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Abstract (150 words) 

The human malaria vector Anopheles gambiae is becoming increasingly resistant to insecticides, 

spurring the development of genetic control strategies. CRISPR-Cas9 gene drives can modify a 

population by creating double-stranded breaks at highly specific targets, triggering copying of the 

gene drive into the cut site (‘homing’), ensuring its inheritance. The DNA repair mechanism 

responsible requires homology between the donor and recipient chromosomes, presenting 

challenges for the invasion of lab-developed gene drives into wild populations of target species An. 

gambiae species complex, which show high levels of genome variation. 

Two gene drives (vas2-5958 and zpg-7280) were introduced into three An. gambiae strains collected 

across Africa with 5.3-6.6% variation around the target sites, and the effect of this variation on 

homing was measured. Gene drive homing across different karyotypes of the 2La chromosomal 

inversion was also assessed. No decrease in gene drive homing was seen despite target site 

heterology, demonstrating the applicability of gene drives to wild populations. 
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Introduction 

Gene drives in vector control 

Global control efforts have averted an estimated 1.5 billion cases of malaria in the last two decades 

but this progress has begun to slow, with 619 000 deaths reported in 2021 alone 1. Malaria 

transmission persistence has been attributed to a combination of stalling or inadequate control 

programs, insecticide resistance of the mosquito vector, and treatment resistance of the parasite 2. 

The World Health Organisation has stressed the importance of developing novel control strategies to 

meet its malaria elimination goals 3,4. 

Genetic control strategies can achieve population modification or suppression of a target species 

without collateral damage to non-targets or the environment by the modification of the target 

genome, making these strategies highly desirable alternatives to widespread insecticide use. One 

such strategy is the use of selfish genetic elements with super-Mendelian inheritance rates known as 

gene drives. Gene drives can deliver a genetic payload or disrupt an essential gene while overcoming 

any subsequent fitness cost by severely biasing its own inheritance, allowing its spread in a 

population 5-10. Strategies using gene drives are being considered for the control of several pest 

species 11,12, and have progressed to the successful development of CRISPR/Cas9-based gene drives 

in the primary vector of malaria in Africa, Anopheles gambiae 7. 

The Cas9 protein guided by an sgRNA is capable of making highly-specific double-stranded breaks 

(DSBs) in a chromosome, allowing the introduction of an alternate sequence at the cut site using the 

cell’s own DNA repair mechanism 7. DSB repair by the cell can involve the use of a homologous 

template strand, usually the paired chromosome, which is copied to accurately repair the break 13,14. 

When a gene drive element is copied into the broken chromosome alongside the homologous 

template sequence, the gene drive is inserted at the breakpoint in a process known as homing. 

Homing from one chromosome to another in germline cells means the gene drive will be integrated 

in the majority of gametes, resulting in its super-Mendelian inheritance in the next generation. This 

mechanism can be exploited to bias the inheritance of a coupled effector gene through a population, 

such as antimicrobial peptides to impede malaria development 10, or to target a gene essential for 

fertility and therefore reduce the target population size 7. 

 

Gene drive resistance 

The emergence of resistance to gene drives has been demonstrated empirically in synthetic drive 

constructs 15,16. CRISPR-based gene drive resistance occurs as small genetic differences at the cut 
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site, reducing gRNA binding and therefore the ability of the Cas9 enzyme to create a DSB. These cut 

site mutations can arise during the DSB repair process via alternate repair pathways such as non-

homologous end-joining, which enzymatically repairs the cut without a template but with higher 

rates of error 15,17-19. If these genetic differences produce a functional allele with a fitness cost less 

than that of the gene drive, they may be positively selected for in the population. Functional 

alternate alleles produced by gene drive-induced mutations can reduce CRISPR-gRNA binding 

enough to confer complete resistance to the gene drive 15. 

