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With 1 figure

Abstract: Pyrethroids remain the most important class of insecticides for controlling malaria mosquitoes. Resistance to 
pyrethroids in the major African malaria vector Anopheles gambiae was detected soon after the introduction of this insecti-
cide class in the 1970s but the strength, and distribution, of this resistance has greatly accelerated in the 21st century. In this 
review we summarise the current understanding of the mechanisms underpinning this resistance, including new discoveries 
on the genetic basis of established mechanisms such as changes in the neuronal target site of pyrethroids, and latest under-
standings on less well characterized mechanisms such as insecticide sequestration. Many gaps remain in our understanding 
of the genetic pathways controlling these resistance associated genes, and for many, the causal resistance mutations remain 
elusive; this is a key obstacle in the development of informative panels of genetic markers that would aid in the monitoring 
and management of insecticide resistance in malaria vectors.
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1 Introduction

Malaria, caused by the parasite Plasmodium and transmitted 
by Anopheles mosquitoes remains one of the worlds deadli-
est diseases with over 600 000 deaths in 2020 alone (WHO 
2021). The majority of the malaria burden falls across the 
African continent, with children under 5 the most vulner-
able to this disease (WHO 2021). As the use of insecticides 
intensified in the 21st century, mainly in the form of insec-
ticide treated bednets (ITNs) and, to a lesser extent, indoor 
residual spraying (IRS), malaria cases and deaths signifi-
cantly decreased. Indeed, between the years 2000 and 2015, 
over 80% of the reductions in malaria case numbers could be 
directly attributable to these interventions (Bhatt et al. 2015). 
However, since 2015 the gains in malaria control have pla-
teaued, due at least in part to insecticide resistance in major 
malaria vectors (Churcher et al. 2016).

Until 2020 pyrethroids were the only insecticide found 
in distributed bednets. More recently new classes of ITNs, 
containing either the synergist piperonyl butoxide (PBO) 
(Staedke et al. 2020), the insect growth regulator pyriproxy-
fen (Ngufor et al. 2014) or the pyrrole insecticide chlorfena-
pyr (Bayili et al. 2017) have become available. At the time 

of writing, only the pyrethroid-PBO nets had a WHO policy 
recommendation; these nets now make up approximately 
50 % of the nets procured for use in Africa and the number 
of orders for other, dual active nets is steadily increasing 
in anticipation of a WHO policy recommendation later in 
2022. Despite the availability of these new active ingredi-
ents, all ITNs still rely on the fast-acting pyrethroids for 
the rapid knockdown that provides the personal protection 
to bed net users. Hence the rapid increase in resistance to 
pyrethroids is not just a threat to pyrethroid-only products 
but could also undermine the performance of newer classes 
of ITNs.

In addition to their importance in ITNs, pyrethroids were 
also historically widely used in IRS but since the publication 
of the Global Plan for Insecticide Resistance Management 
(WHO 2012), which strongly discouraged the use of the 
same active ingredients in ITNs and IRS, spray programmes 
have largely switched to organophosphates or carbamates 
(Tangena et al. 2020), and more recently neonicotinoids 
(Ngufor et al. 2017). Pyrethroids are also found in spatial 
repellents such as aerosols and coils (Bibbs et al. 2017) and 
are still widely used in agricultural applications; this intense 
use in endemic settings has inevitably led to the selection of 
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resistance (Churcher et al. 2016). The levels and geographi-
cal distribution of resistance in Anopheles mosquitoes has 
steadily increased since the beginning of the century, as 
reviewed in (Moyes et al. 2020) and there are increasing 
concerns about the impact this has on the efficacy of ITNs.

