
Journal Pre-proof

Characterising the intensity of insecticide resistance: A novel framework for analysis
of intensity bioassay data

Mara D. Kont, Ben Lambert, Antoine Sanou, Jessica Williams, Hilary Ranson,
Geraldine M. Foster, Rosemary Lees, Thomas S. Churcher

PII: S2667-114X(23)00013-4

DOI: https://doi.org/10.1016/j.crpvbd.2023.100125

Reference: CRPVBD 100125

To appear in: Current Research in Parasitology and Vector-Borne Diseases

Received Date: 19 April 2023

Revised Date: 9 June 2023

Accepted Date: 11 June 2023

Please cite this article as: Kont, M.D., Lambert, B., Sanou, A., Williams, J., Ranson, H., Foster, G.M.,
Lees, R., Churcher, T.S., Characterising the intensity of insecticide resistance: A novel framework
for analysis of intensity bioassay data, Current Research in Parasitology and Vector-Borne Diseases
(2023), doi: https://doi.org/10.1016/j.crpvbd.2023.100125.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.crpvbd.2023.100125
https://doi.org/10.1016/j.crpvbd.2023.100125


CRediT authorship contribution statement  

 

Mara D. Kont: Conceptualization, Methodology, Software, Formal Analysis, 

Investigation, Resources, Writing - original draft, Writing - review & editing, Funding 

acquisition. Ben Lambert: Supervision, Conceptualization, Methodology, Writing - review 

& editing. Thomas S. Churcher: Supervision, Conceptualization, Methodology, Writing - 

review & editing, Funding acquisition. Antoine Sanou: Resources, Writing - review & 

editing. Jessica Williams: Resources, Writing - review & editing. Hilary Ranson: 

Resources, Writing - review & editing. Geraldine M. Foster: Writing - review & editing. 

Rosemary Lees: Resources, Writing - review & editing. All authors read and approved the 

final manuscript. 

 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



1 
 

Characterising the intensity of insecticide resistance: A novel framework for 

analysis of intensity bioassay data 

 

Mara D. Kont a*, Ben Lambert b, Antoine Sanou c, Jessica Williams d, Hilary Ranson d, Geraldine 

M. Foster d, Rosemary Lees d, Thomas S. Churcher a 

 

a MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease 

Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK. 

b Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QJ, UK. 

c Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso. 

d Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA UK. 

 

*Corresponding author.  

E-mail address: mara.kont17@imperial.ac.uk, ORCiD ID: 0000-0002-6240-1534 

 

 

ABSTRACT 

Insecticide resistance is a growing problem that risks harming the progress made by vector 

control tools in reducing the malaria burden globally. New methods for quantifying the extent of 

resistance in wild populations are urgently needed to guide deployment of interventions to 

improve disease control. Intensity bioassays measure mosquito mortality at a range of insecticide 

doses and characterise phenotypic resistance in regions where resistance is already detected. 

These data are increasingly being collected but tend to exhibit high measurement error and there 

is a lack of formal guidelines on how they should be analysed or compared. This paper 

introduces a novel Bayesian framework for analysing intensity bioassay data, which uses a 

flexible statistical model able to capture a wide variety of relationships between mortality and 

insecticide dose. By accounting for background mortality of mosquitoes, our approach minimises 

the impact of this source of measurement noise resulting in more precise quantification of 

resistance. It outputs a range of metrics for describing the intensity and variability in resistance 

within the sample and quantifies the level of measurement error in the assay. The functionality is 

illustrated with data from laboratory-reared mosquitoes to show how the lethal dose varies within 

and between different strains. The framework can also be used to formally test hypotheses by 

explicitly considering the high heterogeneity seen in these types of data in field samples. Here 

we show that the intensity of resistance (as measured by the median lethal dose (LC50) of 

Jo
urn

al 
Pre-

pro
of

mailto:mara.kont17@imperial.ac.uk


2 
 

insecticide) increases over 7 years in mosquitoes from one village in Burkina Faso but remains 

constant in another. This work showcases the benefits of statistically rigorous analysis of 

insecticide bioassay data and highlights the additional information available from this and other 

dose-response data. 

Keywords: Insecticide resistance; Phenotypic resistance monitoring; Bayesian dose-response 

modelling; Temporal analysis 

 

 

1. Introduction 

 

In the fight against malaria, vector control tools have been the most impactful and cost-

efficient interventions deployed. Insecticide-treated nets (ITNs) and indoor residual spraying 

(IRS) are estimated to have contributed to a decrease of 517 million clinical malaria cases 

between 2000 and 2015 (Bhatt et al., 2015). However, due to continued selection pressure 

imposed by the use of insecticides in both public health and agriculture, insecticide resistance in 

disease vectors has grown and spread (WHO, 2021). At this time, resistance to all insecticides 

currently in use has been reported in various Anopheles vectors across the globe (WHO, 2019; 

Zoh et al., 2021). Whilst operational failure due to insecticide resistance has been demonstrated 

in the agricultural sector (Kranthi, 2005; Alyokhin et al., 2015), understanding this relationship 

at the public health level has been more complex. Early detection of potential sub-optimal 

responses to control tools is essential for good insecticide resistance management, but there 

remains debate as to whether resistance to pyrethroid insecticides used on ITNs will have a 

significant operational impact in the control of malaria (Thomas & Read, 2016; Kleinschmidt et 

al., 2018; Lindsay et al., 2021; WHO, 2022). A better characterisation of resistance is needed 

before epidemiological impacts can be explored, and before it is potentially too late, to mitigate 

its public health impact. 