Strategies to reduce the likelihood of resistance developing have been suggested; modern gene 

drives will target genes which are haplosufficient (one functional copy is required for survival or 

fertility) and highly conserved, therefore making any mutations at the target site likely to result in 

unviability 8,15,20. This reduces the speed of gene drive resistance development but does not entirely 

prevent it; mutations produced during non-homologous end joining (NHEJ) will still eventually lead 

to resistance 15. NHEJ, and therefore related mutations conferring resistance, can be reduced by 

using more efficient germline-specific promoters with less accidental somatic expression of the Cas9 

enzyme 21. Multiple target sites in different genes can be used in a single gene drive system by 

multiplexing gRNAs; homing can occur at all target sites, making independently-evolved resistance at 

all target sites necessary to prevent super-Mendelian inheritance of the gene drive 22-24. 

Any intervention which applies a strong selection pressure will eventually produce a similarly strong 

and concomitant pressure to evolve resistance. Resistance has historically only been discovered 

after the implementation of a control strategy, and after the resistance has become a public health 

issue 25. By anticipating and investigating potential issues such as resistance during gene drive 

development we can reduce the impact on control strategies. Genetic variation at the target site, 

whether produced by Cas9-mediated NHEJ or naturally present in a target population, could act as a 

barrier to successful implementation of gene drives. 

 

Genetic variation – a barrier to gene drive success? 

Single nucleotide polymorphisms 

Genetic differences around a gene drive target site, or target locus heterology (TLH), may occur 

naturally in a wild population even in highly functionally constrained genes. Differences within the 

gRNA target site have the most impact on drive efficiency 26, but due to the nature of DSB repair TLH 

will also potentially reduce the gene drive homing rate. Stringent regions of homology between the 

donor chromosome (containing the region to be copied) and the recipient chromosome (where the 

DSB occurs) are required for homology-directed repair (HDR) in mammalian cells, where 1.2% TLH 
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within 1kb of the DSB causes a 22% reduction in the recombination required for HDR 27. Similar 

dependence on homology has been noted in Drosophila melanogaster, where 1.4% TLH suppressed 

recombination by 32% 28; and Aedes aegypti, with 1.2% TLH created by experimental recoding 

resulting in a 66% reduction in homing 29. Given the conserved nature of DNA repair mechanisms, it 

is reasonable to expect that this sequence homology requirement would extend to An. gambiae, 

which has an incredibly diverse genome including more than 57 million single-nucleotide 

polymorphisms (SNPs) 30. 

 

Chromosomal inversions 

In addition to SNPs, the An. gambiae species complex contains over 120 chromosomal inversions 

31,32. These inversions vary in their geographical and seasonal distribution and have been associated 

with desiccation resistance, larval habitat, insecticide resistance, and malaria infection rate 31,33-37. 

The largest inversion in An. gambiae is the 2La/2L+a, which spans roughly half the length of 

chromosome 2L 38; the ancestral 2La form is implicated in anthropophilic behaviour, aridity 

tolerance, and Plasmodium transmission 35,39-41. Recombination of inverted chromosomes in 

opposite orientations is reduced as the chromosomes are forced to form a loop in order to align 42. 

Reduced recombination between inversion heterokaryotypes has been empirically demonstrated 

during meiosis in multiple species, including Drosophila (7.7-fold decrease) 43. The effect extends 

beyond the inversion breakpoints to suppress recombination in regions close to the inversion and 

increase recombination at distant regions, known as the interchromosomal effect 44, and can change 

the recombination landscape enough to suppress recombination in homokaryotypes as well 45,46. 

A reduced recombination rate between inversion heterokaryotypes could theoretically interfere 

with HDR in gene drive releases, leading to reduced spread of a gene drive situated within the 

inversion into heterogenous wild populations. In an allelic drive system in Drosophila, inversion 

heterokaryotypes had a drive rate a third lower than inversion homokaryotypes 47. Meiotic 

recombination between 2La/2L+a heterokaryotypes is at least 5-fold less than between 2L+a 

homokaryotypes 48. However, multiple gene drive systems have been developed within the 2La 

inversion site in An. gambiae successfully, with super-Mendelian inheritance (76-98%) 49,50. As these 

were not developed with the 2La inversion karyotype in mind, or tested with different karyotypes, 

the impact on recombination rate during gene drive homing in An. gambiae is still unknown. 
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Variation outside of the target region 

Genetic variation outside of the target region can also influence gene drive inheritance and 

resistance development. In a study of gene drive homing and resistance rates in different strains of 