Understanding the mechanisms of pyrethroid resistance 
is essential for predicting patterns of cross resistance and 
making evidence-based decisions in insecticide resistance 
management, particularly in the context of dual active ingre-
dient ITNs. Insecticides used in ITNs or IRS products must 
penetrate through the insects cuticle and travel through the 
body to reach and bind to their target, which for the pyre-
throid class is a component of the nervous system, the volt-
age gated sodium channel (VGSC). Until recently, studies 
on the molecular basis of resistance focused primarily on 
two major mechanisms: mutations in the target site reduc-
ing insecticide binding, and increased rates of detoxication 
of insecticides by elevated activity of metabolic enzymes. 
The advent of lower cost, higher throughput genomic and 
transcriptomic sequencing, has unveiled additional mecha-

nisms (Fig. 1), the distribution and significance of which are 
the subject of investigation (Bayili et al. 2017; Staedke et al. 
2020; Tiono et al. 2018). This review provides an update on 
current knowledge on the mechanisms conferring pyrethroid 
resistance in Anopheles mosquitoes, focusing primarily on 
the major African malaria vector, Anopheles gambiae (a spe-
cies complex in which the most important vectors are An. 
gambiae s.s, An. coluzzii and An. arabiensis); the review 
focuses on some of the more recently validated mechanisms 
and other putative mechanisms implicated by comparative 
gene expression studies. Current understanding of the regu-
latory processes controlling expression of insecticide resis-
tance genes and pathways are briefly discussed.

2 Insecticide resistance mechanisms

2.1 Reduced penetrance-cuticular resistance
The cuticle is the first tissue insecticides need to efficiently 
penetrate to reach their target. The cuticle is structurally 

Fig. 1. Summary of insecticide resistance mechanisms in Anopheles gambiae. Left to right, top row: Target site mutations are 
single nucleotide polymorphisms in the target site of the insecticide, reducing binding affinity; Thickening of the cuticle results in 
reduced penetrance of insecticide upon tarsal contact; Metabolic breakdown of insecticide results from increased levels of detoxifica-
tion enzymes, such as cytochrome P450s and glutathione-S-transferases. Left to right, bottom row: Sequestration involves the binding 
of insecticides to reduce the amount reaching the target site; Differences in the microbiome have been identified in insecticide suscep-
tible and resistant mosquitoes, but a causal link has yet to be shown; Changes in the redox state have been observed post pyrethroid 
exposure, and activation of oxidative stress sensing pathways, such as MafS-cnc may contribute to the resistance phenotype.
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divided into different layers: the epicuticle, that is the out-
ermost part and is mainly composed of hydrocarbons and 
other waxes, and the procuticle which accounts for most of 
the cuticular mass and is rich in chitin and proteins. Changes 
in the thickness or composition of each of these layers have 
been described in different insect species and linked to resis-
tance, by lowering the insecticide penetration rate (reviewed 
in Balabanidou et al. 2018). In An. gambiae a thicker epi-
cuticle, containing 30% more hydrocarbons, was associated 
with a 50% reduction in the penetration rate of radiolabelled 
deltamethrin after exposure to insecticide impregnated 
WHO papers (Balabanidou et al. 2016). In another resis-
tant An. gambiae population, thickening of all cuticular lay-
ers was observed and associated with reduced deltamethrin 
penetration, after topical application of the insecticide on the 
mosquitoes’ legs (Yahouédo et al. 2017). Over-expression of 
cuticular proteins with chitin binding motifs has also been 
reported in several resistant Anopheles populations and 
could be linked to resistance by increasing the pro-cuticles 
thickness or changing its physicochemical properties. This 
has been shown in Cx. pipiens pallens, where reduction in 
expression of CPLCG5 by RNA interference resulted in 
a thinner cuticle with unorganized laminae, as observed 
through transmission electron microscopy, and increased 
knock-down after pyrethroid exposure (Huang et al. 2018). 
As the insect cuticle plays a critical role in the physiology of 
insects, changes in its composition or thickness could affect 
multiple traits. For example, cuticular hydrocarbons have 
been associated with protection from desiccation and patho-
gens, and act as pheromones in several insects (Howard & 
Blomquist 2005). Thus, increased levels of hydrocarbons 
could affect different aspects of the mosquitoes’ behaviour 
and physiology and impact their fitness (Chung & Carroll 
2015; Adams et al. 2021).