The processes governing insecticide resistance in malaria vectors are still not fully 

understood, with new mechanisms continuously being discovered (Ingham et al., 2020). A 

variety of genetic markers have been identified which predict varying degrees of resistance to 

pyrethroids (Ingham et al., 2018; Weetman et al., 2018; Adolfi et al., 2019; Enayati et al., 2020; 

Black et al., 2021). New mutations are still being linked with resistance (Quiñones et al., 2015; 

Ingham et al., 2018) and other, more nuanced, mechanisms, such as cuticular changes in 

mosquitoes, are still being identified (Githeko et al., 1996; Sokhna et al., 2013; Ingham et al., 

2020; Lissenden et al., 2021; Sanou et al., 2021). Whilst understanding the different mechanisms 

at play in resistant mosquitoes is vital in combatting resistance, monitoring phenotypic 
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implications of this resistance is currently most useful from a programmatic perspective (WHO, 

2022). Discriminating dose bioassays (DDBs, also known as susceptibility assays) are a quick 

and cheap method and are widely used across the world (WHO, 2016). This assay involves 

exposing mosquitoes captured in the field as adults or larvae, then reared to adulthood in the 

laboratory, to a defined concentration of insecticide for a set amount of time and recording 

mosquito mortality after 24 to 72 hours (WHO, 2016, 2022). This concentration should be able 

to discriminate between susceptible and resistant mosquitoes: if less than 98% of the mosquitoes 

tested in the assay die, that sample is considered resistant (WHO, 2016). However, these assays 

lack sensitivity, as the resistant alleles would need to be well established to be observed 

phenotypically (Kranthi, 2005; Riveron et al., 2018), but also as they fail to differentiate between 

mosquito populations with moderate and high intensity resistance. Both may survive the 

discriminatory dose but may not be killed by the doses seen on ITNs and IRS. DDBs are also 

prone to measurement error, partly because of the highly variable nature of entomological 

samples which are affected by differences in the environment, such as temperature, humidity, 

time of day or larval breeding sites (Spillings et al., 2008; Glunt et al., 2011; Jones et al., 2012; 

Oliver & Brooke, 2014; Glunt et al., 2018). Furthermore, spatial distribution of sampling (WHO, 

2016) and the concentration set as ‘discriminating’ will also strongly determine whether 

resistance is detected (Halliday & Burnhaw, 1990; WHO, 2012; Lissenden et al., 2021). Whilst 

DDBs are good at identifying the presence of resistance and are highly scalable, they do not 

inform on the magnitude of the resistance nor necessarily indicate its public health impact 

(Lipnick et al., 1995; Venter et al., 2017). With malaria vectors in most countries in Africa 

exhibiting phenotypic resistance to pyrethroids, the single concentration used in DDBs, which is 

substantially lower than those used in vector control products (Bagi et al., 2015), may not be 

informative from a resistance management standpoint if there is a lack of alternative insecticides. 

Nevertheless, it is likely that the epidemiological benefit of different ITNs or IRS will vary 

according to the level of insecticide resistance (Sherrard-Smith et al., 2022), so there is a need 

for more sensitive measures of resistance to support the deployment of vector control or other 

anti-malarial interventions. 

To better understand the magnitude of insecticide resistance in disease vectors, intensity 

bioassays (IBs, also referred to as dose-response bioassays) were recommended for use by the 

World Health Organization (WHO) in 2016 (WHO, 2016). These assays build on DDBs by 

adding further replicates at different (higher) insecticide concentrations using mosquitoes from 

the same sampling population (Bagi et al., 2015). Based on the percentage of mosquitoes dying 

at each concentration (i.e. 1, 5 and 10 the discriminating dose), the WHO will then classify 

the sample as having low, moderate or high resistance, respectively (WHO, 2016). Beyond 
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quantifying the intensity of resistance, combining the replicate data across different 

concentrations in IBs can yield more precise estimates compared to single DDBs, as metrics can 

be estimated from the dose-response relationship rather than mortality at a set dose (WHO, 2016; 

Burgess et al., 2020). How best to analyse IB data in a public health context, and what their 

results mean practically for operational use is still uncertain (WHO, 2022). Fitting statistical 

models to results from multiple assays allows the calculation of the lethal concentration of 

insecticide that kills 50% of a sample population (LC50). Different statistical techniques have 

been used to estimate LC50 (Burgess et al., 2020); however, it is unclear whether they can cope 

with the high variability and lack of replicates typically seen in mosquito surveillance data, are 

flexible enough to capture subtle differences between mosquito populations, or properly account 

for different levels of background mortality. This background mortality is measured in 

mosquitoes not exposed to insecticide, and generally, if mortality is greater than 5% then DDBs 

and IBs mortality estimates should be adjusted for using the Abbott formula (Abbott, 1925). If 

background mortality is too high (> 20%), then assays are generally repeated (WHO, 2022). 

Though repetition should always be encouraged, removing data above an arbitrary threshold 

risks biasing results and complicating analyses. This will particularly be the case for novel 

insecticides with slower acting neurotoxic insecticides such as chlorfenapyr which are assessed 

over longer periods of time (up to 72 hours post-exposure). As their use increases, there is a need 

to refine the statistical analyses of these IBs, taking into account background mortality and 

enabling rigorous evaluation of different hypotheses, for example determining whether the 

intensity of resistance varies spatially or temporally. 