Drosophila, all with identical target site sequences, inheritance rates ranged from 64.1-85.9%; 

increased inheritance was significantly associated with certain genotypes, but no SNPs were 

identified as contributing significantly 51. Moderate variation has been noted in gene drive homing in 

different genetic backgrounds of Drosophila despite little to no variation within 200 bp of the cut site 

19. Background genetic variation can also influence the development of resistant alleles at the target 

site; no single gene was found to be significantly responsible for increased resistance development, 

indicating a combined effect of multiple genes 51. Differences in homing efficiency may be due to 

differences in a combination of genes, such as DNA repair mechanisms, DNA transcription or 

translation, or germline expression. In naturally occurring gene drives, suppressors can evolve to 

reduce the impact of the drive in the population; these are often unlinked to the gene drive, such as 

small RNAs or alterations in heterochromatin structure 52. Undoubtedly, the interaction between 

genetic variation and gene drive homing needs to be explored for their effective use in control 

strategies. 

 

To assess the impact of TLH and inverted chromosomes on the homing of a gene drive element in 

An. gambiae, two well characterised lab-created gene drive strains vas2-5958 and zpg-7280 were 

crossed with three alternate An. gambiae wild type strains from across East, Central and West Africa 

(Kisumu, N’Gousso and Tiassale), all with TLH around the cut sites. The vas2-5958 gene drive 

element is located within the 2La inversion; gene drive homing rates were compared between 2La 

heterokaryotypes and homokaryotypes. 
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Materials and Methods 

Mosquito rearing 

All mosquitoes were reared under standard conditions of 26 ± 2°C and 70 ± 10% relative humidity, 

with a 12 hour light/dark cycle with one hour dusks/dawns. Larvae were fed on ground fish food 

flakes (TetraMin® tropical flakes) and adults were fed 10% sucrose solution ad libitum. Adults were 

allowed to mate for 5-10 days before blood feeding and egg collection.  

Mosquito strains 

Two G3 colonies containing gene drive elements were used, both created by Hammond et al. and 

well characterised 7,21. The vas2-5958 colony contains a CRISPR/Cas9 endonuclease construct within 

AGAP005958, an ortholog of the Drosophila yellow-g gene expressed in somatic ovarian follicle cells 

with an unknown function 53. The AGAP005958 gene is located within the 2La inversion 54, with a 

gRNA cut site within 4Mb of the distal breakpoint. The zpg-7280 colony contains a similar construct 

in AGAP007280, ortholog of the Drosophila nudel gene also expressed in follicle cells with a known 

role in dorsoventral patterning of the developing embryo 55. Both genes have a haplosufficient role 

in female fertility, making them useful targets for population modification or suppression gene drive 

strategies. 

The inserted construct for both colonies consists of: a CRISPR/Cas9 protein under germline-only 

promotion (zpg in the zpg-7280 line and vas2 in the vas2-5958 line), a gRNA sequence targeting the 

cut site for each line respectively under U6 (universal) promotion, and a red fluorescence protein 

marker with a 3xP3 promoter, all flanked by attB recombination sites to allow insertion into 

previously created docking lines via recombinase-mediated cassette exchange 56. The full sequence 

of vector p165 used to produce these two lines, with the only difference between them the gRNA 

sequence, is available on GenBank (accession ID: KU189142) 7. 

The wild type strains used in crosses were taken from colonies kept at the Liverpool School of 

Tropical Medicine 7,57-59; details can be found in Table 1.  

Table 1 - Wild type Anopheles strains used in this work. 

Strain Species Place and date of collection Reference 

G3 An. gambiae/An. coluzzii hybrid The Gambia, 1975 (7) 
N’Gousso An. coluzzii Yaoundé, Cameroon 2002 (57) 
Tiassale An. gambiae/An. coluzzii hybrid Cote d’Ivoire, 2012 (58) 
Kisumu An. gambiae Kenya, 1975 (59) 
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Crosses of gene drive strains into alternate backgrounds 

An outline of the methodology can be seen in Figure 1. The number and sex of mosquitoes used in 

each cross can be seen in Table 2. All F1 hybrid adults used in crosses were confirmed to be 

heterozygous for the gene drive element by screening for the RFP marker via fluorescent microscopy 

during the larval stage. Females containing the vas2-5958 gene drive are sterile due to unintended 

somatic promotion of Cas9 under the vas2 promoter 7; therefore, in vas2-5958 crosses only males 

containing the gene drive were used. For zpg-7280 F1 crosses female hybrids were used. F1 cross 

females were forced to lay in single deposition and up to 50 offspring per female were screened for 

the presence of the RFP marker to determine the rate of gene drive in the hybrid parent. Drive rates 

were compared to data from Hammond et al. 7,21 using a pairwise Wilcoxon test with false discovery 

rate correction (Table S1). 

