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Carbapenem resistant Acinetobacter baumannii (CRAb) is an important global pathogen
contributing to increased morbidity and mortality in hospitalized patients, due to
limited alternative treatment options. Nine international clonal (IC) lineages have been
identified in many countries worldwide, however, data still lacks from some parts of
the world, particularly in Africa. We hereby present the molecular epidemiology of
MDR A. baumannii from four hospitals in Khartoum, Sudan, collected from 2017 to
2018. Forty-two isolates were whole-genome sequenced, and subsequent molecular
epidemiology was determined by core genome MLST (cgMLST), and their resistomes
identified. All isolates had an array of diverse antibiotic resistance mechanisms conferring
resistance to multiple classes of antibiotics. We found a predominance (88%) of IC2 (with
the intrinsic OXA-66 and acquired OXA-23), and some with NDM-1. IC2 isolates were
sub-divided into 4 STs separated by 5 to 431 allelic differences, and with evidence of
seven transmission clusters. Isolates belonging to IC1, IC5, and IC9 were also identified.
These data illustrate that MDR IC2 A. baumannii are widely distributed in Khartoum
hospitals and are in possession of multiple antibiotic resistance determinants.

Keywords: antibiotic resistance, cgMLST, OXA, NDM-1, Sudan, international clones

INTRODUCTION

Acinetobacter baumannii is an important nosocomial pathogen that causes a variety of infections
including but not limited to ventilator-associated pneumonia and bloodstream infection (Peleg
et al., 2008). Treatment options have been compromised by the emergence of multi-drug resistant
(MDR) isolates. The prevalence of MDR A. baumannii in hospitals has put the organism on
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the “ESKAPE” pathogens list: an acronym developed by the
Infectious Diseases Society of America for a group of MDR
nosocomial pathogens with limited remaining treatment options
(Boucher et al., 2009). A. baumannii is also considered as priority
1 (“critical”) on the World Health Organization list of priority
organisms for research and development of new antibiotics
(WHO, 2017). Of particular concern is carbapenem resistance,
as carbapenems are considered the drugs of last resort in treating
A. baumannii infections, and resistance is commonly attributed
to acquired carbapenemases (Poirel and Nordmann, 2006).

For the investigation of local outbreaks, pulsed field gel
electrophoresis (PFGE) has been the traditional typing method,
but given the global distribution of A. baumannii, current typing
methods must be reproducible and portable, both of which PFGE
lacks. Multi-locus sequence typing (MLST) is a relatively easy
method to perform but it lacks the resolution for outbreak
investigation (Higgins et al., 2017). The advent of relatively
cheap whole-genome sequencing (WGS) technology gives the
opportunity to perform high resolution typing and the ability
to compare whole genomes rather than only a few loci. WGS
also allows for the identification of antimicrobial resistance
determinants, both intrinsic and acquired, and can aid in our
understanding of the circulating resistome.

Molecular epidemiological studies have assigned nine major
International Clones (IC1-9) of A. baumannii, the most
widespread of which is IC2 commonly harboring the acquired
carbapenemase OXA-23 (Higgins et al., 2010a; Zarrilli et al., 2013;
Hamidian and Nigro, 2019; Müller et al., 2019; Tomaschek et al.,
2019). However, there is a significant lack of epidemiological and
genomic data from low- and middle-income countries (LMICs),
mainly due to limited research infrastructure and resources.
Given that antimicrobial resistance does not respect borders,
there is therefore an urgent need to support local initiatives in
LMICs to generate epidemiological and genomic data in order
to assess the burden of infectious diseases, and track resistance
globally (Okeke et al., 2005).

This study aimed to explore the molecular epidemiology and
antimicrobial resistance mechanisms using WGS of carbapenem
resistant A. baumannii (CRAb) isolated from patients in
Khartoum State in Sudan.

