
RESEARCH ARTICLE

Seasonal patterns of Schistosoma mansoni

infection within Biomphalaria snails at the

Ugandan shorelines of Lake Albert and Lake

Victoria

Peter S. Andrus1, J. Russell Stothard2, Christopher M. WadeID
1*

1 School of Life Sciences, University of Nottingham, Nottingham, United Kingdom, 2 Department of Tropical

Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom

* chris.wade@nottingham.ac.uk

Abstract

Intestinal schistosomiasis is hyperendemic in many sub-Saharan African countries. In

Uganda, it is endemic at both Lake Albert (LA) and Lake Victoria (LV) and caused by S.

mansoni that uses Biomphalaria snails as obligatory intermediate snail hosts. To shed light

on local patterns of infection, we utilised two PCR-based methods to detect S. mansoni

within Biomphalaria spp. as collected at the Ugandan shorelines of Lake Albert and Lake

Victoria from 2009–2010. Overall, at our Lake Albert sites, the mean infection prevalence

was 12.5% (15 of 120 snails), while at our Lake Victoria sites the prevalence was 5% (3 of

60 snails). At our Lake Albert sites, the highest infection prevalence of 13.3% (8 of 60 snails)

was at Walukuba, while at our Lake Victoria sites, the highest infection prevalence of 10%

(2 of 20 snails) was at Lwanika. Three species of Biomphalaria, B. pfeifferi, B. stanleyi and

B. sudanica, were identified at our Lake Albert collection sites, while only a single species,

B. choanomphala, was identified at our Lake Victoria collection sites. Biomphalaria stanleyi

(2 of 20 snails; 15%) had the highest infection prevalence, followed by B. sudanica (5 of 60

snails; 13.3%), B. pfeifferi (4 of 40 snails; 10%) and B. choanomphala (3 of 60 snails; 5%).

Of the Biomphalaria species identified, B. choanomphala had the highest haplotype (gene)

diversity score, followed by B. stanleyi, B. sudanica and B. pfeifferi. Sites with a higher mean

prevalence of S. mansoni infection had higher intra-species haplotype diversity scores than

sites with a lower mean prevalence. The wet seasons (LA: 13.3%; LV: 8.7%) had a consis-

tently higher mean infection prevalence of S. mansoni than the dry seasons (LA: 9.5%; LV:

5%) for all species and all sites tested at both Lake Albert (n = 480) and Lake Victoria (n =

320), though the difference was not statistically significant.

Author summary

Human schistosomiasis is a parasitic disease caused by the intravascular trematode genus

Schistosoma. The disease is contracted through contact with contaminated freshwater

sources infested with snails, which serve as the intermediate host for the parasite’s larval
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form. Schistosoma mansoni causes the intestinal form of the disease and utilises Biompha-
laria as its intermediate snail host. To better understand the prevalence of S. mansoni
infection, molecular detection methods can be used to monitor the levels and patterns of

infection within Biomphalaria populations. In this study, the authors examined the preva-

lence of S. mansoni infection within Biomphalaria snails collected from six sites along the

Ugandan shorelines of Lake Albert and Lake Victoria from 2009 to 2010. The study

revealed that infection was more prevalent at Lake Albert compared to Lake Victoria. Dif-

ferent species of Biomphalaria snails were found at each lake, with some species having a

higher infection prevalence than others. The study also investigated the impact of season-

ality on infection prevalence, with the wet seasons having an overall higher prevalence of

infection compared to the dry seasons, although the difference was not statistically signifi-

cant. This research enhances our understanding of S. mansoni infection patterns among

African Biomphalaria snails.

Introduction

Schistosomiasis is a parasitic disease caused by infection with digenetic trematodes of the

genus Schistosoma. It is estimated that 133 million children and 108 million adults are infected

with schistosomiasis worldwide, with over 700 million people being at risk of infection [1].

Schistosomiasis is most prevalent in sub-Saharan Africa, with approximately 93% of infections

and up to 90% of individuals at risk of infection living within sub-Saharan African countries

[2,3]. The disease manifests as either intestinal (caused by Schistosoma mansoni, S. intercala-
tum, S. japonicum or S. mekongi) or urogenital forms (caused by S. haematobium) [4]. Schisto-
soma mansoni is the leading global cause of intestinal schistosomiasis in humans and accounts

for 33% of all schistosomiasis cases [5].

Schistosomiasis is particularly prevalent in East Africa, with Tanzania having the highest

national prevalence with 51.5% (an estimated 23.2 million infected) [6], followed by Uganda

with 25.6% (11 million infected) [7] and Kenya with 14.5% (6 million infected) [8,9]. The dis-

tribution of schistosomiasis is dependent on the ecological requirements of the intermediate

snail host, with the availability of freshwater habitats limiting the spread of schistosomiasis

[10,11]. East Africa has a high prevalence of schistosomiasis due to the abundance of diverse

freshwater environments (lakes, ponds, streams, dams and irrigation canals) that intermediate

snail hosts inhabit [12]. Combined with poor water hygiene and sanitation, this provides an

optimal environment for the transmission of schistosomiasis [12]. Sousa-Figueiredo et al. 2010

reported intestinal schistosomiasis is high among Ugandan shoreline villages, with Lake Albert

having a prevalence of 82.2% in mothers and 68.7% in children, while Lake Victoria had a

lower prevalence of infection, with 66.7% of mothers and 58.6% of children being infected

[13]. This disparity in prevalence has been suggested to be the result of different species of