Table 2 - Details on the number, sex and strain of each F0 and F1 cross. 

F0 crosses F1 crosses 

10 ♂ vas2-5958 x 25 ♀ N’Gousso 40 ♂ vas2-5958/N’Gousso F1 x 20 ♀ G3 

10 ♂ vas2-5958 x 25 ♀ Kisumu 40 ♂ vas2-5958/Kisumu F1 x 20 ♀ G3 

10 ♂ vas2-5958 x 42 ♀ Tiassale 40 ♂ vas2-5958/Tiassale F1 x 20 ♀ G3 

10 ♂ zpg-7280 x 25 ♀ N’Gousso 20 ♀ zpg-7280/N’Gousso F1 x 40 ♂ G3 

10 ♂ zpg-7280 x 25 ♀ Kisumu 20 ♀ zpg-7280/Kisumu F1 x 40 ♂ G3 

10 ♂ zpg-7280 x 42 ♀ Tiassale 20 ♀ zpg-7280/Tiassale F1 x 40 ♂ G3 
 

Target site sequence heterology 

To determine the maximum potential TLH in each strain, F1 hybrids of each type were pooled and 

their wild type chromosome (representing each wild type strain) was sequenced. DNA was extracted 

from pools of 33-37 adults using a Wizard® genomic DNA purification kit (Promega) and a region of 

~690bp spanning the gRNA cut sites for both vas2-5958 and zpg-7280 gene drives was amplified in 

two fragments either side of the gene drive insert. Fragments were amplified by PCR using Phusion 

Hot Start II High-Fidelity DNA polymerase (Thermo Scientific™), with forward and reverse primers at 

a final concentration of 0.5 µM (Table S2) and 1 µl genomic DNA in a 50 µl reaction. PCR conditions 

were: an initial denaturation step at 98°C for 30 seconds; followed by 30 cycles of denaturation at 

98°C for 30 seconds, 30 seconds at the annealing temperature (Table S2), and extension at 72°C for 

15 seconds; and a final extension step of 10 minutes at 72°C. 

PCR products were sequenced by Illumina MiSeq sequencing; reads were quality filtered and aligned 

against an amplicon containing all SNP variants present in G3 deep sequencing data 15 using 

CRISPResso 60. Alleles present at >1% relative abundance were aligned to G3 sequences in Benchling  
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Figure 1 - Experimental homing of a gene drive into alternate genetic backgrounds.  
 
A. The location of gene drive cassettes in the 2L chromosome of gene drive strains vas2-5958 and zpg-7280, 
relative to the centromere and the 2La inversion region, which is shown in wild type orientation. 
 
B. The locations and dates of capture for each strain, and their species identification. 
 
C. Methods for assessing gene drive homing into alternate strains. Gene drives were crossed with alternate 
strains to produce hybrid F1 individuals; these were backcrossed to G3 and the F2 offspring were screened for 
the RFP-tagged gene drive via fluorescent microscopy to determine the homing rate in the F1 hybrid. 
 
D. Methods for assessing gene drive homing in different inversion karyotypes. vas2-5958 gene drive individuals 
were crossed to wild type G3, the gene drive parent’s 2La inversion karyotype was determined by PCR, and the 
offspring screened for inheritance of the gene drive to investigate the impact of chromosomal inversion on 
gene drive homing rate. 
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to determine the percentage of mismatch between G3 and each strain at the homing sites (raw files 

accession: PRJNA914102). As vas2-5958 is known to produce ‘leaky’ promotion and therefore 

maternal deposition of the Cas9 enzyme, resulting in NHEJ-induced deletions at the cut site in 

somatic tissue, any characteristic NHEJ deletions around the cut site in these F1 hybrids were 

removed from the TLH analysis. 