Although the cuticular hydrocarbon (CHC) biosyn-
thetic pathway has been described in An. gambiae and can-
didate genes have been proposed for each step (Grigoraki 
et al. 2020) (a subset of which has also been functionally 
validated to play a role in CHC biosynthesis (Balabanidou 
et al. 2016; Grigoraki et al. 2006)), the mechanisms under-
lying increased production or deposition of CHC on the 
cuticle remain largely unknown. Likewise, a causative link 
between the over-expression of specific cuticular proteins 
and cuticular resistance has not yet been established. This 
has so far impeded the identification of genetic markers for 
cuticular resistance that could be used in molecular diagnos-
tics to screen field populations. The absence of genetic mark-
ers in combination with the technically advanced methods 
required to identify cuticular modifications (Scanning and 
Transmission Electron Microscopy and GC-MS analysis) 
and the inherent plasticity of the cuticle, that is affected by 
multiple environmental, physiological and genetic factors 
(Caputo et al. 2005; Cheng et al. 2018; Polerstock et al. 
2002), makes the characterisation of this resistance mecha-
nism challenging.

2.2 Mutations on the insecticides target site
Pyrethroids target the voltage-gated sodium channel 
(VGSC), a key component of the insects’ nervous system. 
The VGSC consists of four homologous domains (DI-DIV) 
each of which has six transmembrane segments (S1–S6). 
When pyrethroids bind to the channel they stabilize its 
ion-conducting active state, thus preventing its inactiva-
tion (Bloomquist 1996). This results in the disruption of the 
nerve cells normal function and causes paralysis and eventu-
ally death (Bloomquist 1996). Mutations at the VGSC that 
reduce the binding affinity of pyrethroids confer resistance 
to this knock-down effect. The first mutations described in 
pyrethroid resistant An. gambiae were two single-base-pair 
substitutions at codon 995 (widely known as L1014F and 
L1014S, based on the Musca domestica numbering) within 
segment 6 of domain II, resulting in substitution of leucine 
with either phenylalanine or serine (Martinez-Torres et al. 
1998). These mutations are widespread in field populations 
and their frequency has reached high levels, even fixation in 
some areas (Jones et al. 2012). Molecular diagnostics have 
been developed for these classical knock-down resistance 
(kdr) mutations and are routinely used in insecticide resis-
tance monitoring programs to predict the presence of pyre-
throid and DDT resistance in field populations (Bass et al. 
2007). More recently the effect size of the L995F mutation 
was evaluated in vivo by introducing it through CRISPR 
in a fully susceptible An. gambiae genetic background 
(Grigoraki et al. 2021). When in homozygosity, the muta-
tion conferred 9-to-20-fold resistance to pyrethroids and 
> 25 fold resistance to DDT (Grigoraki et al. 2021). Fitness 
disadvantages were also observed in the genome modified 
line, including increased mortality at the larval stage and a 
reduction in fecundity and adult female longevity (Grigoraki 
et al. 2021). Thus, in the absence of additional mechanisms, 
that can compensate for these fitness costs, a reduction in the 
frequency of this mutation is expected if the selection pres-
sure from insecticides is withdrawn.

Analysis of whole genome sequencing data have 
revealed a number of additional substitutions on the VGSC, 
several of which have since been shown to be linked to 
resistance (Clarkson et al. 2021). Some of these mutations 
occur almost exclusively on haplotypes carrying the known 
L995F kdr allele. Thus, these mutations could provide a fur-
ther selective advantage, by either enhancing the protective 
effect of L995F, as has been shown for mutation N1570Y 
(Jones et al. 2012), or compensating for its fitness costs. 
Other substitutions including the paired I1527T and V402L 
(I1532T and V410L, based on the M. domestica number-
ing) substitutions, which show signs of positive selection, 
have not been found on the same haplotype as the classi-
cal L995F and likely confer knock down resistance on their 
own. Indeed, mutation V402L was functionally validated 
by generating a CRISPR/Cas9 genome modified An. gam-
biae strain carrying this mutation in a fully insecticide sus-
ceptible genetic background (Williams et al. 2022a). The 
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mutation was shown to confer 2-to-7-fold resistance to 
pyrethroids and 4-fold resistance to DDT (Williams et al. 
2022a). This mutation has been identified in other arthropod 
species (Dong et al. 2014; Haddi et al. 2017) and has been 
shown, in the Xenopus oocyte system, to reduce sensitivity 
of sodium channels to type I and II pyrethroids (Dong et al. 
2014). This highlights that absence of mutations at position 
L995 do not necessarily mean absence of target site resis-
tance in a population.