Biomphalaria being present at each lake, with Lake Albert having reports of B. pfeifferi, B. stan-
leyi and B. sudanica, while Lake Victoria has had reports of B. choanomphala, B. pfeifferi and

B. sudanica [14,15].

The freshwater snail genus Biomphalaria acts as the intermediate host for S. mansoni, with

the African Great Lakes, Lake Albert and Lake Victoria providing a favourable habitat for mul-

tiple species of Biomphalaria [10,11,16,17]. All African Biomphalaria species are capable of

transmitting S. mansoni infection [14], though some species (e.g. B. pfeifferi) are considered

more important than others [18,19]. The rate of schistosome infection within a Biomphalaria
population has traditionally been measured by observing how many snails shed cercariae over
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a 35–42 day period [20]. Previous studies using this traditional cercarial shedding method

have shown that snails at Lake Albert consistently have a higher infection rate than snails at

Lake Victoria [15,21]. Of the Biomphalaria species found at the African Great Lakes, B. stanleyi
is reported as consistently having a high prevalence of S. mansoni infection [12,15,21,22],

while B. choanomphala is reported as consistently having a low infection prevalence

[15,21,23]. A meta-analysis by Hailegebriel et al. (2020) estimated the pooled prevalence of S.

mansoni infection in Biomphalaria snails across Africa was on average 5.6% [19]. However, of

the 51 studies investigating schistosome infection within intermediate snail hosts, only seven

used molecular detection methods, while the rest used the traditional cercarial shedding

method [19]. Molecular detection methods (molecular xenomonitoring) have several advan-

tages over traditional cercarial shedding methods, as they do not require live snail specimens,

are considerably less time consuming, can specifically detect S. mansoni infection, and can

detect infection in both prepatent and shedding snails [24–31]. However, not all prepatent

snails go on to shed cercariae, which can lead to exaggerated levels of infection when using

molecular detection methods. Therefore, the use of both detection methods would ultimately

give the best representation of infection prevalence within a snail population.

The prevalence of S. mansoni infection within a Biomphalaria population is affected by

multiple factors. For example, past studies have associated snail populations with low levels of

genetic variability with a higher prevalence of S. mansoni [32,33]. In addition, environmental

factors such as altitude, water conductivity, water depth, water pH, temperature, droughts and

floods have been shown to affect the prevalence of schistosome infections in snail populations

[34–39]. As a result, many have speculated that S. mansoni prevalence differs throughout the

year due to changes in environmental conditions between the seasons. For example, Uganda

has a bimodal climate with two wet seasons (from March to May and from September to

November) and two dry seasons (from December to February and from June to August) that

take place every year [40]. Adoka et al. (2014) [41] reported that people living at the shoreline

of Lake Victoria believed that intestinal schistosomiasis was more prevalent in the wet seasons

than the dry seasons. Rowel et al. (2015) [15] found evidence in support of this, with their

results showing that the number of Biomphalaria shedding cercariae was higher during the

wet seasons than the dry seasons. However, there are few studies which explore the effect sea-

sonality has on schistosome prevalence within snail populations [42].

Here we use two PCR-based, molecular xenomonitoring detection methods to investigate

the infection prevalence of S. mansoni in Biomphalaria species found at the Ugandan shore-

lines of three Lake Albert and three Lake Victoria collection sites. Additionally, we investigate

the effect seasonality has on the prevalence of S. mansoni infection by comparing the number

of infected snails for each of the four wet and four dry seasons that took place between 2009

and 2010. Lastly, we measured the extent of the intraspecies genetic diversity present in the

Biomphalaria species identified at the sites investigated, in order to determine whether there is

any relationship between the prevalence of infection and the amount of snail host diversity.

Materials and methods

Sample sites and sample selection

Biomphalaria snails used in this study were collected once a month for 29 consecutive months

between 2009 and 2010 from three sites in the Buliisa district on the Ugandan shoreline of

Lake Albert (Bugoigo: 1.908˚N, 31.409˚E; Piida: 1.819˚N, 31.328˚E; Walukuba: 1.842˚N,

31.378˚E) and three sites in the Mayuge district on the Ugandan shoreline of Lake Victoria

(Bugoto: 0.319˚N, 33.620˚E; Bukoba: 0.312˚N, 33.492˚E; Lwanika: 0.351˚N, 33.446˚E), as part

of the Wellcome Trust funded, Schistosomiasis In Mothers and Infants (SIMI) project
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[13,43,44,45]. (Fig 1 and see Rowel et al., 2015 [15] for further details about the collections). At

each site, snails were collected from both the lake edge, which was often marshy shoreline, and

the deeper waters of the lake (~1m depth). Approximately half of the snails collected were pre-

served in 70% ethanol and were held as a reference archival collection at the Liverpool School

of Tropical Medicine, UK. Overall, 2,645 randomly selected snails were preserved from the

original 6,183 collected at Lake Albert, and 6,382 randomly selected snails were preserved

from the original 13,172 collected at Lake Victoria.

