance in the management of
insecticide-based mosquito control strategies, regions found asso-
ciated with resistance to both deltamethrin and PM warrant further
discussion. The first was aroundCyp9k1, a cytochrome P450 found in a
region of strong selective sweep16, that has been implicated in resis-
tance to pyrethroids36–38. We found repeated signals of association of
Cyp9k1 with resistance to both deltamethrin and PM, although the
signal was always several hundred, or even a thousand, Kbp away from
Cyp9k1 either side. This makes it difficult to confirmwhether Cyp9k1 is
driving these signals. On the one hand, the known importance of
Cyp9k1 and the presence of significant windows on both sides, sug-
gests that wemay be seeing a broad signal of association that for some
reason is weaker at the locus of the gene itself. Indeed, there are no
known non-synonymous mutations associated with resistance in
Cyp9k1, with the only evidence being haplotypic36 and metabolic, and
regulatory regions may be located far from the gene itself. On the
other hand, genes such as NADH dehydrogenase and Cyp4g17 were
often close, or even within the significant windows. Cyp4g17 has been
found to be over-expressed in An. coluzzii from the Sahel resistant to
deltamethrin39, and the potential role of NADH dehydrogenase has
been discussed above. The exact role that Cyp9k1 and the genes
around it play in resistance to both deltamethrin and PM remains
poorly understood.

The other signals of association that were found for both insec-
ticides were in Tep genes, key components of the arthropod innate

immune system,withTep1being known for its role in immunity against
Plasmodium40,41. Similarly, a recent study of An. coluzzii in several
regions of the Sahel found that Tep1 was consistently over-expressed
in mosquitoes resistant to deltamethrin39. It is intriguing to see Tep1,
and other members of the Tep gene family, consistently associated
with genomic signals of resistance to two insecticides, in both An.
gambiae and An. coluzzii. While there is evidence that exposure to
Plasmodium increases susceptibility to insecticides42, inviting spec-
ulation that improving immunity could improve resistance, that study
found that it is exposure to the parasite, rather than infection, that
causes susceptibility.

When performing SNP-wise GWAS on the data, we found very few
significant SNPs after false discovery rate control. In our targeted
analyses of SNPs and CNVs in known resistance genes, the number of
tests being conducted was considerably smaller and the range of P
values that we found to be significant, with the exception of Ace1,
would not come close to significance if FDR control was applied on a
genomic scale such as in the GWAS. We conclude that the scale of the
effect size formanymutations associated with resistance are such that
larger sample sizes are required in order for their P values to stand out
in a GWAS. Our simulations suggest that a sample size of 500, with a
dataset of 7 million SNPS, of which 10 are associated with resistance,
would detect 54%of SNPs that have the effect size thatweobserved for
Vgsc_1527T in Avrankou, and 67% with the effect size observed for
Cyp4j5_43F. This is an encouraging figure, and a reasonable one to
achieve given current sequencing costs and throughput.

A striking result from our findings is that signals of non-target site
resistance showed little consistency between our study sites. Apart
from theCyp6aa1haplotype associatedwithdeltamethrin resistance in
An. gambiae from Madina and Obuasi, few other signals were shared
between populations, despite several repeated themes (Cyp6aa1
resistance also present in An. coluzzii, Tep genes, P450s, carbox-
ylesterases) and despite several documented instances of introgres-
sion between An. gambiae and An. coluzzii (Vgsc4, Ace16, Rdl5, Cyp9k1
(this study)). These findings suggest that metabolic insecticide resis-
tance in An. gambiae and An. coluzzii is highly multiallelic, with even
nearby populations displaying different resistancemutations. This is in
contrast to what has been observed with target site resistance, where
various arrangements of a single SNP/CNV combination in Ace1 dom-
inate for PM resistance, while a fewdifferentmutations inVgsc seem to
be involved in deltamethrin resistance. It is also in contrast to An.
funestus, where target site resistance has yet to be found in any
populations, but where a few mutations associated with metabolic
resistance have spread extensively in Africa28,43–45. It has been argued
that resistanceevolvingnaturally in thewildwill tend tobemonogenic,
with a few genes of large effect being responsible for nearly all
observed resistance, in contrast to resistance in artificially selected
laboratory colonies46. This is because selective pressures imposed on
lab colonies must necessarily be weak enough that a reasonable pro-
portion of individuals survive to maintain the colony, allowing muta-
tions with small effects to be selected. In contrast, insecticides
deployed in the field, acting on a large population, can impose very
highmortality such thatonlymutations at a very few loci of large effect
on resistance are able to provide a selective advantage, although dif-
ferent mutations may well co-exist46. Our findings of many signals of
association scattered over the genome seem to contradict this pre-
diction. One possible explanation is that as initial mutations of large
effect spread to fixation, as in the case of Vgsc and, in some popula-
tions, Ace1, so the mortality imposed by the insecticides decreases,
leaving other mutations of small additive effect to spread on this
background. The accuracy of the prediction may also depend on the
method of insecticide application. Crops that are regularly sprayed
with pesticides may maintain high levels of mortality, while bednets
and sprayed walls are known to decline in potency over several years
until net replacement or a new round of spraying47–49. Mosquitoesmay
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therefore be frequently exposed to lower doses of insecticides that
select for many resistance loci of relatively small effect.