The use of CRISPR to generate genome modified lines 
that carry specific vgsc mutations on a defined genetic back-
ground gives us the unique opportunity to experimentally 
evaluate and compare their effect on insecticide resistance 
and other traits that determine mosquitoes’ fitness. This 
methodological advancement enables us to study the VGSCs 
genetic variation, that is more complex than originally 
thought (Clarkson et al. 2021).

2.3 Detoxification genes
Comparative transcriptomic analysis of insecticide resis-
tant and susceptible An. gambiae mosquitoes, either 
through quantitative PCR, microarray or Next Generation 
Sequencing, repeatedly shows the over-expression of 
detoxification genes in resistant mosquitoes. Among these, 
cytochrome P450s are most commonly associated with pyre-
throid resistance. P450s mediate resistance by hydroxylating 
the insecticide molecules, making them less toxic and easily 
excretable (Xu et al. 2005).

Several An. gambiae P450s (recently reviewed in Vontas 
et al. 2020), including CYP6M2, CYP6P3, CYP9K1 and 
CYP6P4 have been expressed as functional recombinant 
enzymes in bacteria or insect cell lines and their ability to 
metabolise insecticides has been validated in vitro. Kinetic 
analysis has also been performed in some cases to evaluate 
their catalytic efficiency, but as pointed out by Vontas et al. 
2020 comparing values between P450s and making infer-
ences on their relative effect in vivo needs to be done with 
caution. The contribution of a detoxification enzyme in resis-
tance is likely determined by multiple factors including its 
catalytic efficiency, but also its tissue localization and levels 
of expression.

Another important characteristic of P450s in relation to 
insecticide resistance management is their plasticity. Some 
enzymes are able to metabolise insecticides from differ-
ent insecticide classes. For example, in vitro assays have 
shown that CYP6M2 and CYP6P3 are able to metabolise 
pyrethroids, but also organophosphates and pyriproxy-
fen, an insect growth regulator (Yunta et al. 2016, 2019). 
Detoxification enzymes active against a broad range of 
insecticides can cause cross-resistance, and thus reduce the 
efficiency of resistance management strategies that are based 
on applying insecticides from different classes in rotation.

The role of the An. gambiae P450s, CYP6M2 and 
CYP6P3 in insecticide resistance has been functionally 
validated in vivo. Ubiquitous over-expression of these two 

P450s, through the Gal4-UAS system, either in the model 
organism Drosophila melanogaster or directly in An. gam-
biae confers reduced susceptibility to pyrethroids (Adolfi 
et al. 2019; Edi et al. 2014). Accruing evidence on the 
importance of P450s in insecticide resistance has fuelled the 
search for compounds that can inhibit their function. Such 
compounds could be used as synergists to, at least partially, 
alleviate the problem of resistance. Indeed piperonyl butox-
ide (PBO), a chemical that inhibits mixed-function oxidases, 
has been incorporated in ITNs, which have shown increased 
efficacy (compared to pyrethroid-only treated nets) in areas 
with high levels of resistance (Gleave et al. 2017).

Elevated expression of genes from other detoxification 
gene families have also been associated with pyrethroid 
resistance, including esterases, glutathione transferases and 
ABC-transporters but these are generally found in conjunc-
tion with elevated P450 activity; these gene families may be 
important in the detoxification and/or transportation of pyre-
throid metabolites.

2.4 Sequestration
Insecticide sequestration is another mechanism by which the 
amount of insecticide reaching and binding to its target site, 
can be reduced. Recent work has shown that this resistance 
mechanism may be important and mediated by multiple 
protein families, including chemosensory proteins, odorant 
binding proteins, D7 salivary gland proteins, and hexamerins 
(Ingham et al. 2018).

