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Abstract 
We propose a novel stochastic model for the spread of antimicrobial-resistant bacteria in a population, together 
with an efficient algorithm for fitting such a model to sample data. We introduce an individual-based model for 
the epidemic, with the state of the model determining which individuals are colonised by the bacteria. The 
transmission rate of the epidemic takes into account both individuals’ locations, individuals’ covariates, 
seasonality, and environmental effects. The state of our model is only partially observed, with data 
consisting of test results from individuals from a sample of households. Fitting our model to data is 
challenging due to the large state space of our model. We develop an efficient SMC2 algorithm to estimate 
parameters and compare models for the transmission rate. We implement this algorithm in a 
computationally efficient manner by using the scale invariance properties of the underlying epidemic model. 
Our motivating application focuses on the dynamics of community-acquired extended-spectrum beta- 
lactamase-producing Escherichia coli and Klebsiella pneumoniae, using data collected as part of the Drivers 
of Resistance in Uganda and Malawi project. We infer the parameters of the model and learn key epidemic 
quantities such as the effective reproduction number, spatial distribution of prevalence, household cluster 
dynamics, and seasonality. 
Keywords: antimicrobial-resistant bacteria, epidemiology, individual-based model, SMC2 

1 Introduction 
Individual-based stochastic epidemic models offer a powerful approach to disentangling the com-
plex nature of disease transmission in populations of interest and have been shown to provide un-
precedented insight into the determinants of risk in outbreak settings in humans, livestock, and 
plants (Deardon et al., 2010; Jewell et al., 2009; Parry et al., 2014; Probert et al., 2018; Vlek 
et al., 2013). Typically, these models comprise a state-transition process, where individuals tran-
sition between a discrete set of epidemiological states; for example, the well-known SIR model as-
sumes individuals start as susceptible to infection, before progressing sequentially to infected, and 
thereafter removed (either recovered with solid immunity or dead). The ability to model the tran-
sition rates as a function of time, incorporating both the configuration of the states, individual- 
level covariates, and known relationships between individuals, allows a detailed analysis of the im-
portance of such features in a given outbreak setting. 

In general, inference for epidemic models is complicated by the need to account for censored 
event data (e.g. unobserved susceptible to infected transitions) or risk-biased parameter estimates. 
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For well-characterised medium-sized populations where all individuals are observed—such as 
populations of farms, or patients within a hospital—a Bayesian approach employing Markov 
chain Monte Carlo data augmentation (daMCMC) represents the state of the art (Deardon 
et al., 2010; Jewell et al., 2009; Vlek et al., 2013). However, as the population and the number 
of censored transition events increase, or the fraction of the observable population decreases, these 
methods rapidly lose efficiency. Moreover, for cyclic state-transition models in which individuals 
can experience more than one instance of any transition event, exploring the space of the number 
of transition events, as well as when they occurred, presents a severe implementational challenge. 

A popular alternative is approximate Bayesian computation (Fearnhead & Prangle, 2012;  
Kypraios et al., 2017; Sunnåker et al., 2013) which requires only a simulator from the model to 
give samples from an approximation to the true posterior distribution. However, the quality of 
this approximation requires the specification of informative, low-dimensional summary statistics, 
and these can be difficult to construct (Barnes et al., 2012; Prangle et al., 2014). 

Another option is particle MCMC (PMCMC) (Andrieu et al., 2010), where the intractable like-
lihood is replaced by an estimate obtained using sequential Monte Carlo (SMC) techniques. The 
appealing aspect of PMCMC methods is their exactness, in the sense that they are proven to target 
the true posterior distribution of the parameters. However, they are computationally expensive as 
they require running an entire SMC for each MCMC step, and so it is unlikely to be computation-
ally practicable in individual-based epidemic models where the population size is large. PMCMC 
algorithms are not sequential as they use SMC only to estimate the likelihood. The recent innov-
ation, SMC2 (Chopin et al., 2013), is an SMC algorithm that allows parameter inference, only re-
quiring PMCMC steps when we need to overcome particle degeneracy of the parameters. SMC2 

appears to have multiple appealing features for individual-based epidemic models: it is a sequential 
algorithm, it does not require too many PMCMC steps, and it provides an estimate of the marginal 
likelihood of the model. 

In this article, we apply the SMC2 algorithm to an individual-level model of acquisition and loss 
of commensal antimicrobial resistance (AMR) carrying bacteria in three study communities in 
Malawi. As described in Section 1.1, the study represents a typical scenario in which a cyclic sto-
chastic state-transition model is desired to investigate the drivers of transmission, and the observed 
data set represents a panel of individuals sampled sparsely from the population. We show the util-
ity of SMC2 for fitting a high-dimensional individual-based epidemic model like ours, identifying 
its advantages over other popular approaches for fitting such a model: it is easy to implement, it 
does not need any summary statistics, it is computationally feasible for large populations. 

1.1 Transmission of ESBL E. coli and K. pneumoniae in Malawi 
Our work is motivated by the challenge of fitting an individual-based epidemic model for the 
spread of bacterial infection. The data set consists of positive–negative sample results for colonisa-
tion with extended-spectrum β-lactamase (ESBL) producing Escherichia coli (E. coli) and 
Klebsiella pneumoniae (K. pneumoniae), individual ID, household ID, household location, 
individual-level variables: gender, income, and age, extracted from the complete data set 
(Cocker, Sammarro, et al., 2022). The samples were collected in three study areas in Malawi: 
Chikwawa, Chileka, and Ndirande, over a time span of about 1 year and 5 months (from 29 
April 2019 to 24 September 2020) covering both the wet (November–April) and dry (May– 
October) seasons. Households involved in the study were sampled using an ‘inhibitory with close 
pairs’ design extended to allow for sampling within sites with spatially heterogeneous populations 
(Chipeta et al., 2017; Cocker, Sammarro, et al., 2022). The output of the collecting procedure is a 
time series with data appearing roughly twice a week (time sparsity) and some periods without 
samples (e.g. during the COVID outbreak). 