MATERIALS AND METHODS

Bacterial Strains and Antimicrobial
Susceptibility
A total of 71 consecutive A. baumannii isolates were collected
between 2017 and 2018 from hospitalized patients in four
different hospitals in Khartoum, Sudan: Soba University Hospital
(n = 37), Ibrahim Malik Hospital (n = 3), The Military Hospital
(n = 16), and Al Baraha Hospital (n = 16). These were isolated
from a variety of samples including blood, urine, sputum, wound,
cerebrospinal fluid, and catheter tips (Table 1). Isolates were
initially identified at the clinical microbiology laboratories of the
hospitals using conventional methods. For the purpose of this
study, all isolates were confirmed as A. baumannii by the gyrB
multiplex PCR method and MALDI-TOF prior to whole genome

sequencing (WGS) (Higgins et al., 2010b). Presence of OXA and
metallo- carbapenemase-encoding genes was determined by PCR
(OXA-23, -40,-51, -58, -143, -235, and NDM, IMP,VIM, GIM,
KPC, and GES) (Woodford et al., 2006; Ellington et al., 2007;
Higgins et al., 2013).

Antimicrobial susceptibility (AST) was initially performed
by disk-diffusion at the clinical microbiology laboratories
and interpreted according to CLSI guidelines. Upon species
confirmation, the minimum inhibitory concentration (MIC)
was determined by MICRONAUT-GN, an automated microtiter
broth dilution susceptibility testing system (Merlin Diagnostika,
Germany). Colonies from a pure overnight subculture were used
to prepare a 0.5-McFarland-standard suspension in 0.9% saline
as recommended by the manufacturer (Merlin Diagnostika,
Germany). This system allows the determination of the MIC for
a panel of antibiotics with two concentrations (mg/L) based on
the EUCAST MIC breakpoints for sensitivity (S) or resistance
(R) (EUCAST, 2020b): meropenem (MER), gentamicin
(GEN), amikacin (AMK), trimethoprim-sulfamethoxazole
(SXT), ciprofloxacin (CIP), and colistin (COL) in a single
microtitre plate. After the addition of the bacterial suspension
and rehydration of the antibacterial agents, the plates were
incubated at 37◦C for 18–24 h. Bacterial growth in the wells
was monitored photometrically at 620 nm, and a density of
>50% above the cutoff value for the growth control. The
results were also observed visually for turbidity to confirm
the results. Additionally, MIC for imipenem (IMP) was
performed by broth microdilution (BMD) method according
to the EUCAST guidelines V2, 2020 (EUCAST, 2020a).
Quality control strains Escherichia coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853 were used in all AST
experiments.

Whole Genome Sequencing and
Molecular Typing
Total DNA was extracted from the bacterial isolates using
the MagAttract HMW DNA Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instruction. Sequencing libraries
were prepared using the Nextera XT library prep kit (Illumina
GmbH, Munich, Germany) for a 250-bp paired-end sequencing
run on an Illumina MiSeq platform. Genomes were assembled de
novo using Velvet v1.1.04. Molecular epidemiology of the isolates
was investigated by core-genome MLST (cgMLST) based on a
core genome of 2,390 alleles using Ridom R© SeqSphere+ v. 7.2.3
(Higgins et al., 2017).

Multi-locus sequence typing was performed on the
pubMLST database https://pubmlst.org/abaumannii/ to identify
sequence types (STs) for both the Pasteur and Oxford schemes.
Antimicrobial resistance determinants were identified using
the Resfinder software v3.2 https://cge.cbs.dtu.dk/services/
ResFinder/. Beta-lactamases were identified using the online
beta-lactamase database1 (Naas et al., 2017).

All assembled genomes were submitted to GenBank under
BioProject number PRJNA628907. All accession numbers are
listed in Table 1.

1http://www.bldb.eu/
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TABLE 1 | Details of isolates included in the study.

MIC mg/L

Isolate Genotype Transmission
cluster

Year Specimen Hospital IMP MEM GEN AMK SXT CIP CST ST Oxf ST Pas Accession No.

AC-36 IC1 2018 urine Military <2 ≤2 ≥4 ≤8 ≥4 ≥0.5 ≤2 2270 1 JABETE000000000

SUH-4 IC1 2016 blood Soba 128 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 231 1 JABESK000000000

AC-12 IC2 TC-1 2018 sputum Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABESV000000000

AC-17 IC2 TC-1 2018 wound Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABESX000000000

AC-19 IC2 TC-1 2018 sputum Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABESY000000000

AC-2 IC2 TC-1 2018 sputum Soba 16 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 195 2 JABESQ000000000

AC-33 IC2 TC-1 2018 sputum Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABETC000000000

AC-35 IC2 TC-1 2018 sputum Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABETD000000000

AC-37 IC2 TC-1 2018 wound Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 2 JABETF000000000