2.4.1 Chemosensory proteins
Chemosensory proteins include odorant binding proteins 
(OBPs) and chemosensory proteins (CSPs). Both families 
have a diverse range of functions, including responding to 
external chemical stimuli (reviewed in Pelosi et al. 2017). 
Recently, a CSP, SAP2, has been shown to be a key gene 
involved in pyrethroid resistance in An. gambiae and An. 
coluzzii mosquitoes in West Africa (Ingham et al. 2019). 
SAP2 is up-regulated at transcript level both constitutively 
and post-pyrethroid exposure, binds with high affinity to 
pyrethroids, and perturbation of expression through up-
regulation or knockdown has significant impacts on resis-
tance. Further, SAP2 is enriched in tissues that directly 
contact insecticide-treated surfaces such as legs and mouth 
parts. Up-regulation of CSPs has been detected in multiple 
Anopheles coluzzii populations from the Sudan-Sahel region 
(Ibrahim et al. 2022) and direct links with resistance through 
transgenics (Li et al. 2021; Xu et al. 2022) and binding 
assays (Li et al. 2017; Lin et al. 2018; Xu et al. 2022) have 
been shown across multiple arthropod species.

In addition to CSPs, OBPs have been linked to pyrethroid 
resistance in An. gambiae through transcript overexpression 
across multiple resistant populations (Bonizzoni et al. 2015; 
Ibrahim et al. 2022; Ingham et al. 2018; Kefi et al. 2021; 
Messenger et al. 2021; Williams et al. 2022b). Although no 
studies show a direct link between OBPs and resistance in 
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Anopheles mosquitoes, knockdown of OBP28 in the mos-
quito Cx. quinquefasciatus leads to increased susceptibil-
ity to the pyrethroid deltamethrin (Shen et al. 2022), whilst 
binding studies have shown interactions of these proteins 
with insecticides (Liu et al. 2020; Zhang, Lan et al. 2020; 
Zhang, Xu et al. 2020; Zhang et al. 2021), indicating that this 
family warrants further study in Anopheles.

2.4.2 D7 salivary gland proteins
Overexpression of two D7 salivary gland proteins (SGPs, 
D7r4 and D7r2) was first noted in bendiocarb resistant 
mosquitoes from Uganda and molecular docking demon-
strated putative binding of this insecticide to D7r4 (Isaacs 
et al. 2018). Subsequent studies have linked D7 SGPs with 
pyrethroid resistance in An. funestus, specifically D7r4 and 
D7r3, whilst demonstrating down regulation of these tran-
scripts in sympatric An. coluzzii (Elanga-Ndille et al. 2019). 
Mining of transcriptomic data demonstrates that these 
genes are often found up-regulated in resistant compared to 
susceptible Anophelines (Ingham et al. 2018; Isaacs et al. 
2018) and recent data shows D7r4 as one of the most highly 
expressed transcripts in both malathion and pyrethroid resis-
tant An. arabiensis from Ethiopia (Messenger et al. 2021). 
Interestingly, these proteins have secondary and tertiary 
structures showing similarities to OBPs in Anophelines 
(Calvo et al. 2002), implying a putative role in sequestra-
tion. Perhaps surprisingly given the nomenclature, a recent 
study has shown increased expression of D7r2 in the legs 
of resistant mosquitoes compared to susceptible populations 
(Kefi et al. 2021) hinting at a role outside of the salivary 
gland.

2.4.3 Hexamerins and α-crystallins
Hexamerins are one of the most abundant proteins in larval 
heamolymph and were originally identified as storage pro-
teins that typically disappear after eclosion; however, some 
members of the hexamerin family play important roles in 
adult insects (Martins & Bitondi 2016; Xuguo et al. 2006). 
Alpha-crystallins are members of the small heat-shock pro-
tein family being activated in response to stress and acting 
as chaperones to protect correct protein folds (Basha et al. 
2012). Members of the hexamerin and alpha-crystallin fam-
ily are up-regulated in some pyrethroid resistant An. coluz-
zii (Ibrahim et al. 2022; Ingham et al. 2018; Williams et al. 
2022b) and perturbation of their expression through RNAi 
resulted in increased mortality post-exposure (Ingham et al. 
2018). A recent RNAseq study on five resistant colonies 
from Burkina Faso demonstrated up-regulation of these 
families across multiple species, with the upregulation of 
7 hexamerins being particularly striking in a resistant An. 
arabiensis population (Williams et al. 2022b), which was 
also seen in resistant An. arabiensis populations in Ethiopia 
(Messenger et al. 2021). Further, hexamerins have previ-
ously been linked to bti resistance in Cx. quinquefasciatus 
mosquitoes (Poopathi et al. 2014) where they are hypoth-

esised to form aggregates around the toxin (Ma et al. 2005), 
whilst heat shock proteins have been shown to have a role 
in resistance in agricultural pests (Dong et al. 2021; Li et al. 
2017; Lu et al. 2017).