Snail identification and genetic diversity

All of the preserved Biomphalaria species collected over the two year period were initially iden-

tified to the species level using conchological identification methods [14]. At each site, twenty

individuals of each species identified were selected for further molecular analysis. These

selected individuals all came from the August 2010 collection, as this period had the highest

number of viable specimens available. For each snail, DNA was extracted using a modified

CTAB extraction method as described in Joof et al. (2020) [46], with extracted samples being

resuspended in 100μl of TE, pH 8.0 (10mM Tris-HCl, 0.1mM EDTA) buffer. After extraction,

DNA yields were measured using a NanoPhotometer N50 (Implen, München, Germany). The

identification of each specimen was confirmed using 16S and COI genotyping. For the 16S

gene, we used a modified version of the 16Sar/16Sbr primers designed by Palumbi et al. (1991)

[47] (16Sarm: 5’-CTT CTC GAC TGT TTA TCA AAA ACA-‘3 and 16Sbrm: 5’-GCC GGT

CTG AAC TCA GAT CAT-‘3). For COI, we used the universal COI primers designed by Fol-

mer et al. (1994) [48] (LCO1490: 5’-GGT CAA ATC ATA AAG ATA TTG G-‘3 and

HCO2198: 5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-‘3). All PCR reactions were per-

formed using Promega GoTaq G2 Master Mix buffer, with 1μl of DNA template added to 24μl

of 1X Master Mix buffer (1U TAQ, 0.2μM primers, 200μMdNTPs, 3mM MgCl2). The PCR

cycling conditions used for both the 16S and COI primer sets were identical, with an initial

denaturation at 96˚C for 1minute, followed by 34 cycles of 94˚C for 1min, 50˚C for 1min,

72˚C for 1min and a final extension at 72˚C for 10mins. All PCR products were

Fig 1. (A) Map showing the collection site locations at Lake Albert and Lake Victoria in Uganda. (B) The three

collection sites of Lake Albert (Bugoigo, Piida and Walukuba) and (C) the three collection sites of Lake Victoria

(Bugoto, Bukoba and Lwanika; Created using OpenStreetMap, https://www.openstreetmap.org).

https://doi.org/10.1371/journal.pntd.0011506.g001

PLOS NEGLECTED TROPICAL DISEASES Xenomonitoring Biomphalaria snails at Lake Albert and Lake Victoria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011506 August 14, 2023 4 / 18

https://www.openstreetmap.org/
https://doi.org/10.1371/journal.pntd.0011506.g001
https://doi.org/10.1371/journal.pntd.0011506


electrophoresed on a 2% agarose gel containing ethidium bromide and were observed under

UV light. All 16S and COI PCR products were purified and sequenced using Macrogen’s

EZ-Seq service.

All sequences were aligned using the Muscle algorithm in the program Seaview v5 [49],

with misaligned sections of the 16S and the COI being fixed by hand and sites for tree building

selected using the Gblocks program [50]. Samples were identified to the species-level using a

concatenated 16S and COI phylogenetic tree incorporating GenBank references from Jørgen-

sen et al. (2007) [51], Plam et al. (2008) [52], Standley et al. (2014) [53] and Zhang et al. (2018)

[54] (S1 Table). Phylogenetic trees were constructed using the Maximum Likelihood method,

using a General Time Reversible model incorporating gamma correction (GTR+Γ) in the pro-

gram PhyML v3.1 [55], with bootstrap analysis undertaken using 1000 replicates. After con-

firming which species were present at our Lake Albert and Lake Victoria sites, we then

measured the genetic variability of each species using DNASP v6 [56] to calculate Haplotype

(gene) diversity (Hd) scores and nucleotide diversity (π) values [57]. MEGA-X [58] was used

to calculate pairwise distances, with distances corrected using the Maximum Composite Likeli-

hood (MCL) method. Genealogical relationships of the 16S and COI haplotypes were con-

structed using Median-Joining (MJ) networks [59] using the software NETWORK v5 (Fluxus

Technology Ltd. www.Fluxus-engineering.com; S2 Table).

Infection detection

The prevalence of S. mansoni infection at Bugoigo, Piida, Walukuba, Bugoto, Bukoba and

Lwanika was measured by initially testing twenty individuals of each species at a single time-

point (August 2010). All of the DNA extracts were first tested using the LSU1iii/LSU3iii prim-

ers (LSU-1iii: 50-TGC GAG AAT TAA TGT GAA TTG C-30 and LSU-3iii: 50- ACG GTA CTT

GTC CGC TAT CG-30) developed by Fontanilla et al. (2017) [60] to ensure that our DNA

extracts were amplifiable. All PCR reactions were performed using Promega GoTaq G2 Master

Mix buffer, with 1μl of DNA template added to 24μl of 1X Master Mix buffer (1U TAQ, 0.2μM

primers, 200μM dNTPs, 3mM MgCl2). The PCR cycling conditions for the LSU-1iii/3iii prim-

ers was an initial denaturation at 96˚C for 2min, followed by 35 cycles of 94˚C for 30sec, 45˚C

for 1 min, 72˚C for 2min and a final extension step at 72˚C for 5 min.

After confirming the quality of our DNA extracts, we tested for S. mansoni infection using

two different primer sets, firstly SmF/R (designed by Sandoval et al. 2006) [27] and then ND5

(designed by Lu et al. 2016) [30]. Only samples that tested positive with the SmF/R primer set

were subjected to further testing using the ND5 primer set. This additional testing was carried

out because the ND5 primer set possesses the ability to differentiate between human and non-

human schistosome species based on the length of the diagnostic band [30]. All PCR reactions

were performed using Promega GoTaq G2 Master Mix buffer, with 1μl of DNA template

diluted to 50ng/μl. Alongside the Biomphalaria samples, two negative controls (water and

uninfected B. glabrata DNA) and two positive controls (pure S. mansoni DNA and infected B.

glabrata DNA) were also included. These controls were provided by Professor Mike Doenhoff,

School of Biology, University of Nottingham. The PCR reaction mixture and cycling condi-

tions for the SmF/R and ND5 primer sets were followed precisely as described by Sandoval

et al. (2006) [27] and Lu et al. (2016) [30], respectively. Schistosoma mansoni infection was con-

firmed by running the PCR products on a 2% agarose gel containing ethidium bromide and

observing whether a diagnostic band was present under UV light.