Here, a novel and comprehensive framework for analysis of IB mortality data is 

introduced. The functionality is illustrated using both laboratory- and field-generated data, 

providing a suite of different metrics to characterise insecticide resistance and introducing 

statistical methods to allow hypothesis testing. 

 

2. Methods 

 

2.1. Datasets 

 

IB mortality data were collated from laboratory and field experiments. The laboratory 

data were generated at the Liverpool School of Tropical Medicine’s Insect Testing Establishment 

(LITE) and are described in more detail in Williams et al. (2019). Briefly, five laboratory 

mosquito colonies were exposed to increasing concentrations of the pyrethroid insecticide 

permethrin via tarsal exposure by coating a glass plate with insecticide, to allow identification of 
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cuticular resistance mechanisms (Williams et al., 2019; Choo et al., 2000). Mortality was 

recorded at 24 h. One of the colonies (Kisumu) was susceptible to pyrethroids and the other four 

showed differing levels and mechanisms of pyrethroid resistance (Williams et al., 2019), with a 

summary overview of each strain provided in Table 1. 

From the experiments, 91 individual mortality datapoints across the five mosquito strains 

were used for analysis. 

Field data were collected as part of an insecticide resistance monitoring programme in 

two locations of south-west Burkina Faso, approximately 35 km away from one another: 

Tengrela and Tiefora (Sanou et al., 2021). Larvae were collected during the rainy season 

between May and November and reared to adulthood before being exposed to different doses of 

deltamethrin using the standard WHO tube bioassay (WHO, 2016; Sanou et al., 2021). In total, 

641 individual mortality data points were obtained from 67 and 78 intensity bioassays across 

seven and six years in Tengrela and Tiefora, respectively. 

 

2.2. The framework: Functional forms 

 

2.2.1. Base model 

A binomial model using a five-parameter logistic function was developed to characterise 

and understand the dose-response relationship arising from intensity dose bioassays. The counts 

of dead mosquitoes, yi, following exposure to insecticide or control (i.e. no insecticide) were 

assumed to be samples from a binomial distribution: 

 𝑦𝑖 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝑝𝑖), (1) 

where 𝑛𝑖 is the number of mosquitoes tested in assay i, and 0 ≤ 𝑝𝑖 ≤ 1 represents the mean 

proportion of mosquitoes dying, as described by the following functional form: 

 𝑝𝑖 = 𝐷 + 
𝐴 − 𝐷

[1 + 𝑒𝐵∙(ln(√𝑥𝑖)−𝐶)]𝐸
. (2) 

 

The parameters used in this logistic function are detailed in Table 2, with their effect 

shown in Supplementary file 1: Figure S1, and xi ≥ 0 represents the insecticide concentration in 

assay i. The square root of insecticide concentrations x was used when fitting the models to 

mitigate the impact of doubling concentrations along the mortality gradient, to normalise the 

concentration range. Parameters A-C and E were fit in a Bayesian framework, and the priors 

were assigned (Table 2) to allow a wide variety of possible dose-response relationships (see the 

prior predictive sets in Supplementary file 1: Figure S2). Parameter D (Table 2) was fixed at 1 

based on the assumption that mosquito mortality reaches 100% when exposed to sufficient 
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quantity of the insecticide. Whilst this assumption may not hold in all situations, we included it 

here to be able to estimate concentration values beyond the data points if no values for 100% 

mortality were present in the data.  

 

2.2.2. Temporal model 

The base model (Equation 2) can be extended to explore the association of mortality with 

covariates of interest. Here we investigate whether resistance has changed over time by allowing 

the resistance patterns to shift and/or warp according to the year of data collection through a set 

of three models allowing increasingly complex temporal variation in resistance: 

(i) Linear time model: we allow shifts in the location of the steepest part of the dose-

response curve (which generally determines the LC50) by allowing the C in Equation 2 to be a 

continuous and linear function of time t: 

 𝑝𝑖
𝑙𝑖𝑛 = 𝐷 + 

𝐴 − 𝐷

[1 + 𝑒𝐵∙(ln(√𝑥𝑖)−(𝐹+𝐺∗𝑡𝑖))]𝐸
 (3.1) 

 

(ii) Individual time model: we allow C to change freely by year:  

 𝑝𝑖
𝑖𝑛𝑑 = 𝐷 +  

𝐴 − 𝐷

[1 + 𝑒𝐵∙(ln(√𝑥𝑖)−𝐶𝑡𝑖
)]𝐸

 (3.2) 

 

(iii) Base time model: we allow all the parameters of Equation 2 to have unique values by 

year (effectively, we fit Equation 2 to each year independently): 

 𝑝𝑖
𝑏𝑎𝑠𝑒 (𝑡𝑖𝑚𝑒)

= 𝐷𝑡𝑖
+  

𝐴𝑡𝑖
−  𝐷𝑡𝑖

[1 + 𝑒𝐵𝑡𝑖
∙(ln(√𝑥𝑖)−𝐶𝑡𝑖

)]𝐸𝑡𝑖

 (3.3) 

 

The priors used for the parameters listed in Equations 3.1–3.3 are listed in Table 2. 