 

Homing rate analysis in alternative 2La karyotypes 

Mosquitoes from the vas2-5958 colony were backcrossed to G3 and offspring were screened for the 

gene drive marker; 65 F1 males were mated individually to three G3 females, with eggs collected 

from each group and screened for the gene drive element. Each male parent was karyotyped for the 

2La inversion as previously described 38, and drive rates in heterozygotes and homozygotes of both 

karyotypes were compared using a Wilcoxon test. 
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Results and discussion 

An. gambiae gene drives are robust to TLH 

The vas2-5958 and zpg-7280 An. gambiae gene drive lines, originally made in the G3 background 

and targeting haplosufficient female fertility genes, were crossed into three different strains to 

create F1 hybrids which were backcrossed to wild type G3 to assess the F1 hybrid homing rate (see 

Figure 1c). The TLH around the cut sites was 5.3-6.6% between each strain and the gene drive 

background strain (G3), with significant variation between the left and right sides of both gene drive 

cut sites (Figure 2 and Figure 3). No SNPs were observed within the gRNA sequence; however, a SNP 

was commonly observed in the N base of the zpg-7280 -NGG PAM site (Figure 3). All F1 hybrids for 

both gene drive colonies produced super-Mendelian inheritance rates of the gene drive element 

(vas2-5958: 81.8-100%; zpg-7280: 92.0-100%), with no significant difference from the control (Figure 

4). No reduction in larval production was observed in zpg-7280 hybrids (Figure S2), suggesting no 

loss of fertility.  

Figure 2 - Target locus heterology in three strains (Kisumu, N’Gousso and Tiassale) compared to G3, at two 
gene drive sites (vas2-5958 and zpg-7280), with alleles present at >1% relative abundance. The data 
represents the maximum potential TLH between each strain and G3, by comparing each allele from the 
pooled F1 hybrid wild type chromosomes to a G3 sequence containing all known SNPS found in a deep 
sequencing dataset of 24 G3 individuals. Each point represents an allele from pooled sequencing of adult 
mosquitoes, with percentage difference to G3.  
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Figure 3 - Position and frequency of SNPs at two gene drive sites (vas2-5958 and zpg-7280) in three strains 
(Kisumu, N’Gousso and Tiassale) compared to G3. The position of each SNP is given relative to the gene drive 
cut site, indicated by a dashed line. SNPs which are not also found in G3 are marked with an asterix. No SNPs 
were observed within the gRNA sequence of either cut site – however, at the zpg-7280 cut site a SNP 
commonly occurred in the N of the -NGG PAM site. 
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This result varies considerably from previous findings in Ae. aegypti 29 and D. melanogaster 28, which 

saw significantly reduced HDR between sequences with 1.2% and 1.4% TLH respectively. Differences 

in methodology between the two studies and this work make direct comparison difficult; both used 

artificially generated silent mutations spaced at regular intervals to generate TLH, which could have 

a different impact recombination than the naturally occurring, irregularly-spaced TLH in the strains 

used here. Additionally, Ang et al. measured HDR between a donor plasmid and recipient 

chromosome rather than between chromosomes, and Do et al. used heat-inducible I-Sce1 for DSB 

formation rather than Cas9. It may be the case that these previous studies, while well suited to 

describe their respective systems, were not good predictors of the dynamics of Cas9-based gene 

drive homing. While we cannot definitively state based on comparison to these studies that An. 

gambiae HDR is inherently more robust to TLH than Ae. aegypti or D. melanogaster, it appears that 

Cas9-based gene drive homing is efficient enough in An. gambiae that increased TLH is tolerated 

without causing enough of a reduction in efficiency to reduce the homing rate. This is supported by 

previous studies which have found Cas9-based gene drive homing rates are higher in Anopheles 

(~97%)8 than in both Drosophila (~80%)19 and Aedes (~70%)61. 