To examine the seasonal prevalence of infection at each site and of each species, we tested

twenty individuals at both Lake Albert and Lake Victoria for each of the four wet (March to

May and September to November) and four dry (December to February and June to August)
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seasons that occurred within the two year collection period (January 2009 to December 2010;

rainfall data for Uganda is provided in S1 Fig). However, due to the limited number of samples

available at Piida and Bukoba, only two of the three Lake Albert (Bugoigo Walukuba) and

Lake Victoria (Bugoto and Lwanika) sites could be tested. Likewise, due to the limited number

of B. stanleyi samples available, only B. choanomphala (Bukoba and Lwanika), B. pfeifferi
(Walukuba) and B. sudanica (Walukuba and Bugoigo) could be tested. SPSS v26 (IBM,

Armonk, USA) [61] was used to perform a Pearson’s chi-squared (X2) test with Yates’ correc-

tion to compare the prevalence of infection. The summary of the samples tested for infection

can be found in S3 Table.

GenBank accessions

GenBank accession numbers for the Biomphalaria 16S and COI sequences used from Jørgen-

sen et al. (2007) [51], Plam et al., 2008 [52], Standley et al. (2014) [53] and Zhang et al. (2018)

[54] can be found in S1 Table. The DNA sequences generated in this study are available in

GenBank accession numbers OQ924749-OQ924929 for the 16S gene and

OQ849817-OQ849997 for the COI gene (further information can be found in S1 and S2

Tables).

Results

Infection prevalence at the African great Lakes

Of the sites tested, Lake Albert had the highest infection prevalence of S. mansoni, with an

overall prevalence of 12.5% (15 PCR positive snails out of 120). Conversely, our Lake Victoria

sites had a lower prevalence of only 5% (3/60). When partitioned by site, the Lake Albert sites

had a higher mean prevalence of infection than the Lake Victoria sites (Table 1). Walukuba

had the highest prevalence of infection of the Lake Albert sites with 13.3% (8/60), followed by

Bugoigo with 12.5% (5/40) and Piida with 10% (2/20) (Table 1). Of the Lake Victoria sites,

Lwanika had the highest prevalence with 10% (2/20), followed by Bugoto and Bukoba with 5%

(1/20) for both sites (Table 1). All of our SmF/R positive Biomphalaria samples were confirmed

Table 1. Mean prevalence of S. mansoni infection and the number of unique 16S/COI haplotypes (No.), haplotype diversity scores (Hd) and nucleotide diversity val-

ues (π) of each Biomphalaria species genotyped at our Lake Albert and Lake Victoria collection sites (August 2010 collection).

Lake Albert

Species No. Infected Site Infection 16S COI

No. Hd π No. Hd π
Bugoigo B. sudanica (n = 20) 3 12.5% 7 0.784 0.000 3 0.532 0.002

B. pfeifferi (n = 20) 2 2 0.337 0.000 4 0.489 0.001

Piida B. sudanica (n = 20) 2 10% 6 0.716 0.000 2 0.521 0.002

Walukuba B. stanleyi (n = 20) 3 13.3% 10 0.884 0.002 10 0.815 0.003

B. sudanica (n = 20) 3 10 0.884 0.001 4 0.553 0.002

B. pfeifferi (n = 20) 2 3 0.468 0.001 6 0.832 0.002

Lake Victoria

Species No. Infected Site Infection 16S COI

No. Hd π No. Hd π
Bugoto B. choanomphala (n = 20) 1 5% 11 0.884 0.008 5 0.774 0.004

Bukoba B. choanomphala (n = 20) 1 5% 15 0.958 0.007 10 0.89 0.005

Lwanika B. choanomphala (n = 20) 2 10% 16 0.963 0.008 9 0.826 0.005

Note: Schistosoma mansoni infection was determined based on whether snails had a diagnostic band for both SmF/R (~350bp) and ND5 (~302bp).

https://doi.org/10.1371/journal.pntd.0011506.t001
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to be infected with S. mansoni as every positive sample gave a diagnostic band length of

~302bp when tested with the ND5 primer set.

Of the sites tested, we found three Biomphalaria species, B. pfeifferi, B. stanleyi and B. suda-
nica, at Lake Albert and one species, B. choanomphala, at Lake Victoria (S2 and S3 Figs). Of

the four species identified, B. stanleyi had the highest prevalence of S. mansoni infection with

15% (3/20), followed by B. sudanica with 13.3% (8/60), B. pfeifferi with 10% (4/40), and B.

choanomphala with 5% (3/60) (Table 1). Biomphalaria choanomphala exhibited two different

shell morphologies, with 45 of the 60 snails exhibiting a lacustrine shell morphology (S2 Fig);

all of the infected B. choanomphala snails at our Lake Victoria sites exhibited the lacustrine

shell morphology. In addition to the four Biomphalaria species, we identified an Asian Gyrau-
lus species at both Lake Albert and Lake Victoria (S2 Fig). There have been no published

reports of Schistosoma infection in Gyraulus, and we detected no cases of S. mansoni infection

in the Asian Gyraulus species found at Lake Albert (0/10) or Lake Victoria (0/10).