 

2.3. The framework: Hypotheses and fitting process 

 

The laboratory and field datasets were fitted separately. For laboratory data, we explored 

whether there was a difference in the dose-response curves at the strain level by fitting the base 

model (Equation 2) to all laboratory data together (no strain difference model) and to each of the 

five strains individually (strain difference model). The two models are compared by approximate 

leave-one-out cross-validation (LOO-CV) (Vehtari et al., 2017; Lambert, 2018) using the R 

package ‘loo’ (Vehtari et al., 2023). This method uses the within sample data to estimate out-of-

sample predictive power (where a lower value indicates that the model estimates are close to the 
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true distribution) and is generally recommended in model comparison for Bayesian analysis 

(Vehtari et al., 2017). The model with the lowest generic (expected) log-predictive density (elpd, 

generated from the LOO-CV) is assumed to be the best fitting. A P-value to determine whether 

the models are statistically significantly different is obtained from the Z-score of the difference 

(Vehtari et al., 2017). 

For field data, we tested whether there is a change in resistance over time in each of the 

two villages separately. Data from each location were fit to a fixed resistance model (i.e. the base 

model is fit to data from all years from a given village) and the three models outlined in Section 

2.2.2, which each allow temporal variation in resistance (Equations 3.1–3.3). The best-fitting 

model is selected by LOO-CV, as described above. 

The models were written and fitted via Markov chain Monte Carlo (MCMC) using Stan 

(Stan Development Team, 2019) through its R interface, rstan (Stan Development Team, 2021) 

in R v4.2.1 (Rstudio Team, 2020). An example model code is freely available on GitHub. All 

models were fitted using 4 Markov Chains for 5000 or 10,000 iterations (dependent on the time 

taken for the Markov chains to converge) with a 50% warm-up period. Convergence was 

assessed by �̂� < 1.01 (Vehtari et al., 2021). Posterior predictive checks were conducted by 

sampling from the posterior predictive distribution to generate dose-response curves and evaluate 

residuals at each concentration (Gabry et al., 2019). Nested models are compared in order of 

complexity (as defined by the number of parameters) and more complex models are only 

selected if they demonstrate a significant improvement in model fit. 

Model fit and variation were assessed with the R2 and root mean square error (RMSE) 

and model residuals were evaluated at each concentration. 

 

2.4. Determining useful summaries of resistance 

 

The median lethal concentration (LC50) indicates the concentration of an insecticide at 

which 50% of the mosquitoes tested die (without background mortality), with a higher LC50 

indicating a high intensity of resistance to that insecticide. It can be calculated by rearranging 

Equations 2 or 3 to obtain the dose x at which pi = 0.5 (i.e. 50% of the mosquitoes die) 

(Supplementary file 1: Equations S3). An estimate of LC50 was generated for each MCMC 

iteration of the model parameters. From this set of estimates, the median and the 2.5th and 97.5th 

quantiles were used to provide the point and 95% credible interval (CI) estimates, respectively. 

We compared pairs of LC50 values by computing the probability that their posterior distributions 

overlapped (i.e. P[LC50(1) > LC50(2)]) by randomly sampling LC50 values from each member of 

the pairs. 
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Estimates of lethal concentrations were calculated for other levels of mortality: LC10
 and 

LC90 (Fig. 1A). These estimates were used to measure the variability in insecticide concentration 

needed to kill mosquitoes within sampled populations, excluding the extreme tails of the 

mortality range as these will be estimated with less certainty (Halliday & Burnhaw, 1990). 

The underlying probability distribution, representing the probability distribution of the 

lethal concentrations of the insecticides (Fig. 1B), was calculated by inverse transform sampling 

(Lambert, 2018). 

The variability of the models was characterised by computing the mean absolute error: 

the absolute difference between the raw mortality data points to the fitted curve. Here, we 

estimate variability for each iteration of the model over the range of concentrations present in the 

bioassay using:  

 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑗 =  
∑  |𝑦𝑖 − 𝑦′𝑖,𝑗|𝑛

𝑖=1

𝑛
 (4) 

 

where y is the actual data point value, y' the simulated data point value (for each model iteration 

j), and n is the number of raw data points used to estimate the variability (each data point 

belonging to index i) (Fig. 1C). A summary estimate is provided for each model by taking the 

median and 2.5–97.5% quantiles of errors across all iterations j (Fig. 1D). Here, high values 

indicate that the observed data are different to the simulated data. The estimate is interpreted as 

the percent variability in mortality from the best fit line. 

 

3. Results 

 

3.1. Laboratory data 

 

The strain difference model fit to each of the five laboratory strains individually was able 

to better explain the variation in mortality (R2 = 0.87-1.0, RMSE = 1–10% across the five strains, 

Supplementary file 1: Figure S3A) compared to the no strain difference model which pooled all 

data and estimated a single set of parameters across all strains (R2 = 0.63, RMSE = 24%, data not 

shown). Model comparison concluded that the strain difference model fit the data better (using 

LOO-CV, P < 0.001).  

When looking at individual dose-response curves from the strain difference model (Fig. 