The robustness of An. gambiae gene drive homing to variation has important consequences for its 

application in real-world vector control strategies. The development of gene drives in lab-bred 

mosquito strains allows for standardisation of the genetic background for easier study but has called 

Figure 4 - The inheritance rate of two gene drive elements vas2-5958 and zpg-7280 in the offspring of F1 
hybrids of three different strains, compared to the control rate of inheritance in the gene drive colony (G3 
background). Target locus heterology ~600bp around the cut site between each strain and the G3 wild type is 
given in percentages next to strain names. Homing into alternate chromosomes produced drive rates which 
were not significantly different to the control drive rate (Pairwise Wilcoxon test, corrected for false discovery 
rate). n.s – non-significant. 
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into question their applicability to heterogenous wild populations. Despite the sensitivity of homing 

in other organisms to low amounts of TLH, our findings show no significant reduction in homing 

activity into multiple strains with up to 6.6% TLH in An. gambiae. The strains used in this experiment 

were collected from East, Central and West Africa across a span of 37 years, and are a mixture of An. 

gambiae, An. coluzzi and An. gambiae/An. coluzzi hybrids (Figure 1b). The demonstration of 

unimpeded gene drive homing into strains of this diversity represents the strong potential for gene 

drive implementation across members of the An. gambiae species complex that are able to produce 

fertile progeny. 

No impact of 2La karyotype on gene drive homing 

The vas2-5958 gene drive is located within the region covered by the 2La inversion (Figure 1a); 

homing rates for all three permutations of the 2La inversion were analysed (Figure 1d). There was no 

significant difference in homing rate between 2La inversion karyotypes (Figure 5). 

 

Despite previous observations of reduced gene drive conversion across inversions in Drosophila 47 

and reduced meiotic recombination within the 2La inversion region in An. gambiae 48 we saw no 

evidence of reduced gene drive homing rate in 2La inversion heterokaryotypes. However, reduced 

recombination is not uniform across an inversion, and adjacent sequences external to the inversion 

can also show altered recombination rates. Meiotic recombination is slightly higher in the middle of 

the inversion compared to regions near the breakpoints, due to the increased ease of forming 

chiasmata between sister chromatids at the centre of the inversion loop 47,48. The vas2-5958 gene 

drive target site is <4 Mb from the distal breakpoint of the 2La inversion (Figure 1a) 7,62; theoretically, 

Figure 5 - The inheritance rate of the vas2-5958 gene drive element in the offspring 
of males either homozygous (2La/2La and 2L+a/2L+a) or heterozygous (2La/2L+a) for 
the 2La chromosomal inversion. There was no significant difference in gene drive 
inheritance between the three karyotypes (Wilcoxon test). n.s. – non-significant. 
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recombination at this point should have been low, but this is not reflected in the gene drive rates we 

observed. 

Adjacent to the inversion, the region between the proximal breakpoint of the 2La inversion and the 

centromere shows strong recombination reduction, with a less strong but still reduced 

recombination rate in the region distal to the centromere 48. The zpg-7280 gene drive target site is 

2.8 Mb from the 2La distal breakpoint and is therefore located in a region with a known slight 

reduction in meiotic recombination 7,62. Our results suggest that this is not sufficient to reduce 

homing, but future work could explore if other targets within the inversion, or closer to the 

breakpoint, may be affected. 

 

While homing does not appear to be reduced within the inversion in An. gambiae, other impacts of 

the inversion on long-term control strategies should be considered. Reduced meiotic recombination 

results in protection of the inverted regions and their accumulation within populations; a common 

mechanism of speciation in Anopheles 54. Linked regions can result in persistence of deleterious 

mutations or the spread of adaptive alleles for certain environments. In the case of gene drives, 

regardless of the impact of recombination on the homing mechanism itself, inversions could impact 

the penetrance of gene drives into wild populations indirectly, through reproductive isolation. That 

said, unless this reproductive isolation is total, even rare cases of intra-strain hybridisation should 

lead to the gene drive rapidly introgressing into the new karyotype. There is good precedent for this 

in the adaptive introgression of insecticide resistance alleles between An. gambiae and An. coluzzii, 

two separate species that are not fully isolated reproductively 63. The idea of ‘forced’ introgression, 

whereby gene drives are backcrossed into wild populations before release, has been suggested to 

reduce the introduction of novel chromosomal arrangements or variation into wild populations 64. 