To analyse this data, we introduce an individual-based epidemic model, where the state of the 
model determines which individuals are colonised on a given day. The dynamics of such models 
can be defined by specifying the rate at that any colonised individual colonises an uncolonised in-
dividual and the rate at which a colonised individual recovers. As we are modelling antimicrobial- 
resistant bacteria, a recovered individual is assumed to be susceptible to future colonisations. An 
individual-based model is flexible as it allows us to account for the different factors that affect the 
colonisation rate—and we consider and estimate the effect of time-of-year, distance between  
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individuals, whether individuals share the same home, and covariate information such as gender, 
income, and age on the rate at which one individual infects another. 

To use such an approach, we need the state of our model to include not only the colonisation 
status of the individuals that we sample but also the infection status of individuals in the popula-
tion at large. Due to the scale-invariance of epidemic models, and in order to make inference com-
putationally feasible, we use a subsample of individuals from the population rather than all 
individuals and we checked that our results were robust to using such a subsample, by comparing 
results with different subsample sizes—see the supplementary material. The samples of individuals 
were obtained by creating a synthetic population based on sampling households but keeping all 
individuals within a household. We sampled household locations from the DRUM database 
household sample, the STRATAA census (Darton et al., 2017), OpenStreetMap (OSM) building 
data, or resampled from the DRUM database household sample itself with jitter, and individuals 
within each household were obtained from the DRUM database household sample with any miss-
ing member of the household sourced from the other households with the most similar character-
istics. In total, we generated a synthetic population of 36,314 individuals for Ndirande distributed 
over 7,949 households, 13,337 individuals for Chileka distributed over 2,888 households, and 
9,678 individuals for Chikwawa distributed over 2,416 households. The population sizes are se-
lected both to ensure good posterior estimates, see Section 3, and to respect memory constraints on 
the GPU nodes of the high-end computing facility from Lancaster University. Figure 1 shows the 
data before and after the filling procedure. 

2 Methodology 
2.1 Agent-based UC model 
Consider a population size nI, which varies according to the area (e.g. nI = 36,314 in Ndirande), 
and define an index set {1, . . . , nI} with the notation k ∈ {1, . . . , nI} identifying uniquely an 
individual in the population. Let Ct ∈ {0, 1}nI be a vector representing the state of the population 
with respect to a single bacterium. For example, if we look at E. coli, C(k)

t = 1 means the kth 
individual is colonised with E. coli at time t, and C(k)

t = 0 means that they are uncolonised. A model 
of this nature is typically defined in continuous time, however, as the data used for analysis are 
collected in discrete-time intervals, we resort to using a discrete-time Markov chain. Initially, 
we consider a daily model, though more general discretisations are described in Section 3. 

Figure 1. Households are represented with symbols whose size changes according to the household size. Sampled 
households are reported in the left plot (bottom left corner for Chikwawa, top right corner for Chileka and Ndirande). 
Synthetic households can be found in the right plot. Different symbols and different colours are associated with 
different areas.   

J R Stat Soc Series C: Applied Statistics                                                                                                      3 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad055/7219386 by guest on 14 July 2023

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad055#supplementary-data


For a daily discretisation, we model (Ct)t≥0 as a discrete-time Markov chain, with a one-time 
unit corresponding to a day, where each component k evolves as: 

C(k)
0 ∼ B(1 − e−λ0 ), C(k)

t+1 ∼
B 1 − e−λt(θ)(k)
 

if C(k)
t = 0

B(e−γ) if C(k)
t = 1

⎧
⎪⎨

⎪⎩
(1) 

where B(·) is the Bernoulli random variable, 1 − e−λ0 is the initial probability of colonisation, 
λt(θ)(k) is the transmission rate on individual k at time t, with these depending on unknown param-
eters θ, and γ is the recovery rate, which is common across individuals. The resulting discrete-time 
model can also be introduced directly, with parameters specifying the probability of recovery and 
infection for each day, but we believe that linking to an underlying continuous-time model aids 
with the interpretability of the parameters. 

The above construction considers the colonisation process of the bacteria as a 
susceptible-infected-susceptible (SIS) model (Keeling & Rohani, 2011) because the nature of the 
bacteria does not allow the individuals to become immune. We refer to this model as the 
Uncolonised–Colonised model or the UC model for short. See Figure 2 for a graphical 
representation. 

In (1), the recovery rate γ is assumed to be constant across individuals and over time, while the 
transmission rate λt(θ)(k) is considered to be both time-varying and not homogeneous across indi-
viduals. We allow the transmission rate to take into account: within household transmission, be-
tween households transmission (and spatial distance), seasonality, the effect of individuals’ 
covariates, and a fixed effect from the environment. We define these effects separately and we 
then combine them to formulate λt(θ)(k). 

Before listing the transmission rate components, we define the households as sets of individuals’ 
indexes. Consider the household partition H, which is a partition over the set {1, . . . , nI}, then H ∈ 
H stands for a household and k ∈ H is an individual inside the household H. Throughout the 
manuscript, we use Hk to denote the household of individual k. 