2A), a clear difference between the susceptible strain (Kisumu) and the four resistant strains is 

evident. Within the resistant strains, there was considerable variation in the shapes of the dose-

response curves, resulting in different mortality densities (Fig. 2B). As expected, the susceptible 
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strain had a substantially lower LC50 (4.9 × 10-5% permethrin; 2.5–97.5% posterior quantiles, 

henceforth “95% CI”: 3.4 × 10-5–6.6×10-5) compared to the resistant strains, which had LC50 

values ~1–2 orders of magnitude higher (range: 1.3 × 10-3% permethrin for FUMOZ-R to 4.8 × 

10-3% permethrin for VK7 2014; Table 3). For all resistant strains, we observe a higher LC50 

estimate compared to the susceptible strain, with P[𝐿𝐶50
𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 > 𝐿𝐶50

𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒
] > 4999/5000 

when random sampling across the posterior distributions. The VK7 2014 and Tiassalé 13 strains 

both exhibited higher intensities of resistance than either the Banfora or FUMOZ-R strains, with 

FUMOZ-R being distinctly less resistant than both VK7 2014 and Tiassalé 13 based on their 

LC50 values (Table 3). Examining the concentrations at which mosquitoes die (Fig. 2B), the 

aforementioned trends are clear. Yet the Tiassalé 13 had a much greater range of concentrations 

where mosquitoes typically died than the other strains (reflected in a larger difference in LC10 

and LC90 values for that strain; Table 3). The model for VK7 2014 had the greatest variability 

(Fig. 2C), with the other four strains having considerably lower variability. But, overall, the fit of 

the models to the data was generally reasonable in all cases (Supplementary file 1: Figure S3). 

Background mortality is generally relatively low, but not negligible: all bar one strain had 

estimates of background mortality below 5%, except for strain VK7 2014 for which it was 9% 

(Table 3). These results indicate the importance of accounting for background mortality when 

fitting IB data. 

 

3.2. Field data 

 

We fitted the field resistance data from Tengrela and Tiefora using a model which 

assumed a fixed dose-response relationship across all years of data collection (fixed resistance 

model, Fig. 3A) and a series of three models which allowed temporal variation in resistance 

profiles at increasing levels of flexibility (resistance change models, Fig. 3B-D). In Tengrela, 

there was evidence of temporal variation in resistance (LOO-CV, P < 0.01 for all three temporal 

resistance change models versus the fixed resistance model), but not in Tiefora (Supplementary 

file 1: Table S1). 

In Tengrela, there was a striking shift towards resistance profiles embodying substantially 

higher levels of resistance across a range of concentrations (Fig. 3B-D). For the base time model, 

there was a 2.8-fold increase in LC50 from 2016 to 2021 (Supplementary file 1: Table S2.3). For 

Tiefora, the change in the resistance profile over time was less uniform (with P[𝐿𝐶50
2021)

>

𝐿𝐶50
2017)

] = 3582/10,000 = 0.36 obtained from random sampling for the base time model), and, if 
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anything, the trends appear to be towards lower resistance in later years (P[𝐿𝐶50
2021)

> 𝐿𝐶50
2017)

] < 

2/5000 for the individual and linear time models) (Supplementary file 1: Tables S2).  

When fitting the base model across all years, Tengrela displays higher LC50 than Tiefora 

with an LC50 of 5 the discriminating dose (DC) of deltamethrin (i.e. 0.25% deltamethrin, 95% 

CIs: 0.24–0.27 or 4.8–5.4 × DC) in Tengrela compared to 3.4 the discriminating dose (0.17%, 

95% CIs: 0.15–0.20 or 3–4 × DC) in Tiefora (P[𝐿𝐶50
𝑇𝑒𝑛𝑔𝑟𝑒𝑙𝑎

> 𝐿𝐶50
𝑇𝑖𝑒𝑓𝑜𝑟𝑎

] = 1). This indicates 

that over the period, mosquitoes in Tiefora are, on average, more susceptible to deltamethrin than 

Tengrela. This is further shown when looking at the last year data, where mosquitoes typically 

die at lower deltamethrin concentrations in Tiefora than Tengrela (Fig. 3B). However, there was 

considerable heterogeneity in the lethal concentrations in both locations for the mosquitoes 

surveyed (right-hand column in Fig. 3), possibly indicating large population-level heterogeneity 

in the level of resistance across specimens or temporal variations in species composition. 

Although there was considerable overlap in the distributions quantifying the lethal dose, in 2021, 

the samples were more resistant in Tengrela than Tiefora (Fig. 3A-D, right-hand density plots). 

The fit of the models to the field data were notably worse than for the laboratory data 

(Supplementary file 1: Figures S4.1-S4.4 compared to Figure S3 for the laboratory model 

assessment), as expected given the inherent variation in both experimental conditions and in the 

wild mosquito populations. The model shows reasonable and similar predictive accuracy in both 

Tengrela and Tiefora and residuals are balanced across the concentration range in both locations 

(Supplementary file 1: Figures S4).  

Generally, a slightly higher background mortality rate was estimated in Tiefora (around 

1.6% across all models) than Tengrela (mean 1%; Supplementary file 1: Table S2). 

 

4. Discussion 

 

Here, we introduce a novel Bayesian framework for analysis of intensity bioassay data 

which can be used to quantify insecticide resistance in malaria vectors. Using this approach, we 

generated a series of quantitative measures of resistance for laboratory strains with well-studied 

resistance profiles and for field-derived specimens. These measures included estimates of the 

variation in lethal doses across surveyed mosquitoes, which may represent heterogeneity in the 

resistance level in the population. Our method is flexible and able to straightforwardly 

incorporate observation- or study-level covariates, and here we showcase this by estimating the 

changing shape of resistance profiles in two high resistance locations in Burkina Faso. Our 
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framework could further be used to quantify insecticide resistance in other mosquito species or 

insects. 