As with the microarray era, the decrease in cost of RNAseq 
experiments are resulting in an invaluable bank of data 
which needs to be explored in a holistic fashion. However, 
whilst transcriptomic studies are valuable for identifying 
novel genes or gene families associated with resistance, the 
long lists of differentially expressed transcripts remain a 
hurdle for functional validation. Through literature review 
it is clear that there are a number of commonalities across 
datasets, with several transcripts consistently identified as 
being amongst the most overexpressed transcripts in resis-
tant Anopheles mosquitoes, but, as yet, with no published 
studies reporting their potential contribution to the pheno-
type. Amongst these are genes in the trypsin/chymotrypsin 
(Abdalla et al. 2014; Ibrahim et al. 2022; Kwiatkowska et al. 
2013; Toé et al. 2015; Wilding et al. 2015; Wipf et al. 2022; 
Wondji et al. 2022), aquaporin (Ibrahim et al. 2022; Toé et al. 
2015) and the UGT families (Antonio-Nkondjio et al. 2016; 
Ibrahim et al. 2022; Kouamo et al. 2021; Nkya et al. 2014; 
Tene et al. 2013; Williams et al. 2022b; Wipf et al. 2022; 
Wondji et al. 2022).

3 Other putative resistance mechanisms

3.1 Microbiome
Resistance is largely considered in the context of genetic 
traits of the vector; however, the microbial composi-
tion of both the internal and the surface microbiome have 
recently been linked with the pyrethroid resistance status 
of Anopheles mosquitoes (Dada et al. 2018, 2019; Ingham, 
Tennessen, et al. 2021; Omoke et al. 2021; Pelloquin et al. 
2021). 16S profiling of knocked down and resistant An. 
coluzzii from Côte d’Ivoire revealed distinct differences in 
microbial composition, with Serratia and Asaia significantly 
overabundant in mosquitoes knocked down after exposure 
to deltamethrin, whilst Ochrobactrum, Lysinibacillus and 
Enterobacteriacea are associated with pyrethroid resis-
tance (Pelloquin et al. 2021). Similarly, whole genome 
sequencing found Serratia over-represented in pyrethroid 
susceptible mosquitoes, whilst Elizabethkingia is asso-
ciated with resistance (Ingham, Tennessen, et al. 2021). 
Neither Ochrobactrum nor Asaia showed significant asso-
ciations with resistance or susceptibility in this study 
(Ingham, Tennessen, et al. 2021). A similar study on An. 
gambiae demonstrated Sphingobacterium, Lysinibacillus 
and Streptococcus are associated with resistant mosquitoes 
in Kenya (Omoke et al. 2021). Studies on the new world 
malaria vector An. albimanus also revealed bacteria signifi-
cantly associated with the pyrethroid resistance phenotype 
(Dada et al. 2018, 2019). Indeed, several of the genera asso-
ciated with mosquitoes have been shown to be capable of 
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directly metabolising insecticides (Cycoń, Żmijowska and 
Piotrowska-Seget 2014; Guo et al. 2021; Jin et al. 2014; 
Zhan et al. 2018; Zhang, Wang, and Yan 2011) and coloni-
sation of pest midguts by these bacteria have been shown 
to directly confer resistance (Cheng et al. 2017; Ishigami 
et al. 2022; Yoshitomo et al. 2012). In addition to direct 
impacts on the resistance phenotype, work in An. arabiensis 
(Barnard et al. 2019) and An. stephensi (Soltani et al. 2017) 
has linked antibiotic treatment with increased mortality 
post-exposure, through activity of endogenous detoxifica-
tion enzymes, indicating microbiota play a role in induc-
ing signalling. Although there is evidence for the role of the 
microbiome in resistance, the precise contributions of indi-
vidual bacterial species remain elusive, due to complexity in 
deciphering the environmental variations in the microbiome 
from those with a directed contribution to resistance.