This multi-allelic nature of metabolic resistance presents a two-
fold challenge for genetic monitoring programmes. First, if the mar-
kers of resistance are different in every population, SNP-focused
marker panels will be less generalisable. This challenge can be over-
come by turning to more general methods that target broader loci,
such as amplicon sequencing, that remain agnostic as to the specific
change that could occur within each broad locus.

Second, it is more challenging to build predictive models of
resistance if eachpopulation has its own resistancemarkers.Metabolic
resistance is often driven by increased expression of certain genes, and
part of the reason for itsmulti-allelic nature is that there aremanyways
by which expression can be increased (copy number variants, muta-
tion of cis-regulatory region, modified transposable element activity).
To capture all of these in a single assay, itmaybe necessary to consider
the possibility of transcriptomic or even proteomic surveillance50. This
brings its own challenges. Unlike DNA, gene expression and protein
synthesis are variable across tissues, life stages and environments, and
also degrade quickly after death. Collection methodologies therefore
need to be refined in order to achieve reliable and comparable results
across studies. It is however becoming increasingly apparent that these
challenges should be addressed and these avenues explored.

Methods
Sample collection and phenotyping
Mosquitoes were collected in 2017 and 2018 as larvae from six loca-
tions in West Africa (Benin: Avrankou [6.550, 2.667], Côte d’Ivoire:
Aboisso [5.467, −3.200], Ghana: Madina [5.683, −0.166], Korle-Bu
[5.537, −0.240] and Obuasi [6.200, −1.683]; Togo: Baguida [6.161,
1.314], Fig. 1). Larvae were collected by dipping frommultiple habitats,
pooled, and raised to adulthood in the laboratory and females were
phenotyped for either deltamethrin or PM using a custom dose-
response assay with WHO standard tubes, which was designed to
identify themost resistant and susceptible individuals, while removing
those of intermediate resistance. Non-blood-fed adult females were
separated and at3-5 days oldbioassayedusingWHOtubes in replicates
of ~25 with either deltamethrin or pirimiphos methyl (PM) papers.
Initially, to determine appropriate doses to produce well-separated
phenotypic groups, which eliminated those of intermediate pheno-
type (Fig. S9), 1–2 replicate tubes were run (for 60min, with mortality
assessed 24 h later) at a range of concentrations reflecting X-fold the
standardWHOdiagnostic doseof 0.05% for deltamethrin (0.5X, 1X, 2X,
5X and 10X) and of 0.25% for PM (0.5X, 1X, 2X). From these preliminary
data appropriate “lower” and “higher” doses (Fig. S9) were determined
to achieve the desired phenotypic separation. Our initial plan to use
different concentrations with a fixed (60min) time was followed in all
cases with the exception of Obuasi and Baguida phenotyped for PM,
for which survivorship with 1X papers at 60min was very low (≤2%,
indicating susceptibility according to the WHO criterion). In these
cases we obtained separated phenotypic groups by using a single
concentration (0.5X) but varying exposure times. Bioassay doses used
are shown in Table S1, and results from bioassays in Fig. S10. Note that
with the exception of PM phenotypes in the two sites above, all
populations tested conform to WHO defined resistance (Fig. S10 and
Table S1), and in most cases for deltamethrin resistance would be
classified as substantial (<90% at ≥5X). Sampleswere imported into the
UK under import license IMP/GEN/2014/06 issued by the Department
for Environment, Food and Rural Affairs (24th March 2014).