Firstly, consider the within household transmission. We consider two possible models for the 
within household rate, each defined as: 

λw
t (β1)(k) := β1


k′∈Hk C(k′)

t

κ1(Hk)
, 

but a different choice of κ1(Hk). Here, β1 is a positive parameter and κ1(Hk) is either the number of 
individuals in household Hk, which we denote with |Hk|, or 1. These choices correspond, respect-
ively, to a model in which colonisation rate is diluted by, or constant with respect to, increasing 
household size. 

Secondly, consider the between household transmission. We propose four models for the be-
tween household rate defined as: 

λa
t (β2, ϕ)(k) := β2



H∈H
DHk,H

ϕ


k′∈H C(k′)

t

κ2(H)
, 

Figure 2. A graphical representation of the UC model dynamic for a general individual k described in equation (1). U 
stands for ‘uncolonised’, while C stands for ‘colonised’.   
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but different choices of κ2(H) and DHk ,H
ϕ . Here, β2, ϕ are positive parameters and the model for-

mulation varies according to κ2(H), which is either 1 or |H|, and DHk,H
ϕ , which is a spatial kernel 

defined as: 

DHk,H
ϕ := e−fϕ(d(Hk ,H)) if Hk ≠ H

0 otherwise,



where fϕ(x) is either x/ϕ (exponential decay) or x2/(2ϕ2) (Gaussian decay) and d(Hk, H) is the 
Euclidean distance between the rectangular coordinates of the households Hk and H in kilometres. 
Exploring the space of possible spatial kernels was outside the scope of this paper and we restricted 
our study to the Gaussian-exponential case. However, since our method allows straightforward 
estimation of the marginal likelihood, it would be possible to formally compare a number of com-

peting spatial models. As already mentioned, DHk,H
ϕ is a spatial kernel that scales the transmission 

from each household with the distance, meaning that households that are far away from Hk are 
less likely to influence the colonisation process of k. In addition, DH,H

ϕ = 0 because the within 
household effect is modelled separately. This allows to decouple within household and between 
households transmissions and it improves identifiability. The form of fϕ distinguishes a fast 
(fϕ(x) = x/ϕ) from a slow (fϕ(x) = x2/(2ϕ2)) decay at the origin, see Figure 3. In practice, fϕ(x) = 
x2/(2ϕ2) implies a higher colonisation pressure from the neighbours. 

Thirdly, we know that the prevalence of ESBL-producing E. coli and K. pneumoniae is higher 
during the wet season in Malawi (Lewis et al., 2019), so we additionally define a seasonal effect: 

st(α) := 1 + α cos (frequency · t + phase), 

where α is a parameter in (0, 1) and frequency, and phase are chosen such that the peak of the 
function is in the middle of the wet season. A graphical representation is available in the  
supplementary material. Seasonality should not influence the within household transmission, be-
cause we expect the household environment to be stable over time. For this reason, we use the sea-
sonal effect as a multiplier of the between households transmission rate. 

Next, the individuals’ covariates might influence the transmission rate, hence we define an indi-
vidual effect: 

I(δ)(k) := e〈(covariates of k),δ〉, 

Figure 3. The considered decay functions, solid lines show the ‘slow’ (Gaussian) decay for ϕ ∈ (e−3, e−2), while 
dotted lines show the ‘fast’ (exponential) decay for ϕ ∈ (e−3, e−2).   

J R Stat Soc Series C: Applied Statistics                                                                                                      5 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad055/7219386 by guest on 14 July 2023

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad055#supplementary-data


where δ is a three-dimensional vector with each component referring to a different covariate 
(i.e. gender, income, and age), ‘covariates of k’ are the standardised covariates of individual 
k and 〈 · , · 〉 denotes the scalar product between vectors. In contrast with the seasonal effect, 
we assume the individual effect to impact both the within household and the between households 
transmissions, hence we employ it as a global multiplier. 

Finally, we also assume the presence of a fixed effect ϵ, which is capturing the transmission that 
is not explained by the population dynamic and acts as a shift on the transmission rate. 

The final formulation of the transmission rate combines these features and is defined as: 

λt(θ)(k) = I(δ)(k)(λw
t (β1)(k) + st(α)λa

t (β2, ϕ)(k)) + ϵ, 

where θ = (β1, β2, ϕ, α, δ, ϵ). 
We have defined eight different combinations of models, which vary according to 

κ1(|H|), κ2(|H|), fϕ, these are further combined with setting or learning δ, α, ϵ, for a total of fifty- 
five models. 

2.2 Observation model 
We use Yt ∈ {0, 1, NA}nI to indicate the test results of a specific bacterial species at time t, with NA 
standing for ‘not available’ (i.e. not tested at that time or not included in the study). For instance, if 
we look at ESBL K. pneumoniae then Y(k)

t = 0 means that individual k has tested negative for col-
onisation with ESBL K. pneumoniae at time t and reported in our data set. We note that only a 
small subset of individuals is detected and it varies with time, hence we define the set Dt ⊂ 
{1, . . . , nI} to represent the detected individuals at time t. Additionally, regarding the specificity 
and sensitivity of the test, even though C(k)

t = 1, there is a probability that we might get a false nega-
tive result (i.e. Y(k)

t = 0). Keeping these in mind we define the conditional distribution of Y(k)
t given 

C(k)
t as: 

Y(k)
t |C

(k)
t ∼

B(se) if k ∈ Dt, C(k)
t = 1

B(1 − sp) if k ∈ Dt, C(k)
t = 0

NA otherwise,

⎧
⎪⎨

⎪⎩
(2) 

where se, sp are in (0, 1) and they represent the sensitivity and specificity of the test. As discussed in 
Section 1.1, the data are sparse in both time and space. This sparsity is treated in (2) through the 
evolving set Dt, which can be directly extracted from the data. 