AC-9 IC2 TC-1 2018 blood Soba 32 ≥8 ≥4 8 ≥4 ≥0.5 ≤2 195 2 JABETI000000000

SUH-10 IC2 TC-1 2017 urine Soba 256 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABERU000000000

SUH-12 IC2 TC-1 2017 blood Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 632 JABERX000000000

SUH-13 IC2 TC-1 2017 CSF Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 632 JABERY000000000

SUH-15 IC2 TC-1 2016 urine Soba 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABESA000000000

SUH-20 IC2 TC-1 2017 blood Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 632 JABESC000000000

SUH-23 IC2 TC-1 2017 wound Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 632 JABESD000000000

SUH-26-1 IC2 TC-1 2017 CSF Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 632 JABESE000000000

SUH-28 IC2 TC-1 2017 wound Soba 64 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABESH000000000

SUH-3 IC2 TC-1 2016 blood Ibrahim Malik 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABESJ000000000

SUH-5 IC2 TC-1 2016 catheter Soba 256 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABESL000000000

SUH-8 IC2 TC-1 2016 urine Soba 256 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 195 2 JABESO000000000

SUH-9 IC2 TC-1 2017 blood Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 195 632 JABESP000000000

SUH-29 IC2 2019 blood Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1632 600 JABESI000000000

AC-5 IC2 TC-2 2018 blood Military 16 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABESS000000000

AC-7 IC2 TC-2 2018 sputum Military 32 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABESU000000000

AC-3 IC2 TC-3 2018 sputum Military 16 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABESR000000000

AC-6 IC2 TC-3 2018 sputum Military 32 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 208 2 JABEST000000000

SUH-11-1 IC2 TC-4 2017 blood Ibrahim Malik 64 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABERV000000000

SUH-11-2 IC2 TC-4 2017 blood Ibrahim Malik 64 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABERW000000000

SUH-26-2 IC2 TC-4 2017 CSF Soba 64 ≥8 ≥4 ≥16 4 ≥0.5 ≤2 195 2 JABESF000000000

AC-26 IC2 TC-5 2018 sputum Soba 64 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1632 600 JABETB000000000

AC-27 IC2 TC-5 2018 sputum Soba 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1632 600 JABETJ000000000

SUH-6 IC2 TC-5 2016 wound Soba 256 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1632 600 JABESM000000000

SUH-27 IC2 TC-6 2017 wound Soba 64 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 208 2 JABESG000000000

SUH-7 IC2 TC-6 2016 wound Soba 64 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 195 2 JABESN000000000

AC-14 IC2 TC-7 2018 sputum Al-Braha 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1701 570 JABESW000000000

AC-23 IC2 TC-7 2018 catheter Al-Braha 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1701 570 JABETA000000000

AC-40 IC2 TC-7 2018 sputum Al-Braha 64 ≥8 ≤2 ≥16 ≤2 ≥0.5 ≤2 1701 570 JABETG000000000

AC-45 IC2 TC-7 2018 sputum Al-Braha 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1701 570 JABETH000000000

SUH-14 IC5 2016 urine Soba 128 ≥8 ≥4 ≥16 ≥4 ≥0.5 ≤2 732 602 JABERZ000000000

AC-20 IC9 2018 tissue Military 128 ≥8 ≥4 ≥16 ≤2 ≥0.5 ≤2 1089 85 JABESZ000000000

SUH-2 S 2016 wound Soba 4 ≤2 ≥4 ≤8 ≤2 ≥0.5 ≤2 1208 584 JABESB000000000

Isolate number, genotype, transmission clusters, year of collection, type of specimen, hospital from which it was collected, MIC, ST (Oxford and Pasteur schemes), and
GenBank accession numbers.
IC, international clone; S, singleton, TC, transmission cluster; CSF, cerebrospinal fluid; IMP, imipenem; MEM, meropenem; GEN, gentamicin; AMK, amikacin; SXT,
trimethoprim/sulfamethoxazole; CIP, ciprofloxacin; CST, colistin.
Some isolates have two different STs in the Oxford scheme due to two gdhB alleles detected, we give only the first one.
SUH-29 was not part of a transmission cluster.
AC-36 contained a novel gpi allele (assigned number 388), and subsequently a novel ST was assigned: ST-2270 in the Oxford MLST scheme.