Genetic diversity of the Biomphalaria species at the African great Lakes

Of the Biomphalaria species found at our collection sites, B. choanomphala (n = 60) had 31

haplotypes for the 16S gene fragment, followed by B. sudanica (n = 60) with 14, B. stanleyi (n =
20) with 10 and B. pfeifferi (n = 40) with four (Table 1 and Fig 2A). For the COI gene fragment,

B. choanomphala had 14 haplotypes, followed by B. stanleyi with 10, B. pfeifferi with six and B.

sudanica with four (Table 1 and Fig 2B). Of the B. choanomphala snails sequenced, the lacus-

trine specimens had 21 unique 16S haplotypes and 12 unique COI haplotypes, while the non-

lacustrine specimens had 14 unique 16S haplotypes and 8 unique COI haplotypes. Several of

the 16S and COI haplotypes were shared between lacustrine and non-lacustrine individuals

(S4 Fig). The haplotype diversity (Hd) scores for the 16S gene were highest for B. choanom-
phala with 0.945, followed by B. sudanica with 0.833, B. stanleyi with 0.884 and B. pfeifferi with

0.422. For the COI gene, haplotype diversity (Hd) scores were highest for B. choanomphala
with 0.842, followed by B. stanleyi with 0.815, B. pfeifferi with 0.618 and B. sudanica with

0.553. Overall, the haplotypes were not highly divergent for both the 16S and COI. The nucleo-

tide diversity values were highest for the B. choanomphala populations at Lake Victoria for

both the 16S (0.007–0.008) and COI (0.004–0.005), while all of the Biomphalaria species at

Lake Albert had very low nucleotide diversity values for both the 16S (0.000–0.002) and COI

(0.001–0.003; Table 1). The intra-species pairwise distances of the 16S was the highest for B.

choanomphala (0.0–1.8%), followed by B. stanleyi (0.0–0.8%), B. sudanica (0.0–0.8%) and B.

pfeifferi (0.0–0.1%). Conversely, the intra-species pairwise distances of the COI was the highest

for B. pfeifferi (0.0–1.4%), followed by B. stanleyi (0.0–1.3%), B. choanomphala (0.0–1.2%) and

B. sudanica (0.0–0.4%).

Seasonality of infection prevalence

At Lake Albert we examined the seasonal changes in infection prevalence at two sites (Bugoigo

and Walukuba). One species (B. sudanica) was tested at Bugoigo, while two species (B. pfeifferi
and B. sudanica) were tested at Walukuba. Piida and B. stanleyi were not tested due to a lack of

samples. At Bugoigo, the wet seasons had a mean infection prevalence of 12.5% (10/80), while

the dry seasons had a mean infection prevalence of 10% (8/80) (Table 2). At Walukuba, the

wet seasons had a mean infection prevalence of 13.8% (22/160), while the dry seasons had a

mean infection prevalence of 9.4% (15/160) (Table 2).

At Lake Victoria, we examined the seasonal changes in prevalence of infection among

Biomphalaria populations (B. choanomphala) at two sites (Bugoto and Lwanika). Bukoba was

not tested due to a lack of samples. At Lwanika, the wet seasons had a mean infection
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prevalence of 8.8% (7/80), while the dry seasons had a mean infection prevalence of 6.3% (5/

80) (Table 2). Bugoto had a mean infection prevalence of 8.8% (7/80) for the wet seasons and

3.8% (3/80) for the dry seasons (Table 2).

Fig 2. Median-Joining haplotype network of the Biomphalaria species found at Lake Albert (B. pfeifferi n = 40; B. stanleyi n = 20; B. sudanica n = 60) and Lake

Victoria (B. choanomphala n = 60) using (A) 16S rRNA gene fragment (395bp) and (B) Cytochrome Oxidase Subunit I gene fragment (520bp). This network

was generated using the software NETWORK v5. Circles represent each haplotype and circle size represents the numbers of individuals sharing a haplotype.

Diamonds represent intermediate haplotypes, while hatch marks between points represent the number of nucleotide substitutions (substitutions more than five

are indicated by numbers). Gaps were included in the 16S and COI alignments. Reference sequence information for the 16S and COI networks can be found in

S1 and S2 Tables, respectively.

https://doi.org/10.1371/journal.pntd.0011506.g002

Table 2. Mean prevalence of infection of the wet and dry seasons at Lake Albert and Lake Victoria between 2009–2010.

Lake Albert

Site Species First Dry (n = 40) First Wet (n = 40) Second Dry (n = 40) Second Wet (n = 40) Overall Infection (n = 160)

Walukuba B. pfeifferi 4 (10%) 6 (15%) 4 (10%) 6 (15%) 20 (12.5%)

B. sudanica 3 (7.5%) 5 (12.5%) 4 (10%) 5 (12.5%) 17 (10.6%)

Bugoigo B. sudanica 4 (10%) 5 (12.5%) 4 (10%) 5 (12.5%) 18 (11.3%)

Lake Victoria

Site Species First Dry (n = 40) First Wet (n = 40) Second Dry (n = 40) Second Wet (n = 40) Overall Infection (n = 160)

Lwanika B. choanomphala 2 (5%) 3 (7.5%) 3 (7.5%) 4 (10%) 12 (7.5%)

Bugoto B. choanomphala 1 (2.5%) 3 (7.5%) 2 (5%) 4 (10%) 10 (6.3%)

Note: First Dry: Dec-Feb; First Wet: Mar-May; Second Dry: Jun-Aug; Second Wet: Sep-Nov.