In toxicological or pharmacological studies, metrics such as the LC50 or the slope 

gradient are conventionally reported and have clear, defined meanings. Within the context of 

phenotypic resistance monitoring for public health, what these metrics represent 

epidemiologically is unclear. The LC50 represents the point of the curve at which the amount of 

relative error in determining the lethal concentration is minimised in comparison to other points 

along the curve (Trevan, 1927, Burgess et al., 2020). Furthermore, this value was shown here to 

clearly distinguish between susceptible and resistant mosquito strains within the range of 

observed data (Table 3), as well as show increases in the magnitude of resistance 

(Supplementary file 1: Tables S2). Different LC values could be selected if relevant in a public 

health context by rearranging the model to show, for example, the percentage of mosquitoes 

which die following exposure to the concentration of insecticide bioavailable on insecticide 

treated nets (Supplementary file 1: Equations S3). Though this may be informative, care should 

be taken to not overly interpret the results as many parameters, for example exposure time in 

bioassays and free-flying mosquitoes, will be different. In a field context, some intensity 

bioassays never reach 100% mortality, in which case the LC50 is also a more reliable metric of 

comparison than higher LCs and this metric is easier to obtain with smaller test subjects (Trevan, 

1927). However, it is worth noting that the LC50 is not relatable to either the current 

discriminating dose for different insecticides or the concentration used on different vector 

control tools, so it would rather be of use as a measure of resistance intensity over only reporting 

its prevalence (Dennehy et al., 1983; Roush & Miller, 1986; Lipnick et al., 1995; Kranthi, 2005; 

White et al., 2011). 

The gradient of the dose-response curve is likely to be informative, with a flatter slope 

being indicative of more heterogeneity in resistance within a population (Trevan, 1927). The 

parameter value itself might not be intuitive in a field context, so here we present new ways of 

expressing this population heterogeneity, including the probability density of the lethal dose or 

the LC10-LC90 range. In the genetically defined inbred colony mosquito populations compared 

here, resistant strains exhibited slightly more heterogeneity than the susceptible strain (Fig. 2B). 

This may result from the maintenance of insecticide selection pressure over time since their 

colonisation. Field mosquitoes exhibited much higher heterogeneity overall than laboratory 

stains (Fig. 3B), which is to be expected with the more complex genetic background of field 

samples (Halliday & Burnhaw, 1990) and species composition variation throughout the 

collection season. The heterogeneity observed in the field also appeared to increase as resistance 

increases (Supplementary file 1: Tables S2). 
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In the field data, comparing the temporal models to the base model for each field location 

(i.e. fixed resistance model), all time models (i.e. resistance change models) fitted the data 

significantly better in Tengrela (P < 0.01) but not Tiefora (Supplementary file 1: Table S1). This 

provides the first evidence that we are aware of for a systematic change in the intensity of 

resistance in a wild mosquito population over time. Interestingly, this change over time was 

observed in Tengrela but not in Tiefora, despite being relatively similar geographically and both 

villages having high use of pyrethroid ITNs. However, it is worth noting that collections from 

Tengrela came from a single large rice field, whereas in Tiefora they came from multiple 

breeding sites. Overall, we saw consistently and significantly higher LC50 estimates in Tengrela 

compared to Tiefora (Supplementary file 1: Tables S2). Though mosquitoes from Tengrela 

appear to have higher resistance, mosquitoes from Tiefora exhibited higher heterogeneity, with 

the LC10-LC90 range being on average 138 DC compared to 17.5 in Tengrela (Supplementary 

file 1: Tables S2). Though the difference in the distribution of the lethal dose seems clear 

between the two villages, care should be taken interpreting the LC10-LC90 range from Tiefora as 

a substantial proportion of mosquitoes survived the highest dose tested in this village, so LC90 

estimates had to be inferred from the shape of the chosen curve (i.e. reliant on chosen model 

priors). This highlights both the strengths of the framework, as values can be generated and 

comparisons made, but also a frailty, as these values can easily be overly interpreted. Ideally, to 

obtain a precise curve, the dose of insecticide in the IB experiments should capture a change 

from no mortality to 100% mortality, which could involve increasing (above 10 or 20 DC) or 

decreasing (below 1 DC). However, in practice this might not happen for logistical reasons, 

such as the number of mosquitoes collected. In such a situation it seems appropriate to highlight 

LC estimates beyond the range of the data to prevent misunderstanding. The exact cause of the 

higher heterogeneity observed in Tiefora is unknown, though it could be related to the collection 

methodology (high number of breeding sites, as mentioned above), different species within the 

An. gambiae (s.l.) complex, or species composition variation throughout the collection season.  