RESULTS

Of the 71 isolates initially collected, a total of 42 isolates
were confirmed as A. baumannii by gyrB, presence of
blaOXA−51−like, and MALDI-TOF, and subsequently included in
this study. The remaining isolates were other Gram negative

organisms misidentified as A. baumannii and excluded from
the study.

Antimicrobial susceptibility results showed that all isolated
were MDR (Table 1) and that 95% of the isolates (n = 40)
were CRAb, with an MIC for imipenem ranging from 16 to
256 mg/L (Table 2). Resistome analysis revealed that blaOXA−23

Frontiers in Microbiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 628736

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-12-628736

February
22,2021

Tim
e:19:20

#
4

A
l-H

assan
etal.

A
cinetobacter

baum
anniiFrom

S
udan

TABLE 2 | Resistome data for all isolates.
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AC-2 D D D D D D D D D D

AC-20 D D D D D D D

AC-23 D D D D D D D D D D D

AC-26 D D D D D D D D

AC-27 D D D D D D D D
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AC-33 D D D D D D D D D
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AC-36 D D D D D D
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was the most prevalent carbapenemase, present in 39 isolates
(92%), with three isolates co-harboring blaOXA−58 (Table 2).
Other β-lactamases detected included NDM-1 (n = 10), GES-11
(n = 2), CTX-M-15 (n = 1), OXA-1 (n = 1), TEM-1D (n = 30)
and TEM-199 (n = 1). Multiple aminoglycoside modifying
enzymes were identified: armA, aadA1, aad-B-like, aac(3)-Ia-
like, aph(3′)-VIa-like, aph(3′)-Ia, aph(6)-Id, aph(3′′)-Ib, aph(3′)-
Ic, strA, strB, and aac(6′)-Ib-like. Genes contributing to macrolide
resistance mphE and msrE were present in 33 isolates, some
of which co-localized in a gene cassette with aminoglycoside
resistance genes. Twenty-five isolates possessed tet(A), tet(B) or
tet(39) contributing to tetracycline and erythromycin resistance,
found on the same contigs as aminoglycoside modifying
enzymes. All isolates had the chromosomally encoded ADC
cephalosporinase.

The isolates belonged to seven distinct STs according to
the Pasteur scheme: ST1, ST2, ST85, ST570, ST584, ST600,
ST602, and ST632, which belonged to IC1, IC2, IC5, IC9, and
a singleton. Table 1 lists the STs identified in both the Pasteur
and Oxford schemes. OXA-66, OXA-69, OXA-91, OXA-94, and
OXA-51 were the intrinsic OXA-51-like enzymes identified in the
study (Table 2).

Molecular epidemiology by cgMLST confirmed that IC2 with
the intrinsic OXA-66 and acquired OXA-23 was the major clonal
lineage found across the four hospitals in Khartoum (n = 37,
88%). As seen in Figure 1, IC2 is sub-divided into 4 STs (ST-2,
−570, −600, and −632) separated by 5–431 allelic differences.
Within IC2, we found evidence of seven transmission clusters
(TC) (defined at ≤10 allelic differences between isolates) one of
which included two Pasteur STs (ST-632 and ST-2), including two
inter-hospital transmissions (Figure 1). The largest transmission
cluster (TC-1, n = 20) comprises two Pasteur STs: ST-2 and ST-
632 (single-locus variants at the rpoB allele), and two Oxford STs:
ST-195 and ST-208 (single locus variants at the gpi allele).

Two isolates belonging to IC1 (ST-1) and harboring OXA-
69 were from two different hospitals (Soba and the Military
Hospital), separated by >200 allelic differences, and with
distinct resistomes. The two isolates shared the presence of
aminoglycoside modifying enzymes aadA1 and aac(3)-Ia, and
sul1. Isolate SUH-4 was carbapenem resistant, and harbored
OXA-23, NDM-1, and additional aminoglycoside modifying
enzymes aadB-like, aph(3′)VIa, aph(3′)Ic, strA, strB, and dfrA1
contributing to trimethoprim resistance. Isolate AC-36, on the
other hand, was carbapenem susceptible.

The remaining isolates SUH-14 (OXA-91, ST-602) and AC-20
(OXA-94, ST-85) belonged to IC5 and IC-9, respectively, while
SUH-2 (OXA-98, ST-584) was a singleton not belonging to an IC.