DNA was extracted from individual mosquitoes using nexttec
extraction kits (Biotechnologie GmbH). Species identity was deter-
mined using two molecular methods designed to discriminate
between An. gambiae, An. coluzzii and An. arabiensis: a PCR of species-
specific SINE insertion polymorphisms as described in51, and a melt
curve analysis52. Breakdown of bioassay results bymolecular species is

shown in Table S1. In two sites (Madina and Aboisso) An. gambiae and
An. coluzzii were both present in the collections in substantial pro-
portions and in each case An. gambiae were over-represented relative
to An. coluzzii in resistant compared to susceptible groups (Madina,
deltamethrin odds ratio = 19.2; PM odds ratio = 2.1; Aboisso, PM odds
ratio = 36.8). This indicates that bioassay mortalities will be over-
estimated forAn. gambiae in each case, compared to the results forAn.
gambiae s.l., this will apply to both the lower and higher doses.
Therefore, pronounced phenotypic segregation between susceptible
and resistant groups should still remain, though potentially quantita-
tively different from the An. gambiae s.l. data shown in Fig. S10. The
complete list of specimens, sampling times and locations, and species
assignments are available in Supplementary Data 1.

Sample sets (mosquitoes of a given species, froma given location,
exposed to a given insecticides) to send for sequencing were chosen
on the basis of sample size and to obtain a balance of deltamethrin/PM
data. Final sample sizes for each sample set, after QC filtering of
sequencing data, are shown in Table 1.

Whole genome sequencing and bioinformatic analysis
Overall, 1258 samples from this study were whole-genome sequenced
as part of the Anopheles gambiae 1000 genomes project (Ag1000G)
release v3.2. Full details of library preparation, sequencing, alignment,
SNP calling, CNV calling and phasing are detailed on the Ag1000G
website (https://malariagen.github.io/vector-data/ag3/methods.html).

Briefly, individuals were sequenced to a target coverage of 30x on
an Illumina HiSeq X, generating 150bp paired-end reads. Reads were
aligned to the AgamP4 reference genome using BWA, and indel rea-
lignment was performed using GATK version 3.7-0. Genotypes were
called for each sample independently using GATK version 3.7-0 Uni-
fiedGenotyper in genotyping mode, given all possible alleles at all
genomic sites where the reference base was not “N”. Sample QC
removed 62 samples for low coverage (<10×), 215 samples for cross-
contamination (alpha > 4.5%53) and 8 samples as apparent technical
replicates (genetic distance below 0.006). 973 samples passed QC fil-
tering. Sex was called using the modal coverage ratio between chro-
mosomes X and 3 R (ratio between 0.4 and 0.6 = male, ratio between
0.8–1.2 = female, other ratios would lead to sample exclusion).

Known CNVs in specific genes of interest (Cyp6aa1–Cyp6p2,
Gstu4–Gste3, Cyp6m2–Cyp6m4, Cyp6z3–Cyp6z1, Cyp9k1, Ace1) were
detected using discordant reads associatedwithCNValleles previously
identified in Ag1000G release 3.0. Agnostic CNV detection was per-
formed using normalised sequencing coverage calculated in 300 bp
windows and a hidden Markov model (HMM) to estimate the copy
number state at each window. This allows the detection of CNVs
genome-wide, and of novel CNV alleles in the regions of interest. Gene
copy number was calculated as the modal value of the HMM along
each gene. A novel CNV in the regions of interestwas identified if there
was increased copy number according to modal coverage, but no
discordant reads supporting the presence of known CNV alleles.