 

Application of gene drives to wild populations 

At first glance, the high level of variation in the An. gambiae species complex suggests that gene 

drives developed in lab-bred colonies could struggle to spread in wild populations via HDR. Our 

results suggest that this is not the case; with a highly conserved gRNA, variation in the surrounding 

sequence or in the chromosomal structure had no impact on the gene drive constructs tested here. 

The use of highly conserved gRNA sites is an important strategy for reducing the development of 

gene drive resistance 8. The availability of deep sequencing data for An. gambiae via the Ag1000G 

confirms the high variation within the species complex, but also greatly improves our ability to 
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choose gRNAs appropriately 65. Correspondingly, gRNA target sites must be chosen carefully to 

confine gene drives to a particular strain; there are a variety of self-limiting strategies currently in 

development that either combine non-autonomous elements or target alleles private to the target 

population 66-68. 

The specificity of the gRNA targeting system produces very low off target effects in An. gambiae, 

making CRISPR/Cas9 gene drives resistant to unexpected homing outside of the target sequence 69. 

However, there is potential for neighbouring sequences flanking the gene drive to be carried over 

during HDR due to resection of the broken chromosome 28. This could result in tight allelic linkage of 

neighbouring sequences to the gene drive and introgression of novel alleles into wild strains, 

suggesting that gRNA target regions need to be chosen with the surrounding sequences in mind. 

Future work will be able to determine the precise dynamics of genetic exchange between the gene 

drive donor and recipient chromosome. 

Regardless of TLH of up to 6.6%, gene drive strategies for An. gambiae control show promising 

efficacy for malaria control in wild mosquito populations. The self-sufficiency of gene drives after 

initial release has meant extra care is being taken to characterise how gene drives will function in 

natural settings 70,71. This work offers improved understanding of gene drive dynamics in wild 

populations and demonstrates their potential for Anopheles control. 
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Supporting information 

S1 Appendix: Analysis of a fourth strain, Busia 

In a separate piece of work, a fourth strain Busia (Anopheles gambiae s.s., captured in Uganda in 

2018) (Lynd, et al., 2019) was analysed for homing rates in F1 hybrids with both vas2-5958 and zpg-

7280. Male hybrids of Busia with both gene drives were used in en masse crosses with wild type G3 

females; females were put in single deposition for drive rate analysis (four from crosses with 

Busia/vas2-5958 hybrids, and 11 from crosses with Busia/zpg-7280 hybrids). Target site heterology 

(TLH) was calculated from wild type Busia using Sanger sequencing, with nine replicates on the left-

hand side of the vas2-5958 cut site, and three replicates spanning 700 bp either side of the zpg-7280 

cut site (accession: PRJNA914102). While the Busia samples were processed differently to the 

remaining three strains and were therefore left out of the main analysis, they show the same 

pattern of uninterrupted homing regardless of TLH, indicating the robustness of this effect to 

different analysis methods. All supporting information will include results from the Busia strain 

alongside Kisumu, N’Gousso and Tiassale. 

 

Lynd et al. (2019). LLIN Evaluation in Uganda Project (LLINEUP): a cross-sectional survey of species 

diversity and insecticide resistance in 48 districts of Uganda. Parasites & Vectors 12(1), 1-10.  
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Figure S1: Gene drive inheritance rate analysis of Kisumu, N’Gousso, Tiassale and Busia hybrids 

with zpg-7280 and vas2-5958 gene drives. TLH is given as a percentage next to each strain name; 

statistical analysis was conducted using a pairwise Wilcoxon test with false discovery rate correction. 

n.s. – non-significant. 

 

 

 

  



 

22 
 

Table S1: Pairwise Wilcoxon test p values with false discovery rate correction for gene drive 

inheritance rate. Comparisons were performed for hybrids with all four strains of both gene drives. 

No comparisons were statistically significant. 

vas2-5958 zpg-7280 

 Busia Kisumu N’Gousso Tiassale  Busia Kisumu N’Gousso Tiassale 

Kisumu 1.00 - - - Kisumu 0.91 - - - 

N’Gousso 0.55 0.55 - - N’Gousso 1.00 0.91 - - 

Tiassale 0.55 0.55 0.17 - Tiassale 0.91 1.00 0.91 - 

Control 0.55 0.55 1.00 0.17 Control 0.91 0.91 0.91 0.91 

 

 

S2 Appendix: Analysis of TLH between chromosomes within single zpg-7280/N’Gousso F1 hybrids. 