These data also gave an indication of the local inter-hospital
transmissions. Soba University Hospital had a large diversity of
isolates belonging to IC1, IC2, IC5 and the singleton ST-584. As
seen in Figure 1, the majority of these isolates were part of a
large transmission cluster (TC-1) that included an isolate from
the Ibrahim Malik hospital, as well as having three other smaller
transmission clusters (TC-4, TC-5, and TC-6), of which TC-4
comprised three identical isolates, two of which were from the
Ibrahim Malik hospital. Isolates from the other two hospitals,
Al-Baraha and the Military Hospital, in this study were part
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FIGURE 1 | Ridom SeqSphere+ minimum spanning tree (MST) for 42 samples based on 2,390 alleles. Isolates grouped by color indicating the different STs (Pasteur
scheme). Eight different STs were identified, belonging to IC1, IC2, IC5, IC9, and a singleton. Numbers between the nodes indicate the number of allelic differences.
Shaded nodes represent transmission clusters (TC), and are numbered TC1-7.

of transmission clusters TC-2, TC-3, and TC-7, but with no
inter-hospital spread.

With regards to carbapenem-resistance, all but three isolates
possessed blaOXA−23 which was the sole carbapenemase in 26
isolates. In addition to blaOXA−23, two isolates had blaGES−11,
eight blaNDM−1, two blaOXA−58, and one had both blaNDM−1
and blaOXA−58 (Table 2 and Supplementary Figure 2). One
isolate had only NDM-1. There were two carbapenem susceptible
isolates, one of which was positive for the ESBLs CTX-M-15 and
blaOXA−1. The plasticity of the isolates is demonstrated by them
being identical by cgMLST, but differing in their resistomes as for
of isolate SUH-8 differing from SUH-28 by having an additional
blaNDM−1.

Three isolates from Ibrahim Malik Hospital all fall within IC2
(ST-2) but one of which was separated from the other two by
>192 allelic differences. The Military Hospital, on the other hand,
had isolates belonging to IC1, IC2, and IC9. A single cluster
represented isolates from Al-Baraha Hospital (ST-570) belonging
to IC2 and all co-harbored OXA-23 and NDM-1.

DISCUSSION

We hereby present the molecular epidemiology of carbapenem-
resistant A. baumannii collected from patients from Khartoum,

Sudan. A total of 71 isolates from four different hospitals were
collected in 2017–2018, out of which 42 were confirmed as
A. baumannii. Routine identification in clinical microbiology
laboratories in Sudan relies primarily on phenotypic methods
in combination with simple biochemical methods, which are
not always reliable for accurate bacterial species identification,
and 29 isolates (40%) were excluded in the study due to
misidentification. Similar findings were reported in a study in
Sudan on Klebsiella pneumoniae where 40% of isolates were
misidentified (Osman et al., 2020). These data highlight an
urgent need to improve diagnostic facilities across LMICs such
as Sudan, in order to obtain accurate information of the local
burden of infections and resistance, and to select optimal
treatment options. However, restrictions in funding and capacity
pose great limitations in implementing molecular diagnosis in
clinical microbiology laboratories. Genomic data from Sudan is
scarce, despite the indicative high burden of MDR in hospitals
(Hamdan et al., 2015). One study that has performed WGS
on an A. baumannii isolate from Khartoum, identified it as
STOXF164, with OXA-91 as the intrinsic OXA-51-like enzyme
(Mohamed et al., 2019), however, the genome of this isolate
had over 2,000 allelic differences when compared to our isolates
(data not shown).

Core-genome MLST analysis revealed seven transmission
clusters, with a predominance of IC2-OXA-23 accounting
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for 88% of the isolates across Khartoum Hospitals. This is
in accordance with previously published data showing that
IC2-OXA-23 is the most successfully disseminating clone globally
(Hamidian and Nigro, 2019), however, there are regional
variation such as IC5 and IC7 being more predominant in South
and Central America (Higgins et al., 2010a). IC2 in Sudan is
composed of four sequence types (STPAS2, STPAS570, STPAS600,
and STPAS632). The IC2 isolates were further delineated by
cgMLST showing that the ST2 isolates were in some cases
more distant than to other STs. For example >190 allelic
differences are found between isolates within ST2 (SUH-10
and SUH-11), whereas SUH-3 and SUH-23 which belong to
ST2 and ST632, respectively, only have 5 allelic differences.
A recent comparison of the two MLST schemes suggested that
the Pasteur scheme was more stable than the Oxford scheme
(Gaiarsa et al., 2019); while this might be true in most cases,
these data from Sudan highlight that a reliance on only 7-
loci can lead to a false sense of strain divergence, when in
fact, isolates differ in five alleles out of a total 2,390, one
of which is the rpoB MLST allele. Furthermore, the seven
transmission clusters, included inter-hospital spread of two
clones (TC-1 and TC-4), which was not apparent from their STs.
Similarly, isolates belonging to ST1 have >200 allelic differences
between them. These findings illustrate the low resolution of
traditional 7-loci typing, particularly for local outbreak and
transmission investigations.