The work also shows how the accuracy of the dose-response curves can be assessed and 

should be reported. In the laboratory strains, all datapoints were generally observed very close to 

the best-fit curve, on average 4.5% away. This is compared to field data where on average points 

were 9.6% away in Tengrela and 10.6% away in Tiefora. These phenotypic assays have been 

shown to have some inherent variability, amplified by field variables such as species 

composition, mosquito weight, season or habitat (Althoff & Huijben, 2022), so an increase in 

assay variability is obviously to be expected. The quantitative estimates of goodness-of-fit 

generated here can be used as a measure of reliability in IB results, potentially flagging when 

measurement error is high and might require the assay to be repeated to generate robust results. 
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The framework outlined here can take a range of different functional forms to capture the 

relationship between mosquito mortality and insecticide concentration. Here the five-parameter 

logistic function was selected over the more common Hill function (Stepniewska et al., 2007; 

Goutelle et al., 2008; Prinz, 2010) so that background mortality could be quantified and 

accounted for. To allow for a range of different curve profiles, a five-parameter logistic function 

was chosen over a four-parameter one as it has been shown to be more appropriate for real-life 

data (Cumberland et al., 2015; Althoff & Huijben, 2022) and allows the curve to be asymmetric 

(Gottschalk & Dunn, 2005; Liao & Liu, 2009). Other work modelling IB data have also shown 

that probit models could accurately model this type of data and its variance (Althoff & Huijben, 

2022; Karunarathne et al., 2022). The main difference between these two modelling approaches 

is on the distribution of the error term: the probit model assumes normal distribution of the error 

term, whereas a logistic model assumes that it follows a logistic distribution (i.e. slightly longer 

tails). In one study comparing the two approaches, the logistic model showed a higher goodness-

of-fit (Althoff & Huijben, 2022).  

Ultimately, the best functional form to use will depend on the quality of the data and the 

exact question under investigation. To exemplify our Bayesian framework, priors were selected 

to be relatively uninformative to minimise bias and allow a wide variety of dose-response curves 

(Supplementary file 1: Figure S2). In a real-life context where data might be more sparse, more 

informative priors would likely be appropriate.  

Our framework is phenomenological in nature, since we use it to probe phenotypic 

resistance, where potentially a wide range of biological mechanisms may underpin the complex 

patterns of resistance we identified, particularly in field populations. For laboratory populations 

with known resistance mechanisms, it would be interesting to use a combination of 

experimentation and mathematical modelling to explore mechanistic explanations that underpin 

their dose-response curves. The results from these well-controlled systems could help to interpret 

field data from populations where particular resistance mechanisms are known to predominate. 

On average, the framework fitted both susceptible and resistant laboratory strains equally well 

(Supplementary file 1: Figure S3A). As a result, more variability in the model was not an 

indicator of resistance (Table 3 and Supplementary file 1: Tables S2, mortality variability 

column). Higher model variability also appears not to be linked to population heterogeneity 

(Figs. 2, 3, Table 3 and Supplementary file 1: Tables S2). The mean absolute error was the 

metric chosen to represent model variability, whereas the root mean square error was used to 

assess the model fit. Both of these metrics represent average model error prediction; however, it 

is worth noting that the former is more sensitive to error variance and the latter gives a higher 

weight to outliers. Conscious of the limitation of each summary metric, the mean absolute error 
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was used to determine the variability on account of both its interpretability and its sensitivity to 

variance. 

In settings where resistance is present, a better understanding of that resistance will allow 

appropriate programmatic decisions to be made to limit the amount of selection pressure 

imposed on malaria vectors (Halliday & Burnhaw, 1990; Kranthi, 2005; Burgess et al., 2020). 

Whilst it is not feasible to directly correlate bioassay results to field efficacy (Halliday & 

Burnhaw, 1990, Venter et al., 2017), this framework brings value in providing a quantitative 

description of the resistance which could help with the interpretation of efficacy trials on 

insecticide-based vector control. It has shown value in describing dose-response relationships to 

determine insecticide discriminating concentrations in mosquitoes (Corbel et al., 2023) and could 

be extended to other insects.  

 

5. Conclusions 

 

The framework allows the generation of a suite of new metrics describing the intensity of 

insecticide resistance. The relationship between these metrics and the effectiveness of mosquito 

control remains unclear and needs to be investigated. The DDB has proved a useful tool for 

predicting sub-optimal responses to insecticides used in malaria control, but in the future more 

nuanced and sensitive assays will be needed to guide programmatic decision making. The IB 

data have the potential to provide substantially more information than the DDB though its 

increased complexity needs adoption of more rigorous method of analysis, such as this 

framework. This framework could be extended to describe dose-relationships in other insects, to 

other insecticides or to explore specific covariates of interest. 
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Figure legends 

 

Fig. 1 Graphical description of metrics generated by the model. Simulated data are used to 

generate (A) a dose-response curve and its respective LC10, LC50 and LC90 values (where the LC 

index describes the concentration at which that percentage of the mosquitoes die); (B) the 

probability distribution of insecticide lethal concentrations, with respective LC values from plot 

A mapped to it. The probability that a mosquito dies between two concentrations is the area 

under the curve between these concentrations; (C) the variability estimates (orange values) 

computed between the raw mortality (grey dots) and the true mortality (black curve); and (D) the 
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resulting variability estimate for that bioassay. To obtain the estimate shown in D, the sum of the 

absolute distances (orange values) divided by the number of data points across all MCMC 

iterations (see Equation 4 and in this example, n = 8) generates an estimate of variability. 

 

Fig. 2 Model-derived estimates of mosquito dose-response characteristics for laboratory studies 

of permethrin. In panel A, actual (points) versus fitted (lines) dose-response relationships are 

depicted coloured according to strain; in B, the probability distribution of insecticide lethal 

concentrations is shown; and C depicts the estimated variability estimates. In A, the solid lines 

represent the posterior median dose-response relationship, and the shaded area around the line its 

95% credible intervals. In C, the 95% CIs in the variability estimates are shown as error bars 

along with the posterior median (bars). The Kisumu strain (red) is susceptible and all other four 

strains are resistant. 