https://doi.org/10.1371/journal.pntd.0011506.t002
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Overall, the prevalence of S. mansoni infection was consistently higher in the wet seasons

than the dry seasons for both Lake Albert and Lake Victoria (Table 2 and S1 Fig). The overall

mean prevalence of infection at Lake Albert for the four wet seasons was 13.3% (32/240), while

the four dry seasons was 9.5% (23/240) (Table 2). Similarly, the overall mean prevalence of

infection at Lake Victoria was 8.7% (14/160) for the wet seasons and 5% (8/160) for the dry

seasons (Table 2). Nevertheless, a chi-square (X2) analysis found there was no significant dif-

ference in the prevalence of infection between the wet and dry seasons (p = 0.252 for Lake

Albert and p = 0.269 for Lake Victoria). When comparing the prevalence of infection for the

first and second wet season we found no difference for the Lake Albert sites. Likewise, there

was no difference in infection prevalence for the first and second dry season. For Lake Victo-

ria, we found that the first wet season had a lower mean prevalence of infection than the sec-

ond wet season. Similarly, the first dry season also had a lower prevalence of infection than the

second dry season (Table 2).

In order to test consistency in our infection prevalence estimates, we compared the preva-

lence of infection measured in our seasonality dataset against our single time point (August

2010) dataset. The single time point dataset found a mean infection prevalence of 12.5% (15/

120) for Lake Albert, while the seasonality dataset found a mean infection prevalence of 11.5%

(55/480). Lake Victoria had an infection prevalence of 5% (3/60) for the single time point data-

set, while the seasonality dataset had an infection prevalence of 7.2% (23/320). Of the species

tested, B. sudanica had an infection prevalence of 13.3% for the single time point dataset and an

infection prevalence of 10.9% for the seasonality dataset. The mean infection prevalence of the

B. pfeifferi snails was 10% for the single time point dataset and 12.5% for the seasonality dataset.

Lastly, the B. choanomphala snails had a mean infection prevalence of 5% for the single time

point dataset and 6.9% for the seasonality dataset. A chi-square (X2) analysis found there was no

significant (P> 0.05) difference in the prevalence of S. mansoni infection in Biomphalaria snails

between the two datasets. The overall averages for both datasets can be found in S3 Table.

Discussion

Of the six sites investigated which formed the surveillance area for the SIMI project, we found

that Lake Albert (12.5%) had a higher prevalence of infected Biomphalaria snails than Lake

Victoria (5%). Similarly, Rowel et al. (2015) [15] also reported that Lake Albert had a higher

prevalence of shedding Biomphalaria snails (8.9%) compared to the Biomphalaria snails found

at Lake Victoria (2.1%). When partitioned by site, we found Walukuba (13.8%) had the highest

prevalence of infection of our Lake Albert sites, while Lwanika (10%) had the highest preva-

lence of infection of the Lake Victoria sites. Likewise, Rowel et al. (2015) [15] found that Walu-

kuba (12.3%) had the highest prevalence of shedding Biomphalaria snails of the Lake Albert

sites and Lwanika (3.8%) had the highest prevalence of shedding Biomphalaria snails of the

Lake Victoria sites. Our result of Lake Albert having a higher prevalence of S. mansoni infec-

tion than Lake Victoria is consistent with previous findings [15,21,22,62]. The Vector Control

Division (VCD) of the Ugandan Ministry of Health have had concerns about this issue, as

despite the similar transmission rates of schistosomiasis and comparable mass drug adminis-

tration programs present at both of the Great African Lakes, Lake Albert consistently has

higher levels of severe morbidity compared to Lake Victoria. The Uganda Schistosomiasis

Multidisciplinary Research Centre (U-SMRC) suggests several hypotheses as to why there is a

higher prevalence of schistosomiasis at the Ugandan shoreline of Lake Albert when compared

to the Ugandan shoreline of Lake Victoria: (I) variations in the immune systems of the local

people (e.g. differences in microbiome, nutrition and lifestyle); (II) the genetic makeup of the

parasite populations (e.g. differences in immunogenic/ immunoregulatory antigens expressed

PLOS NEGLECTED TROPICAL DISEASES Xenomonitoring Biomphalaria snails at Lake Albert and Lake Victoria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011506 August 14, 2023 9 / 18

https://doi.org/10.1371/journal.pntd.0011506


by the parasite and varying levels of praziquantel resistance); (III) the abundance and number

of snail species found near human activity (e.g. differences in susceptibility of the snail host

and the intensity of exposure to the parasite) [63].

Infection prevalence of the Biomphalaria species found at the African great

Lakes

When partitioned by species, we found that B. stanleyi (15%) had the highest prevalence of

infection at our Lake Albert sites, followed by B. sudanica (13.3%) and B. pfeifferi (10%). Our

results are similar to Kazibwe et al. (2006) [12] and Rowel et al. (2015) [15], who similarly

reported B. stanleyi snails as having the highest prevalence of infection at Lake Albert. At our

Lake Victoria sites, B. choanomphala had an infection prevalence of 5%, with all of the infected

individuals having a lacustrine shell morphology. Our results are similar to Mutuku et al.

(2021) [64], who reported that S. mansoni infection and cercarial production was significantly

higher in the lacustrine form of B. choanomphala than the non-lacustrine form, regardless of

miracidium dosage or whether the eggs came from allopatric or sympatric sources. However,

Rowel et al. (2015) [15] and Gouvras et al. (2017) [65] found the opposite trend, with the non-

lacustrine form of B. choanomphala having a higher S. mansoni infection rate than the lacus-

trine form.