To corroborate our estimates of TLH from pools, a region spanning ~700 bp either side of the cut site 

of six individual zpg-7280/N’Gousso F1 hybrids was sequenced for both chromosomes, allowing the 

calculation of exact TLH within each individual hybrid. DNA extractions from individual F1 adults and 

PCR reactions were carried out as in the main methodology; PCR products were sequenced by 

Sanger sequencing, and chromosomes were aligned to each other in Benchling. Table S2 shows the 

TLH and gene drive inheritance rate for each F1 parent. Average TLH was 3.6%, lower than the 

average 5.1% TLH seen in the F1 pools due to the necessity of overestimating SNP presence in the 

G3 sequence used for comparison to the pooled samples, but well within the F1 pool range (2.1-

9.4% TLH in zpg-7280/N’Gousso F1 hybrids).  

 

Table S2 – Target locus heterology (TLH) between chromosomes of zpg-7280/N’Gousso F1 hybrids, 

and the inheritance rate of the gene drive in their offspring, indicating the efficacy of the gene drive 

into a heterogeneous target chromosome. * sequences were truncated to omit poor quality 

sequences. 

Sample 
Length 

(bp) 
Mismatches 

(bp) 
TLH 
(%) 

Drive inheritance 
rate in offspring 

(%) 

1 725 24 3.31 86.7 

2 726 23 3.17 100.0 

3* 613 19 3.10 100.0 

4* 689 21 3.05 87.2 

5 724 39 5.39 89.1 

6 724 25 3.45 100.0 
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Table S3: Primers used for amplicon sequencing of TLH regions. Sequences in brackets indicate 

Illumina adapter sequences (not included in annealing temperature calculation). WT = wild type, GD 

= gene drive. 

Fragment Primer name and sequence Annealing 
temp. (°C) 

5958 WT left 5958-F1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
GCG CAC ATT AAG CCG TAC C-3’ 
5958-R1 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
AGT GAC GAG ATA CTG GAG CC-3’ 
 

63 
 

5958 WT right 5958-F2 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
TCC TGG AGC AAC CGA TCA AG-3’ 
5958-R2 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
TCG AGT AAA CCT TCT GGC CG-3’ 
 

64 

7280 WT left 7280-F1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
GAC CGT TTG TGT GTC AGA GCA-3’ 
7280-R1 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
GAA GCT CTC TGT GTG GCA CTA-3’ 
 

64 

7280 WT right 7280-F2 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
TGT GGG ATG GAT CAG ATG CT-3’ 
7280-R2 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
CTC TGT ACT GAG GTC TGT TGT G-3’ 
 

63 
 

5958 GD right GDf1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) CAA 
CTT GAA AAA GTG GCA CCG-3’ 
5958-R2 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
TCG AGT AAA CCT TCT GGC CG-3’ 
 

63 

5958 GD left 5958-F1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
GCG CAC ATT AAG CCG TAC C-3’ 
GDr1 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
CAA TGT ATC TTT CCG GAG CG-3’ 
 

61 

7280 GD right GDf1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) CAA 
CTT GAA AAA GTG GCA CCG-3’ 
7280-R2 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
CTC TGT ACT GAG GTC TGT TGT G-3’ 
 

63 

7280 GD left 7280-F1 5’- (ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT) 
GAC CGT TTG TGT GTC AGA GCA-3’ 
GDr1 5’- (GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CT) 
CAA TGT ATC TTT CCG GAG CG-3’ 

61 
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Figure S2: Comparison of larvae number produced by single females from hybrids of zpg-7280 and 

four different strains. Control larvae numbers were from Hammond et al. (2021) (n=66). Tiassale 

n=10, N’Gousso n=11, Kisumu n=11, Busia n=11. No significant difference in larval production was 

found between any strain (pairwise t test, p > 0.05 for all comparisons), suggesting that there was no 

reduction in fertility in gene drive/alternate strain hybrids.  

 

Hammond et al. (2021). Regulating the expression of gene drives is key to increasing their invasive 

potential and the mitigation of resistance. PLoS Genetics 17(1), e1009321. 

 

 