 

Fig. 3 Model-derived estimates of mosquito dose-response characteristics for deltamethrin in 

field studies. The base model (Equation 2) is fit to all years in each location in A, and temporal 

models depicted in Equations 3.1–3.3 are shown in B-D, respectively. For each panel, in the first 

two graphs, the actual data (points) versus fitted dose-response relationships (lines) are depicted 

for each location, coloured by year; and in the third graph, the probability distribution of 

insecticide lethal concentrations is shown, coloured by location. In the dose-response plots, the 

solid lines represent the posterior median dose-response relationship and the shaded area around 

the line its 2.5–97.5% posterior quantiles for each location, with time model parameters F and G 

allowed to vary linearly (panel B) or independently (panel C) by year; in panel D, all parameters 

were allowed to vary. 
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Table 1 

Summary of strains and resistance levels in the laboratory dataset.  

Species Strain Insecticide resistance Mechanism of 

resistance 

Anopheles gambiae (s.s.) Kisumu Susceptible None 

An. coluzzii VK7 2014 Pyrethroids; DDT 

(organochloride); 

carbamates 

Target-site mutation 

Banfora Pyrethroids; 

organochlorides 

Target-site mutation 

Metabolic 

An. funestus (s.s.) FUMOZ-R Pyrethroids Metabolic 

An. gambiae (s.s.) (98%); An. gambiae (s.s.) - An. 

coluzzii hybrid (2%) 

Tiassalé 13 Pyrethroids; 

organochlorides; 

carbamates 

Target-site mutation 

Metabolic 

Note: The data were generated at the LITE insectaries and the details below are summarised from Williams et al. 

(2019), including possible primary mechanisms of resistance. 

 

 

Table 2 

Summarising the parameters of Equations 2-3. Notation, description, prior values and restrictions are 

reported for each parameter.  

Parameter Restrictions Function Priors 

A 0 < A < 1 Background mortality A ~ N+(0, 0.1) 

B B > 0 Slope and shape of curve B ~ N+(5, 10) 

C None C ~ N(0, 5) 

D D > 0 
Mortality (asymptote) at highest 

concentrations 

Fixed at D = 1 

E E > 0 Asymmetry of the curve  E ~ N+(7, 10) 

F None Continuous linear function of time 

(replacing parameter C) 

F ~ N(0,5) 

G None G ~ N(0,5) 

Notes: Here, parameter D is fixed at D = 1 to ensure that the curve eventually ends around 100% mortality at 

high doses. This will allow estimation of concentration values beyond the data points if no values for 100% 

mortality are present. Parameters A-C and E are fit for the base model (Equation 2), whilst parameters B, E, F 

and G are fit in the time models (Equation 3). To see a graphical representation of each parameter function, see 

Supplementary Figure S1. 
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Table 3 

Summarising the data and estimates for the laboratory experiments. For each laboratory strain, the number of raw data points (N data points) and 

mosquitoes (n mosquitoes tested) used to fit the base model is provided. Model estimates of the median lethal concentration (LC50) at the strain 

level were summarised by generating the mean across all MCMC iterations and its 95% credible intervals (CIs).  

Resistance 

status 

Strain N n  Concentrations 

tested  

(% permethrin) 

LC50 (% permethrin) Heterogeneity (% permethrin) Background 

mortality (%) 

Mortality variability (%) 

Mean 95% CI LC10  LC90  Difference Mean 95% CI Median 95% CI 

Susceptible Kisumu 6 196 0–0.0005 4.9  10-5 3.4  10-5–6.6  10-5 1.1  10-5 1.5  10-4 1.4  10-4 3 0–8 3.1 1.7–6.5 

Resistant Banfora 11 234 0–0.01 2.1  10-3 1.2  10-3–4  10-3 8.4  10-4 4.4  10-3 3.5  10-3 2 0–6 4 3.5–5.3 

FUMOZ-R 9 294 0–0.0032 1.3  10-3 1.1  10-3–1.5  10-3 5.7  10-4 2.3  10-3 1.7  10-3 2 0–6 4.4 3.8–5.8 

Tiassalé 13 8 238 0–1.97 3.9  10-3 2.5  10-3–5.9  10-3 7.4  10-4 1.5  10-2 1.4  10-2 4 0–10 2.3 0.9–5.1 

VK7 2014 8 277 0–0.05 4.8  10-3 4.0  10-3–5.9  10-3 1.7  10-3 1.1  10-2 8.9  10-3 9 0–22 8.5 7–13.5 

Notes: Mosquito population heterogeneity is investigated by examining the range of concentrations at which 10% and 90% of the mosquitoes die (mean LC10 and LC90 of all 

model iterations for each strain) and the difference between these two doses. The amount of background mortality is quantified from model estimates, with the mean of all 

model iterations for each strain and 95% credible intervals provided below. The amount of variability in mortality is quantified from the average absolute distance of the data 

points to the best fit line along the mortality axis, with the median of all model iterations for each strain and 95% credible intervals provided below. 

Abbreviations: N, number of data points; n, number of mosquitoes tested.
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Highlights 

• Modelling intensity assay dose-response better characterises insecticide resistance. 

• Bayesian model of intensity assays show temporal changes in insecticide resistance.  

• Mosquito population resistance heterogeneity can be defined from intensity assays. 
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