When compared to the original Rowel et al (2015) [15] study, our results observed a higher

prevalence of S. mansoni infection at both the Lake Albert and Lake Victoria sites. Likely, this

is a result of using molecular detection methods, which typically show higher levels of infection

when compared to the traditional cercarial shedding method [30,46,66]. This is due to infected

Biomphalaria snails not always producing cercariae during the usual 35–49 day incubation

period. For example, colder temperatures can lead to delays in sporocyst development and

shedding [34]. Similarly, delays to sporocyst development and shedding can arise due to the

immune response to infection. The snail’s immunological response does not guarantee the

complete eradication of all sporocysts and some sporocysts can release cercariae up to ten

months post infection [67,68]. Ultimately these prepatent snails will be undetectable by the

cercarial shedding method but are still detectable by molecular methods [30,46]. However,

molecular methods can also overestimate the number of snails that present a risk. Lu et al.

(2016) [30] found that not all PCR positive Biomphalaria snails went on to shed cercariae;

some snails were able to successfully encapsulate and degrade the sporocysts during the prepa-

tent period, which resulted in the infection failing. The chance of this happening was shown to

be dependent on species, with the majority of PCR positive B. pfeifferi snails (60%) going on to

shed cercariae, while only a minority of PCR positive B. sudanica snails (10%) went on to shed

cercariae. It seems whether an infection is successful or not is dependent on schistosome-snail

compatibility, with compatible schistosomes being able to successfully evade the host’s

immune defences [69,70,71]. This means that a snail that is PCR positive for infection may not

necessarily be capable of spreading that infection on to humans.

Moreover, Rowel et al. (2015) [15] reported that of the snails shedding cercariae, only

15.8% at Lake Albert and 13.9% at Lake Victoria were shedding S. mansoni cercariae (identi-

fied using general anatomical appearance) [72] as opposed to shedding cercariae of trematode

species with no medical importance. Likely this difference in S. mansoni prevalence is the

result of snails being co-infected with both S. mansoni and non-S. mansoni sporocysts simulta-

neously [66,73], which makes it more difficult to reliably identify the presence of S. mansoni
cercariae since these S. mansoni cercariae can be obscured by other non-medically important

cercariae and therefore missed. Molecular detection methods are able to detect more reliably

whether or not S. mansoni is present, while ignoring the non-S. mansoni sporocysts.
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Infection prevalence and Host-Snail genetic diversity

We found that the Biomphalaria species found at our Lake Victoria sites (B. choanomphala)

had higher intraspecies genetic diversity than the Biomphalaria species (B. pfeifferi, B. stanleyi
and B. sudanica) found at our Lake Albert sites. Furthermore, our Lake Victoria sites had a

lower prevalence of infection than our Lake Albert sites. This is consistent with previous stud-

ies that have reported higher levels of intra-species genetic variation in host snails being linked

to a lower prevalence of infection [32,33]. However, when we examined each of the sites indi-

vidually, we found that sites which had a higher prevalence of infection also had Biomphalaria
populations with higher levels of intraspecific genetic diversity (Table 1). For example, when

we compared the haplotype diversity scores of the 16S and COI genes for the B. pfeifferi snails

found at Walukuba with the B. pfeifferi snails found at Bugoigo, we found Walukuba had both

a higher amount of genetic diversity (16S Hd: 0.468; COI Hd: 0.832) and a higher prevalence

of infection (13.3%) than Bugoigo (16S Hd: 0.337; COI Hd: 0.489; infection prevalence: 12.5%)

(Table 1). Similarly, we also found this trend for both B. sudanica and B. choanomphala snails

(Table 1). B. sudanica snails at Walukuba had both a higher amount of genetic diversity (16S

Hd: 0.884; COI Hd: 0.553) and prevalence of infection (13.3%) than B. sudanica snails found

at Bugoigo (16S Hd: 0.784; COI Hd: 0.532; infection prevalence: 12.5%) and Piida (16S Hd:

0.716; COI Hd: 0.521; infection prevalence: 10%) (Table 1). Likewise, the B. choanomphala
snails at Lwanika had higher amounts of genetic diversity (16S Hd: 0.963; COI Hd: 0.826) and

prevalence of infection (10%) than the B. choanomphala snails at Bugoto (16S Hd: 0.884; COI

Hd: 0.774; infection prevalence: 5%) (Table 1).

Biomphalaria snails within a population have shown variability in their susceptibility to S.

mansoni infection, with some individuals being successfully infected and others remaining

resistant, resulting in a phenomenon known as "compatibility polymorphism". The underlying

reason of why this occurs is not yet fully understood, but two hypotheses have been suggested

to explain this phenomenon, the “resistance hypothesis” and the “matching hypothesis” [74].

The former suggests that the snail host’s resistance and susceptibility status play a significant

role in determining whether infection is successful, as vulnerable individuals lack the ability to

recognise the parasite upon entry or produce an effective immunological response in time

[75]. Previous research has shown differences in immune-related genes between compatible

and incompatible snails, supporting this hypothesis [76]. Conversely, the latter hypothesis pro-

poses that the success or failure of an infection is not determined by the susceptibility or resis-

tance of an individual, but rather by the level of compatibility between the host and parasite

phenotypes, suggesting all snails are potentially susceptible to infection if they encounter a

schistosome with a matching phenotype [77,78]. Previous experimental treatments have sup-

ported this hypothesis, by showing infection rates increase when the phenotypic diversity of

miracidia increases [76]. Of the two hypotheses suggested, our results support the assertions

proposed by the matching hypothesis, as we found the prevalence of infection increased along-

side snail host genetic diversity. This possibly suggests that sites with more diverse snail host

populations have a higher probability of the parasite encountering a compatible host, while

sites with lower levels of snail host genetic diversity have a lower probability of the parasite

finding a suitable host due to fewer possible combinations being available.