Sensitivity se, specificity sp along with the recovery rate γ, frequency and phase are treated as 
known. 

3 Inference 
By definition, (Ct)t≥0 is an unobserved Markov chain and Yt is conditionally independent of all the 
other variables in the model given Ct, hence (Ct, Yt)t≥0 is a hidden Markov model with finite 
state-space (Rabiner & Juang, 1986; Zucchini & MacDonald, 2009). Inference in a finite 
state-space hidden Markov model is naively pursued by computing the likelihood in closed 
form through the forward algorithm and then plugging it in a Markov chain Monte Carlo 
(MCMC) algorithm (Andrieu et al., 2003; Robert & Casella, 2004) to sample from the posterior 
distribution over the parameters of interest. However, in our case, this requires a marginalisation 
over the latent state-space and so operations of the order D(2nI ), which is infeasible for even 
moderate-size populations. 

We implement the SMC2 algorithm proposed by Chopin et al. (2013), which sequentially tar-
gets the posterior over both the parameters θ and the latent process C0, . . . , Ct. 

3.1 SMC and SMC2 

SMC2 can be intuitively seen as an SMC algorithm within an SMC algorithm, where the former 
controls the latent process Ct and the latter guide the parameters θ. The SMC algorithm for the 
latent process uses the auxiliary particle filter (APF) (Carpenter et al., 1999; Johansen &  
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Doucet, 2008; Pitt & Shephard, 1999) which proposes new states according to the distribution of 
Ct |Ct−1, Yt. In our model, it is simple to check that C(k)

t are conditionally independent given 
Ct−1, Yt. Furthermore, the distribution of C(k)

t will differ depending on whether we have data 
on individual k at time t. For individuals with data, the distribution of C(k)

t is B(p(k)
t ) with: 

p(k)
t :=

1 − e−λt(θ)(k)
 

sY(k)
t

e 1 − se( )1−Y(k)
t

 

1 − e−λt(θ)(k)
 

sY(k)
t

e 1 − se( )1−Y(k)
t

 

+ e−λt(θ)(k)
s1−Y(k)

t
p 1 − sp

( Y(k)
t

  if C(k)
t−1 = 0

e−γ sY(k)
t

e 1 − se( )1−Y(k)
t

 

e−γ sY(k)
t

e 1 − se( )1−Y(k)
t

 

+ 1 − e−γ( ) s1−Y(k)
t

p 1 − sp
( Y(k)

t

  if C(k)
t−1 = 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3) 

where the above is computed using (1) and (2) and with: 

p(k)
0 :=

1 − e−λ0
( 

s
Y(k)

0
e 1 − se( )1−Y(k)

0

 

1 − e−λ0
( 

s
Y(k)

0
e 1 − se( )1−Y(k)

0

 

+ e−λ0 s
1−Y(k)

0
p 1 − sp

( Y(k)
0

  . (4) 

The APF for the UC-model is reported in Algorithm 1, where a key role is played by the denom-
inators in (3)–(4): 

w(k)
0 := 1 − e−λ0

( 
s

Y(k)
0

e 1 − se( )1−Y(k)
0

 

+ e−λ0 s
1−Y(k)

0
p 1 − sp

( Y(k)
0

 

,

w(k)
t := 1 − e−λt(θ)(k)

 
sY(k)

t
e 1 − se( )1−Y(k)

t

 

+ e−λt(θ)(k)
s1−Y(k)

t
p 1 − sp

( Y(k)
t

 

1 − C(k)
t−1

 

+ e−γ sY(k)
t

e 1 − se( )1−Y(k)
t

 
+ 1 − e−γ( ) s1−Y(k)

t
p 1 − sp

( Y(k)
t

  

C(k)
t−1.

If k ∉ Dt (the set of sampled individuals) then C(k)
t |C

(k)
t−1, Yt is distributed as C(k)

t |C
(k)
t−1 and follows 

(1), with w(k)
t = 1. Both p(k)

t and w(k)
t depend on C(k)

t−1, and we make this dependence explicit in 

Algorithm 1 by writing pp,(k)
t and wp,(k)

t , where p is the particle index. Given the parameters θ, 
the APF allows us to build particle approximations of the distribution of Ct |Y0, . . . , Yt and esti-
mates of the likelihood (i.e. the quantity L(θ)). 

Algorithm 1 requires us to know θ, but it can be combined with another SMC algorithm to infer 
the parameters: resulting in the SMC2 algorithm. This algorithm stores at iteration s a particle ap-
proximation to the joint posterior distribution of the parameters and latent state given the data up 
to the sth sample of households. These particle approximations are updated recursively from s to 
s + 1 by simulating the dynamics of the latent state between the associated time-points (particles 
for the latent process), weighting by the likelihood of the data at time s + 1, and, if needed, resam-
pling of the parameters (particles for the parameters). A key component of SMC2 is the use of a 
particle MCMC step at resampling events, which allows for new parameter values to be sampled 
from their correct conditional distribution. An advantage of SMC2 is that we can monitor the par-
ticle weights to get an estimate of the marginal likelihood for our model (Chopin et al., 2013;  
Chopin & Papaspiliopoulos, 2020). Pseudocode for SMC2 is reported in Algorithm 2, where 
from line 16 onward we briefly report the rejuvenation step and line 21 refers to a Metropolis– 
Hastings using the approximate likelihoods, more details are available in the supplementary  

J R Stat Soc Series C: Applied Statistics                                                                                                      7 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad055/7219386 by guest on 14 July 2023

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad055#supplementary-data


material and in Chopin et al. (2013). A key part of the rejuvenation step is the check on ESS(wθ) := 
[
Pθ

m=1 (wm
θ )2]/(

Pθ
m=1 wm

θ )2 being above a certain threshold, which, in our application, is set to 
Pθ/2. The intuition behind this rejuvenation step is simple if our sample of parameters θm is not 
a good representation of our data we generate a new sample of parameters according to a 
Metropolis–Hastings kernel. 