Although transmission clusters are clearly evident
(Figure 1), and despite the relatively conserved dissemination
of carbapenemases in the current study, there are some
differences, particularly in acquired genes such as NDM-
1. For example, SUH-28 and SUH-8 were identical by
cgMLST and both had OXA-23, but SUH-28 harbored
additional NDM-1 and OXA-58. Furthermore, NDM-1 was
present in only three of the four ST-600 isolates. Relying on
characterisation of the resistome for determining clonality can
be misleading and illustrate the genome plasticity of MDR
A. baumannii. It is therefore important that discriminatory
genomic typing methods are applied in combination with
the resistome, clinical and epidemiological data to obtain
an accurate picture of outbreaks and transmission links. As
A. baumannii is an emerging nosocomial pathogen with
extended antibiotic resistance, it’s important to note the
availability of online resources and databases offering rapid
typing and phylogenetic relatedness to use when investigating
local and global outbreaks, which is increasingly important in a
globalized community.

Three isolates (SUH-2, AC20 and AC36) did not harbor OXA-
23, but on the other hand harbored other β-lactamases: CTX-M-
15, OXA-1, and/or NDM-1. To our knowledge, this is the first
report of OXA-1 in A. baumannii. OXA-1 is commonly found in
Enterobacteriaceae, and frequently co-carried with CTX-M-15, as
also present in our data (Sugumar et al., 2014).

Our study complements previous studies on the successful
dissemination and possible endemicity of specific STs and
resistance determinants across North Africa and the Middle
East. ST-85 (IC9) is a common clone in Africa and the Middle
East as it has been reported as a major clone spreading the

NDM-1 gene in Tunisia, among Syrian refugees in Lebanon and
Turkey, in France from patients with a history of hospitalization
in Algeria, Tunisia and Egypt (Bonnin et al., 2013; Jaidane
et al., 2018; Salloum et al., 2018), and recently Spain in a
strain harboring NDM-6 (Xanthopoulou et al., 2020). ST6, a
single locus variant of ST85, has also been identified among
Lebanese patients (Rafei et al., 2014). A single isolate from
the Military Hospital was identified as ST-85 harboring OXA-
94 and NDM-1 similar to the isolates from Tunisia and
Lebanon. With Oxford MLST scheme, this isolate (AC20)
was assigned to ST-1089OXF, which has also been reported
in Egypt (Al-Hassan et al., 2019; Al-Hassan and Al-Madboly,
2020). Two isolates, SUH-14 and SUH-7, assigned to ST602
(IC5) and ST-2 (IC2), respectively, were positive for GES-
11 ESBL. GES-11 has been identified in a Belgian outbreak
and was found associated with travel to Egypt, Turkey, and
Gaza, thereby indicating a possible geographic dissemination
(Moubareck et al., 2009; Bogaerts et al., 2010). Travel and medical
tourism are among the major contributors to the acceleration
of spread of resistance globally (Ostholm-Balkhed et al., 2013;
Tatem, 2014).

CONCLUSION

Our study illustrates that CRAb IC2 A. baumannii are widely
distributed in Khartoum hospitals and are in possession of
multiple antibiotic resistance determinants. We are also able
to confirm the spread of specific clones, such as IC9 (ST-
85) globally, and across the Middle East and North Africa
region specifically. Despite advances in genomic technology,
and the relative cheap price of conducting WGS on bacterial
genomes, it remains a challenge to implement routine molecular
typing methods in Sudan, particularly due to the need of
advanced technology and expertise. It is, however, essential
to support local efforts to obtain epidemiological data on
the burden of resistance in major hospital-acquired infections
such as those caused by A. baumannii. For local outbreak
investigations, molecular epidemiology must be combined with
patient clinical and demographic data in order to track
transmission and resistance.
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