Kinship analysis
We calculated pairwise kinship between all samples using the KING
statistic54 implemented inNGSRelate55 using SNPdata across thewhole
genome. Whole-genome SNPs were used because the recombination
rate on such a small genome can lead to large disparity in kinship
values between chromosomes (Fig. S11). Results indicated a slight
positive bias in kinship, with the mode of the distribution slightly
above 0 (Fig. S12). Because of this positive bias in kinship values, we
sought to empirically establish the most parsimonious threshold to
identify full siblings in our data, instead of the threshold of 0.177 sug-
gested in the manual (https://www.kingrelatedness.com/manual.
shtml). For all possible threshold between 0.15 and 0.35, in incre-
ments of 0.005, we identified all full siblings and counted the pro-
portion of full sib groups that contained inconsistencies (where
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siblings of siblings were not themselves classed as siblings). We chose
the threshold 0.195 as that which produced the smallest proportion of
inconsistent sib groups. We identified full siblings as any pair of indi-
viduals with a kinship value greater than this threshold,) and obtained
full sib groups by considering that any siblings of siblings were
themselves siblings. No full siblings were found between populations.

Candidate marker and CNV association analysis
We investigated the association between phenotype and a range of
known SNPs in candidate resistance genes (Ace1–280S all Vgsc SNPs
reported in21, Rdl–296G, Rdl–296S, Cyp4j5–43F, Gste2–114T and
Gste2–119V) using generalised linear models in R, with binomial error
and a logit link function,withphenotype as thedependent variable and
SNP genotypes as independent variables, coded numerically as the
number of mutant alleles (possible values of 0, 1 and 2). Within each
sample set, we included all SNPswith an allele frequencyof at least 10%
in the analysis. We used a forward step-wise procedure, calculating the
significance of adding each marker to the current model using the
anova function. Starting from the null model, we added the most
significantmarker to themodel and then repeated the process until no
remaining markers provided a significant improvement. We used the
same procedure to investigate the phenotypic association of gene
copy number.

Windowed measures of differentiation (FST, PBS, H12)
FST in 1000 SNP windows was calculated between resistant and sus-
ceptible samples within each sample set using the moving_patter-
son_ fst function in scikit-allel, after filtering SNPs for missing data and
accessibility56 and removing singletons. In order to take full advantage
of the full sample set despite the non-independence of full siblings, we
performed up to 100 permutations in which one randomly chosen
individual per sib groupwas used in the calculation of FST, and took the
mean of all permutations. The set of possible permutations was sam-
pled without replacement, such that in some sample sets fewer than
100 permutations were possible. We identified provisional windows of
interest (“peaks”) that were outliers in the data. We reasoned that true
FST peaks in these data should only be positive, meaning that the left
hand side of the FST distribution (Fig. S13) should be largely unaffected
by the number of peaks in the data. We therefore used the left hand
part of the FST distribution to determine what the limits of the right
hand part would typically look like in the absence of peaks, and iden-
tified outliers as positive windows beyond these limits. To do this, we
took the differencebetween the smallest FST value and themodeof the
distribution, and considered an outlier to be any valuemore than three
times this distance away from the mode on the right hand side
(Fig. S13).

The existence of extended haplotype homozygosity in a region
(due to a selective sweep) could cause a peak in windowed FST even if
the swept haplotype is unrelated to the phenotype, because non-
independence of SNPs in the windowwould lead to increased variance
in FST compared to other genomic regions. This led, for example, to
spurious provisional peaks in the Ace1 region in sample sets pheno-
typed against deltamethrin (Fig. S5). To filter out these peaks, we
performed 200 simulations in which the phenotype labels were ran-
domlypermuted and FST recalculated as above. Provisionalwindowsof
interest were retained if their observed FST was higher than the 99th
centile of the simulations.

H12 was calculated using phased biallelic SNPs in 1000 SNP win-
dows, using the garuds_h function in scikit-allel. 200 phenotype per-
mutations were performed as above. PBS was calculated using
segregating SNPs in 1000 SNPwindowsusing thepbs function in scikit-
allel, after filtering SNPs for accessibility using the Ag1000G phase 3
gamb_colu sitemask. For theoutgroup for the PBS calculation,weused
conspecific samples from Mali collected in 2004, available as part of
the Ag1000G phase3 data release. For both H12 and PBS, phenotype

permutations were performed as for FST to filter out false positives
caused by the presence of extended swept haplotypes.