Algorithm 1 APF for UC-model 

Require: P, θ, Y1, . . . , Yt 

11: for p = 1, . . . , P do 

12: for k = 1, . . . , nI do 

13: Compute p(k)
0 , sample Cp,(k)

0 ∼ B(p(k)
0 ) and compute w(k)

0 

14: Set w0 ←
nI

k=1 w(k)
0 and L0(θ)← w0 

15: for s = 1, . . . , t do 

16: for p = 1, . . . , P do 

17: for k = 1, . . . , nI do 

18: Compute pp,(k)
s , sample Cp,(k)

s ∼ B(pp,(k)
s ) and compute wp,(k)

s 

19: Set wp
s ←

nI
k=1 w p,(k)

s 

10: Set Ls(θ)← Ls−1(θ) 1
P

P
p=1 wp

s 

11: Resample Cp
s proportionally to wp

s  

Algorithm 2 SMC2 for inference in UC-model 

Require Pθ,P, θ, Y1, . . . , Yt 

11: for m = 1, . . . , Pθ do 

12: Sample θm from the prior and set wm
θ ← 1 

13: for p = 1, . . . , P do 

14: for k = 1, . . . , nI do 

15: Compute p(k)
0 , sample Cm,p,(k)

0 ∼ B(p(k)
0 ) and compute w(k)

0 

16: Compute w0 ←
nI

k=1 w(k)
0 , set wm

θ ← w0 and L0(θm)← w0 

17: Set the marginal likelihood L0 ← w0 

18: for s = 1, . . . , t do 

19: for m = 1, . . . , Pθ do 

10: for p = 1, . . . , P 

11: for k = 1, . . . , nI do 

12: Compute pm,p,(k)
s depending on θm and Cm,p

t−1 

13: Sample Cm,p,(k)
s ∼ B(pm,p,(k)

s ) and compute wm,p,(k)
s 

14: Set wm,p
s ←

nI
k=1 wm,p,(k)

s 

15: Set wm
θ ← wm

θ
1
P

P
p=1 wm,p

s and Ls(θm)← Ls−1(θm) 1
P

P
p=1 wm,p

s 

16: Set the marginal likelihood Ls ← Ls−1
1

PθP

Pθ
m=1

P
p=1 wm

θ wm,p
s 

17: If ESS(wθ) ≤ Pθ/2 then 

18: Resample θm proportionally to wm
θ 

19: Propose θ̃m 
given θm and run Algorithm 1 up to s: 

20:  † get C̃
m,p
s and Ls(θ̃

m
) 

21: Keep (θm, Cm,p
s , Ls(θm)) or replace with (θ̃m

, C̃
m,p
s , Ls(θ̃

m
)) 

22: Set wm
θ ← 1   
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To get an efficient implementation of SMC2, we combine it with APF (Johansen & Doucet, 
2008) and we simulate the new latent states over a time-step of up to 7 days, see next paragraph. 
We also take advantage of the independence of our model over the two bacterial species and the 
three geographic regions so that we can parallelise the fitting procedure across species, regions, and 
models for the infection rate. 

Time jumping APF within SMC2 

The time sparsity of the data makes the use of APF challenging for applications where Dt = ∅ for 
most t’s. Indeed, whenever Dt = ∅ we are sampling from the transition kernel in (1), without cor-
recting with observed data, which might lead to a low effective sample size of the weights and high- 
variance estimates of the likelihood (Ju et al., 2021; Rimella et al., 2022). We propose to use a 
coarser time discretisation and simulate new individuals’ states every h days instead of every 
day. This can be done by generalising (1): 

C(k)
0 ∼ B(1 − e−λ0 ), C(k)

t+h ∼
B 1 − e−hλt(θ)(k)
 

if C(k)
t = 0

B(e−hγ) if C(k)
t = 1

⎧
⎪⎨

⎪⎩
(5) 

and by using this new dynamic to compute a p(k)
t+h as in (3), with hλt(θ)(k) and hγ appearing instead 

of λt(θ)(k) and γ. Our main results are based on a weekly discretisation, so h = 7. However, the 
DRUM data are not equally spaced in time, hence we define a simulation schedule between 
each pair of observations. The schedule is built by looking at a pair of times t1, t2 where 
Dt1 ≠ ∅, Dt2 ≠ ∅ and Dt = ∅ for all t ∈ [t1, t2], and by dividing the interval [t1, t2] into subintervals 
of size 7 starting from t2 and going backwards (with the final being less than 7 if t2 − t1 is not div-
isible exactly). Note that choosing a bigger h also affects the computational efficiency of the algo-
rithm, by reducing the amount of simulation in the SMC2 and so the computational cost. The 
validity of this procedure is checked empirically in Section 4. 

4 Simulation study 
As mentioned in the previous section, we run our experiments using an SMC2 where the embedded 
APF is computing Ct+h |Ct, Yt+h by combining dynamic (5) with the emission distribution (2). The 
advantages of such an approach are mainly computational and we also find it to improve inference 
(e.g. smoother posterior distributions, higher effective sample size). 