3.2 Oxidative stress
Oxidative stress has been linked with resistance and lon-
gevity both phenotypically and through transcriptional 
changes (Champion and Xu 2018; Müller et al. 2008; Oliver 
and Brooke 2014). Artificial manipulation of the redox 
state through feeding of pro-oxidants demonstrated a clear 
increase in susceptibility to DDT and permethrin as well as 
reduced fecundity (Champion and Xu 2018). Furthermore, 
increases in respiration have been demonstrated in pyre-
throid resistant compared to susceptible mosquitoes, whilst 
exposure to pyrethroid insecticide causes a drop in this rate 
(Ingham, Tennessen, et al. 2021), phenotypes previously 
reported in agricultural pests (Guedes et al. 2006; Vinha 
et al. 2021). Underlying transcriptomic data supports the 
phenotypic changes through decrease in expression of respi-
ration-related transcripts post-exposure, specifically those of 
the oxidative phosphorylation pathway (Ingham, Tennessen, 
et al. 2021; Ingham, Brown, and Ranson 2021). These data 
indicate that oxidative stress plays a role in, or is a result 
of, resistance to pyrethroids. The underlying decrease of the 
oxidative phosphorylation pathway and the decrease in res-
piration post-exposure hints at mosquitoes displaying meta-
bolic plasticity in response to external stress.

4  Expression of resistance-related 
transcripts

4.1 Constitutive transcriptional response
Genetic control of transcription of resistance-related tran-
scripts is poorly defined in Anopheles mosquitoes. A number 
of QTL studies have suggested the presence of both cis and 
trans-acting factors associated with pyrethroid resistance in 
Anopheles (Ranson et al. 2004; Witzig et al. 2013; Wondji 
et al. 2007) but delineation of the key genetic changes within 
these QTL has met with mixed success; in An. funestus, 
QTL mapping coupled with in vitro promoter characterisa-

tion have identified the cis-regulatory region for the major 
pyrethroid metabolisers CYP6P9a (Wondji et al. 2007) and 
CYP6P9b (Mugenzi et al. 2019), enabling the identification 
of DNA based markers to detect this metabolic resistance 
mechanism. However, the equivalent mutations in the regu-
latory regions of the key resistance associated P450s in An. 
gambiae remain elusive.

Similarly, genome wide association studies to identify 
resistance associated markers have proved challenging. 
Extremely high levels of polymorphism, extensive popula-
tion substructuring and low levels of linkage disequilibrium 
pose methodological challenges for this approach (Weetman 
et al. 2018a) and, whilst some markers have been identified, 
their geographical reach appears limited.

Recently, transcriptional regulation of pyrethroid resis-
tance by miRNAs has been suggested (Xu et al. 2022) but 
these also remain poorly characterised and epigenetic regu-
lation of resistance in Anophelines is currently unstudied.

4.1.1 Copy number variations
Copy number variations (CNV) have been proposed as 
a major adaptive polymorphism contributing to insecti-
cide resistance in multiple insect species (Weetman et al. 
2018b). Many copy number variations are amplifications 
or duplications across known insecticide-resistance asso-
ciated genes, such as cytochrome P450s and GSTs. Over 
250 genes containing CNVs have been identified in the 
Anopheles genome using sequencing data from the 1000 
genomes project (Lucas et al. 2019). The authors deter-
mined that CNVs were enriched for genes involved in met-
abolic detoxification and demonstrated these regions were 
under positive selection (Lucas et al. 2019). A similar study 
focused on organophosphate resistance and demonstrated a 
link between this phenotype and a CNV across the Ace-1 
locus (Grau-Bové et al. 2021). CNVs have also been linked 
with insecticide resistance in An. funestus through duplica-
tion of the CYP6P9 locus, the major causative gene asso-
ciated with pyrethroid resistance in this species (Weedall 
et al. 2020).