Haplotype association
Within each window of interest identified through the FST analysis, we
explored the presence of swept haplotypes that could be associated
with phenotype. Haplotype clusters were determined by hierarchical
clustering on pairwise genetic distance (Dxy) between haplotypes, and
cutting the tree at a height of 0.001. Clusters larger than 20haplotypes
were tested for association with phenotype using a generalised linear
model with binomial error and logit link function, with phenotype as
the response and sample genotype (number of copies of the haplo-
type) as a numerical independent variable.

Genome-wide association analysis
In the GWAS, a single permutation of sibling removal was randomly
chosen for the analysis, since averaging over permutations would not
produce interpretable P values. In each sample set, all SNPs passing
accessibility filters56 with nomissing data and aminor allele count of at
least five were included in the analysis, including sites that failed
accessibility filters.

In an original pass of the GWAS analysis, we found SNPs sig-
nificantly correlated with phenotype, but which showed strong allelic
imbalance and, in some cases, heterozygote excess. We found that
they were the result of mis-alignment of Anopheles reads. Assembling
and BLASTing the reads in question indicated that they likely origi-
nated fromAsaiabacteria. Thereare twopossible explanations for this.
The first is that of a metagenomic association with resistance. The
second is of sample contamination differentially affecting the two
phenotypes. We investigated this possibility by examining the dis-
tribution of the levels of Asaia reads with respect to the position of the
sample on the plates in which DNA was stored. Asaia reads were non-
randomly distributed across plates (Fig. S14), indicating that they are
likely to be the result of contamination, but creating the appearance of
correlation with phenotype. To account for this in the GWAS, we used
Bracken v2.557 with the GTDB database release 89 (https://data.ace.uq.
edu.au/public/gtdb/data/releases/release89/) to estimate the amount
of Asaia contamination in each sample and excluded SNP loci where
genotype was correlated with Asaia levels (P <0.05).

P-values of association with phenotype for each SNP were
obtained by generalised linear modelling with binomial error and logit
link function, with phenotype as the response variable and genotype
(number of non-reference alleles) as a numeric response variable. False
discovery rate correction was applied using the fdrtool package in R58.
In several sample sets, no significant P values remained after false
discovery rate correction. Since recent selection on a SNP should lead
to a broad selection signal, we took the 1000 most significant SNPs in
each sample set and looked for 100,000bpwindows that contained at
least 10 SNPs among the top 1000. Effects of individual SNPs were
determined using SNPeff59.

GWAS sample size analysis
Although we found significant associations of individual SNPs in our
analysis of established resistance markers for deltamethrin resistance,
our agnostic SNP-level GWAS returned no markers passing FDR con-
trol.We therefore askedwhat sample size would have been required in
order for these significant established markers to have been detected
in the agnostic genome-wide analysis. Taking the Vgsc–1527T and
Cyp4j5–43F loci in Avrankou, we used the observed allele frequencies
in each of the resistant and susceptible subsamples to randomly gen-
erate new sample sets of a given size, split into 50/50 resistant/sus-
ceptible samples. We thus maintained the observed effect sizes for
these loci, projected onto new sample sizes. For each random sample
set, we calculated P values following the same procedure as for our
GWAS. FDR correction depends on the number of truly associated and
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unassociated genes in the analysis; we therefore simulated 10 such loci
that were truly associated with resistance across the genome (each
drawn independently) and 7 million non-associated SNPs (approxi-
mately 7 million SNPs were used in the Avrankou GWAS), whose P
values were drawn from a random uniform distribution. This simula-
tion was performed 500 times for each sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the ENA short read archive database, with all accession codes provided
in Supplementary Data 1. The accession number for the genome
assembly to which the reads were aligned is GCA_000005575.1
(https://www.ebi.ac.uk/ena/browser/view/GCA_000005575.1). The
processed SNP and CNV calling data were generated as part of the
Anopheles gambiae 1000 genomes project v3.2 and are available at
https://www.malariagen.net/data. The bioassay data generated in this
study are provided in Supplementary Data 1.

Code availability
Code used to analyse the data can be found in the github repository
https://github.com/vigg-lstm/GAARD_work17. All sequencing, align-
ment, SNP and CNV calling was carried out as part of the Anopheles
gambiae 1000 genomes project v3.2 (https://www.malariagen.
net/data).
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