We test empirically the validity of this procedure on simulated data generated as follows: 

• we set log (β1) = −2.8, log (β2) = −4.4, log (ϕ) = −4.6, δ = (0, 0, 0), α = 0.8, log (ϵ) = −6.1, 
κ1(H) = κ2(H) = |H|, fϕ(x) = x/ϕ; 

• we create a population as the one in Ndirande by merging the real data with the synthetic data; 
• we simulate from (1) and report with (2), using an Dt as in the K. pneumoniae data from 

DRUM. 

The above data are then analysed with an SMC2 algorithm where h = 1, 3, 7. Each algorithm is 
run four times to check the reliability of the output. The run with the highest likelihood is then 
chosen and the corresponding posterior distributions are reported in Figure 4. From Figure 4, 
we can notice that we are able to recover almost exactly β2, ϕ, and ϵ, while β1 is underestimated, 
which is due to the multimodality of the model and the sparsity of the observations. Increasing h 
massively influences the computational cost which is around 316 min for h = 1, 101 min for h = 3, 
and 40 min for h = 7, and smooths the posterior distributions as shown in Figure 4, but seems to 
introduce little bias. We also noticed that a higher h is associated with a larger effective sample size 
of the parameters, indeed for h = 1, we run 19 rejuvenation steps, for h = 3, we run 15 rejuven-
ation steps, and for h = 7, we run 13 rejuvenation steps.  
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5 Analysis of DRUM data 
5.1 Model selection 
As already mentioned in the previous section, SMC2 outputs both a sample from the posterior dis-
tribution over the parameters and a marginal likelihood estimate. We use the latter for model se-
lection and the former to estimate the parameters and interpret the results. 

We perform inference in all the settings described in Section 2.1, with: 

• λ0 = 0.13, as the estimated percentage of the population affected by the bacteria was deter-
mined to be 13% in Sammarro et al. (2022); 

• frequency = 2π/365.25 to ensure a period of 1 year, phase = 0.55π to align with the wet–dry 
seasons in Malawi, and so match our underlying knowledge on the bacteria (Jewell & Brown, 
2015); 

• sensitivity se = 0.8 and specificity sp = 0.95 as in Cocker, Chidziwisano, et al. (2022); 
• γ = 1/10 as suggested in Lewis et al. (2019), to improve identifiability. 

We note that because our observations are noisy versions of the state of the population, rather than 
the transition events themselves (e.g. Jewell et al., 2009), we cannot identify β1 and β2 from γ. Since 
in our analysis, we are more interested in the colonisation rates, we solve this by assuming a fixed 
value for γ according to a previous study (Lewis et al., 2019). 

We run a total of 55 different models for each bacterial species–study area combination, with 
each SMC2 run four times to ensure robustness of the output. For each bacteria and each model, 
we compute the posterior distribution over the models under a uniform prior. Finally, the marginal 
likelihoods are aggregated over the study areas, and we report the models with the five highest 
marginal likelihoods in Table 1. We find that: 

• for E. coli it is better to estimate ϵ rather than setting it to 0, use an exponential decay in the 
spatial kernel rather than a Gaussian, set κ1(|H|) = 1 rather than |H|, set κ2(|H|) = |H| rather 
than 1, set δ = (0, 0, 0) rather than estimate it and set the seasonality to 0.6 rather than esti-
mate it; 

• for K. pneumoniae it is better to estimate ϵ rather than setting it to 0, use a Gaussian decay in 
the spatial kernel rather than an exponential, set κ1(|H|) = |H| rather than 1, set κ2(|H|) = |H|
rather than 1, set δ = (0, 0, 0) rather than estimate it and set the seasonality to 0.8 rather than 
estimate it. 

For both E. coli and K. pneumoniae, we first try to learn δ and α: for the former, we find δ ≈ 
(0, 0, 0) so we decide to set δ = (0, 0, 0); for the latter, we find a posterior distribution over α in 
the interval (0.4, 0.6) for all the areas of study, see supplementary material, but this introduces 
a multimodal posterior distribution for the other parameters. Therefore, we take the pragmatic 

Figure 4. Posterior distribution for simulated data on Ndirande when h = 1, 3, 7. On the columns from left to right: 
posterior distribution for β1, β2, ϕ, ϵ. On the rows from top to bottom: h = 1, 3, 7.   
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decision to learn α over the grid (0.2, 0.4, 0.6, 0.8) to improve identifiability. We note that setting 
δ and α also reduces the computational cost and gives higher marginal likelihood estimates. 

5.2 Parameter estimation 
The posterior distributions over the parameters β1, β2, ϕ, ϵ from the model with the highest mar-
ginal likelihood are reported in Figure 5, showing significant departure from their corresponding 
prior distributions. 

We notice that for E. coli, κ1(|H|) = 1 suggesting a ‘frequency dependent’ behaviour where the 
within household transmission increases with the number of colonised individuals in the house-
hold. However, we find that κ1(|H|) = |H| for K. pneumoniae giving a ‘density dependent’ behav-
iour of the force of colonisation with respect to the household size, i.e. a dilutional effect on the 
force of colonisation as the household size increases (Cocker, Chidziwisano, et al., 2022;  
Sammarro et al., 2022). For the between households transmission rate, we find κ2(|H|) = |H|
for both bacteria, which is plausible since we are modelling contacts with colonised households. 
Indeed, considering the transmission rate on individual k, we can assume that once a contact be-
tween k and household H happens, the contact is going to be successful (resulting in the colonisa-
tion of k) according to the probability of meeting a colonised individual in H, which is the 
proportion of colonised in H. 