4.2 Induced transcriptional response
Inducible expression of detoxification activity following 
xenobiotic exposure is a well-known phenomenon and tran-
scriptomic data has demonstrated that sublethal insecticide 
exposure in Anopheles results in wide-ranging changes to 
underlying gene expression (Ingham, Brown and Ranson. 
2021; Kefi et al. 2021; De Marco et al. 2017; Vontas et al. 
2005) and that specific families known to be involved in 
direct binding or detoxification of insecticides are induced 
by exposure (Epis et al. 2014; Ingham et al. 2019; Kouamo 
et al. 2021; Mastrantonio et al. 2019). Taken together, these 
data indicate that in addition to constitutive overexpression 
of transcripts involved in insecticide resistance, signalling 
pathways further induce their expression.
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4.2.1 Transcription factors
Transcriptional control of exogenous stress is well described 
in insects (Gao et al. 2022). The cnc-MafS (also known as 
cnc-Nrf2) pathway, which responds to cellular oxidative 
stress and induces transcription of genes controlled by a 
xenobiotic response element, is one of the best studied and 
is up-regulated in multiple An. gambiae resistant popula-
tions (Ingham et al. 2018; Wipf et al. 2022). Perturbation 
of MafS significantly increases susceptibility to pyrethroid 
insecticides and DDT whilst increasing resistance to mala-
thion, a phenomenon termed negative cross resistance 
(Ingham et al. 2017). Transcriptomics on MafS knock-
down revealed that this pathway-controls expression of a 
number of known resistance-related transcripts, including 
the pyrethroid metaboliser CYP6M2 which is also thought 
to convert the pro-insecticide malathion to its active form, 
putatively indicating a mechanism for negative cross-resis-
tance (Ingham et al. 2017). The cnc- MafS pathway is also 
known to regulate resistance through control of expression 
of cytochrome p450s and GSTs in a number of other insect 
species, reviewed here (Wilding 2018). Further, a selective 
sweep around Keap1, the regulator of this pathway, is appar-
ent within the Anopheles 1000 genomes project (Consortium 
2017), indicating an importance in wild caught mosquitoes.

A recent study attempted to describe the network of 
transcription factors involved in insecticide response and 
described an additional 23 potential transcription factors 
involved in response to pyrethroid exposure (Ingham, Elg, 
et al. 2021).

4.2.2 G-protein coupled receptors (GPCRs)
GPCRs play important roles in cell biology and signalling, 
and their function and potential utility as a direct target for 
insecticides has just been reviewed in (Liu et al. 2021). The 
first concrete link between GPCRs and pyrethroid resistance 
was described in Cx. quinquefasciatus through use of RNAi, 
when the knockdown of four GPCRs was shown to directly 
impact pyrethroid resistance (Li et al. 2014). It was suggested 
that the reduction in resistance was due to down-regulation 
of cytochrome P450s, which was confirmed in subsequent 
studies expanding the repertoire of GPCRs involved in 
resistance to include rhodopsin-like GPCRs and describ-
ing a putative signalling pathway (Li et al. 2015; Li and Liu 
2017). GPCRs have thus far been overlooked in insecticide 
resistance in Anopheles mosquitoes; however, up-regulation 
of GPCR expression has been seen both in legs and whole 
organisms after deltamethrin exposure (Ingham. Brown and 
Ranson. 2021; Kefi et al. 2021).

5 Conclusion

Multiple mechanisms can confer pyrethroid resistance in 
malaria vectors. Given the recent increase in selection pres-
sure imposed by the scale up in ITN use, many of these 
mechanisms may be relatively recent and hence may have 

high fitness costs. Evolutionary genomics will likely increase 
our understanding of the origin, rate of spread and selective 
advantage conferred by each mechanism, but functional 
studies are also important to validate resistance associated 
markers and identify any synergism or antagonism between 
mechanisms. Similarly, bioassays will remain important in 
determining how combinations of these mechanisms may 
impact the performance of pyrethroids and other classes of 
insecticides both applied singly, and in combination as found 
in dual active ingredient products just now entering the mar-
ket. Furthermore, not mentioned in this review due to lack of 
molecular insights, but of critical importance, are changes in 
vector behaviour linked to insecticide resistance which must 
be understood to maximise intervention impact.
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