Infection prevalence and seasonality

At our Lake Albert sites, we found that the wet seasons (March to May and September to

November) had a higher prevalence of infection (13.3%) than the dry seasons (December to

February and June to August) (9.6%). This was also the case at our Lake Victoria sites, with the

wet seasons having a higher prevalence of infection (8.7%) than the dry seasons (5%). Rowel
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et al. (2015) [15] also observed a higher number of shedding Biomphalaria snails during the

wet seasons at Lake Albert and Lake Victoria. Moreover, Kazibwe et al. (2006) [12] found the

highest rates of cercarial shedding in B. stanleyi and B. sudanica snails at Lake Albert took

place during the wet seasons. Similarly, Wolmarans et al. (2002) [79] found that South African

B. pfeifferi snails collected during the wet season (January to April) had a higher cercarial shed-

ding rate than B. pfeifferi snails collected during either the cold (May to August) or the warm

(September to December) dry seasons. However, depending on where the parasitological sur-

vey is undertaken can lead to contradictory results as studies undertaken in Ethiopia [80],

Nigeria [81], Tanzania [82] and Sudan [83] have found the opposite trend, with the dry sea-

sons having a higher rate of S. mansoni infected snails than the wet seasons. Moreover, our

chi-square (X2) analysis found that the prevalence of infection during the wet seasons was not

significantly higher than the prevalence of infection during the dry seasons for both Lake

Albert and Lake Victoria.

Supporting information

S1 Fig. The mean monthly rainfall at Lake Albert and Lake Victoria during the wet

(March-May & September-November) and dry (December-February & June-August) sea-

sons. Rainfall data was collected by weather stations located near Lake Albert (Erusi Forest,

Ihungu, and Kiryanga Gombolola) between 1904 and 2001, and by weather stations near Lake

Victoria (Gayaza Isingiro, Ntusi, and Entebbe) between 1900 and 2005. Data and figures were

adapted from the Nile basin water resources atlas (Nile Basin Initiative, 2017) [40].

(TIF)

S2 Fig. Shell morphologies of the preserved snails collected at the Ugandan shorelines of

Lake Albert and Lake Victoria. Biomphalaria pfeifferi, B. stanleyi and B. sudanica were pres-

ent at Lake Albert, while the two morphotypes (non-lacustrine and lacustrine) of B. choanom-
phala were present at Lake Victoria. In addition, an invasive, unidentified Asian Gyraulus
species was present at Lake Albert and Lake Victoria. The shells are viewed from the apertural

(left) and umbilical (right) shell angles.

(TIF)

S3 Fig. Maximum likelihood tree of the Cytochrome C Oxidase Subunit I (COI; 500bp)

gene fragment. This tree was generated using PhyML v3.1 using a GTR+Γ model and is

rooted on Biomphalaria glabrata. Numbers on branches indicate the bootstrap percentages for

1000 replicates (bootstrap support values under 50% are not shown). The scale bar represents

sequence divergence. Samples labelled ‘cf.’ had shell morphologies’ that looked like a specific

species but were identified by the original authors as another species using molecular meth-

ods.

(TIF)

S4 Fig. Median-Joining haplotype network of the B. choanomphala (n = 60) snails found at

our Lake Victoria sites using the 16S rRNA gene fragment (395bp) and Cytochrome oxi-

dase subunit I gene fragment (520bp). Each of the B. choanomphala snails shown are colour-

coded to indicate whether they exhibited a non- lacustrine (black) or lacustrine (white) shell

morphology. This network was generated using the software NETWORK v5. Circles represent

each haplotype and circle size represents the numbers of individuals sharing a haplotype. Dia-

monds represent intermediate haplotypes, while hatch marks between points represent the

number of nucleotide substitutions (substitutions more than five are indicated by numbers).

Gaps were included in the 16S and COI alignments.

(TIF)
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S5 Fig. Seasonal prevalence of Schistosoma mansoni infection at our Lake Albert (A-C) and

Lake Victoria (D-E) sites over the course of two years (2009–2010). Biomphalaria sudanica (n
= 320) was tested at two sites in Lake Albert (A: Bugoigo & B: Walukuba), while B. pfeifferi (n
= 160) was tested at one site (C: Walukuba). Biomphalaria choanomphala (n = 320) was tested

at two sites at Lake Victoria (D: Bugoto & E: Lwanika). Black bars indicate the percentage of

infected individuals (n = 20). (Dry 1: January-February 2009; Wet 1: March-May 2009; Dry 2:

June-August 2009; Wet 2: September-November 2009; Dry 3: December 2009-February 2010;

Wet 3: March-May 2010; Dry 4: June-August 2010; Wet 4: September-November 2010).

(TIF)

S1 Table. GenBank accession numbers and corresponding references for the 16S/COI phy-

logenetic tree.

(DOCX)

S2 Table. GenBank accession numbers for the 16S and COI haplotype network.

(DOCX)

S3 Table. Infection prevalence of the single time point dataset and the seasonality dataset

for our Lake Albert and Lake Victoria sites.

(DOCX)
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