Another interesting aspect of the study is the comparison of the spatial decay parameter ϕ, which 
is shown in Figure 6. When comparing bacterial species, we observe that K. pneumoniae has a slow 
decay in space for closer households (Gaussian decay) compared to E. coli, K. pneumoniae then 
decays faster compared to E. coli for more distant households. This is most likely due to the dif-
ferent ways in which the bacteria transmit. Escherichia coli is frequently linked to the environ-
ment, especially faecal extraction by humans and animals, hence an individual is more likely to 
become colonised if living in a contaminated environment, hence we expect it to be more persistent 
with distance. Colonisation with K. pneumoniae typically occurs after direct contact hence it is 
restricted to the closest neighbours. 

Given the sparsity of our data, seasonality (α) is difficult to identify. However, confirmed sea-
sonality in other studies motivates its inclusion here Cocker, Chidziwisano, et al. (2022). 
Casting this as a model choice problem (Section 5.1), we find that setting α = 0.6 or α = 0.8 gives 
the largest marginal likelihood. This supports the existence of a strong seasonal effect on the 
household transmission rate and so a big variation between wet and dry seasons. 

In this study, we find that δ = (0, 0, 0) gives the best marginal likelihood, from which we con-
clude that age, gender, and income do not play an important role in driving transmission, which 
is also consistent with Sammarro et al. (2022), Cocker, Chidziwisano, et al. (2022). In practice, 
setting δ = (0, 0, 0) implies that I(δ)(k) = 1, indicating homogeneous transmission rates within 
each household, consequently suggesting greater importance of the spatial interactions over the 
individuals’ covariates. 

Table 1. Table reporting the models with the highest posteriors under uniform priors 

κ1(|H|) fϕ(x) α Model posterior under  
uniform prior for E. coli 

Model posterior under  
uniform prior for K. pneu.  

1 x/ϕ  0.6  0.861  <0.005 

|H| x2/(2ϕ2)  0.4  0.068  0.088 

|H| x2/(2ϕ2)  0.8  0.021  0.579 

|H| x/ϕ  0.6  0.016  0.093 

|H| x2/(2ϕ2)  0.2  0.012  0.015 

|H| x/ϕ  0.2  <0.005  0.068 

|H| x/ϕ  0.8  <0.005  0.078 

Note. Model formulation changes according to κ1(|H|), fϕ(x), κ2(|H|), α, δ, ϵ, but κ2(|H|) = |H|, δ = (0, 0, 0) and ϵ with 
N ( − 3, 1) are found to be the best. The best posterior scores are coloured in red.   
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To conclude, the fixed effect ϵ is stronger for E. coli than for K. pneumoniae (with the exception 
of Chileka). This is consistent with the archetypal nosocomial nature of K. pneumoniae, which 
spreads mainly through direct person-to-person contact (Podschun & Ullmann, 1998) and we ex-
pect the population dynamic to prevail, i.e. most of the infections are explained by the interactions 
within and between households. 

Figure 5. Estimated posterior distributions from the experiments’ setting with the highest posteriors for each 
parameter, bacterial species, and area of study. On the left column E. coli, on the right column K. pneumoniae. On 
the rows from top to bottom histograms and KDEs of β1, β2, ϕ, ϵ in log scale. Different shapes, and colours refer to 
different cities and prior distributions.   

Figure 6. Spatial decay with distance (in metres). On the left E. coli, on the right K. pneumoniae. Different colours 
and lines’ shapes show different areas. 90% credible intervals are reported in shaded regions, while lines show the 
medians.   
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5.3 Spatial and temporal incidence 
As already mentioned, SMC2 provides a sample from the posterior distribution over the parame-
ters of interest, which can then be used to sample from the latent process and estimate how colon-
isation with the bacteria evolved over time and space. 

The effective reproduction number, Rt, is a widely recognised measure of the evolution in time 
of the epidemic (Nishiura & Chowell, 2009). Ideally, we would like to compute the average num-
ber of colonisations arising from an average colonised at time t. However, there is no clear defin-
ition of ‘average colonised’ in a heterogeneous population where individuals colonise and become 
colonised at different rates. Given that Rt essentially measures the growth of the epidemic at a giv-
en time, we approximate the effective reproduction number by the expected number of new colon-
ised over the expected number of new uncolonised. For our application, this alternative definition 
has several advantages: 

• Per each particle of the SMC, we only need to sum the probabilities of susceptible individuals 
becoming infected and divide by the sum of the probabilities of infected individuals becoming 
susceptible, precisely: 

Rp
t =

nI
k=1 p p,(k)

t I Cp,(k)
t = 0

 

nI
k=1 1 − p p,(k)

t

 
I Cp,(k)

t = 1
  (6) 

where pp,(k)
t follows the definition in equation (3). From (6), we have a sample of Rt’s which 

can be used to estimate the effective reproduction number (e.g. mean, mode) and quantify un-
certainty (e.g. quantiles). 

• It offers a straightforward interpretation of a growing epidemic whenever Rt is greater than 1 
(i.e. more infected than recovered). 

• It can be decomposed into an Rt within households and an Rt between households, which in-
cludes the fixed effect ϵ. 

Figure 7. Effective R and its decomposition. Escherichia coli is reported in the first column, while K. pneumoniae is 
reported in the second one. The first row shows the effective R, the second row the effective R within households, 
and the third row is the effective R between households. Different colours are associated with different areas. 90%

credible intervals are reported in shaded regions, while lines show the medians.   
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The approximate effective R is reported in Figure 7. We can observe that the effective R is fluctu-
ating above and below 1, showing peaks during the wet season for both E. coli and K. pneumo-
niae. We notice a strong within household effective R for E. coli, which might indicate inadequate 
hygiene practices within the household. For K. pneumoniae, the between households effective R 
seems higher than the within household one, suggesting the interaction between households to 
be the highest source of colonisation, probably due to frequent interaction with neighbours and 
lack of social distancing. 

We now turn our attention to the spatial dimension. In order to estimate the spatial density of 
colonisation, we employ a two-dimensional Kernel density estimation (KDE) on the households, 
utilising a carefully chosen set of KDE weights. We design a weighting system that quantifies the 
spread of the epidemic by estimating the average prevalence over time. In practice this is calculated 
by: (1) running the SMC; (2) computing the prevalence at t per each household; (3) averaging over 
time; (4) averaging over particles. More details are also available in the supplementary materials.  
Figure 8 shows the KDE estimates for average prevalence from E. coli, average prevalence from K. 
pneumoniae and uniform weighting (KDE estimate of the households’ density). Given that areas 
with a high density of households would appear peaky in the KDE even with moderate weights, by 
comparing the results with a uniform weighting, we are able to determine if the spread of the bac-
teria is uniform in space or if it is concentrated in specific areas. 

In Chikwawa, we observe that the density of E. coli is similar to the households’ density, hence 
the bacteria spreads uniformly in space, while K. pneumoniae looks particularly intense in the east 
of the area. For Chileka, both bacteria’s densities are close to the households’ density, hence it 
seems that they spread uniformly in space. In Ndirande, K. pneumoniae has a strong prevalence 
in the southeast of the area, while E. coli looks uniform in space. 

Figure 8. KDE of the spatial density with average colonisation prevalence over time and sampling dimension used 
as weights. On the columns from left to right: Chikwawa, Chileka, and Ndirande. On the rows from top to bottom: E. 
coli, K. pneumoniae, and the KDE with uniform weights. Different colours are associated with different areas of 
study and colour maps are the same in each area of study.   
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6 Conclusion 
We propose to model the spread of AMR bacteria with a partially observed SIS model, called the 
UC model, where the transmission rate takes into account: within household contacts, between 
households contacts and spatial decay, seasonality, individuals’ covariates, and environmental 
effect. We infer the parameters with the algorithm SMC2, which also allows performing model 
selection according to the marginal likelihood of the data. The method is not case-specific and 
can be applied to any epidemics with spatial correlation. We present data on colonisation 
with ESBL-producing E. coli and ESBL-producing K. pneumoniae from three areas in 
Malawi: Chikwawa, Chileka, and Ndirande. As a first step, we impute missing data, by follow-
ing previous studies (Darton et al., 2017) and then we apply our method to obtain a sample from 
the posterior distribution over the parameters of interest. From the study, we find E. coli to be 
more persistent in the environment (fixed effect) compared to K. pneumoniae, which is in con-
cordance with our knowledge of the bacteria (Cocker, Chidziwisano, et al., 2022; Sammarro 
et al., 2022). We find that setting a high seasonal effect gives higher marginal likelihoods than 
smaller values, suggesting significant changes in transmission dynamics throughout the year. 
The effective R helps quantify the contributions of the within and between households contacts. 
We also argue that individuals’ covariates are not influential in the colonisation process, or at 
least that our findings prefer models with transmission rates being homogeneous within the 
households. We also detect geographical hot-spots in the area of Chikwawa for E. coli and in 
the area of Ndirande for K. pneumoniae. 

There are multiple appealing aspects of this approach. Posterior sampling in epidemiological 
modelling is a difficult task and it becomes even more challenging when dealing with sparse 
data. Our method provides an efficient way of performing Bayesian inference on the parameters 
of a SIS model that is both spatially and temporally sparse. Moreover, it is accompanied by a prin-
cipled way of performing model selection and supported by strong mathematical results (Chopin 
et al., 2013). However, the pivotal point of our method is the interpretation, all the parameters and 
structures in the model have a direct connection with real-world data and it is particularly reassur-
ing that our experimental results agree with the scientific knowledge that we have on the consid-
ered bacterial species (Cocker, Chidziwisano, et al., 2022; Sammarro et al., 2022). In addition, our 
approach provides simple ways of building useful tools for investigating outbreaks and tailoring 
public health interventions to contain pathogens. 

To conclude, there are several strands of research that might follow from this work. One mod-
elling assumption we have made is that the recovery time of each individual is exponential. This 
simplifies the model and its computation by making it Markov conditional just on the state of 
each individual: memory efficiency is achieved by only needing to store the current state at each 
iteration of the simulation. This essentially gives (in continuous time) an exponentially distributed 
sojourn in the state, though an interesting extension would be to relax this assumption by using a 
more general class of distribution with positive support. Inference under such a model is possible if 
we extend the state to include the entire epidemic time series, allowing the model to incorporate 
individuals’ event history into the state update (Boguná et al., 2014; Feng et al., 2019). From a 
modelling perspective, following Smith et al. (2009), we could automatically detect the relation 
between transmission rates and host density (density-frequency dependence) by incorporating 
an additional parameter as the exponent of household size in the within household rate, and 
even a second parameter as exponent of the household size in the between household rate. This 
approach would significantly decrease the effort required for model selection by cutting the num-
ber of experiments in half, trading off with additional parameters to infer. There are numerous 
technical questions related to SMC2 and determining the optimal selection of tuning parameters 
and proposal distributions. This study is limited to an SIS model, however, adapting it to more 
intricate compartmental models is straightforward and the methodology can be extended to 
any epidemiological model. Despite being utilised in the field of epidemiology, SMC2 can be 
broadly applied to any data sets with spatial interactions, albeit the computational cost may be-
come prohibitive. 
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