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Abstract

Contact insecticides are primarily used for the control of Anopheles malaria vectors. These

chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their

neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly

expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-

mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality

compared to control mosquitoes, coincident with a corresponding increase in 14C-deltame-

thrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly

localized in the legs and head appendages, and more specifically, the apical part of the epi-

dermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of

ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect

role, based on the orthology with other insect ABCH transporters involved with lipid transport

and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slow-

ing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of

the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect

by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs.

Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiologi-

cal homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its

own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric

transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell

membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our

findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.

Author summary

Malaria control is heavily dependent on insecticides to kill mosquitoes that spread the dis-

ease-causing pathogens. Insecticides are absorbed through the legs and sensory head
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organs when mosquitoes land on treated surfaces, such as bednets or sprayed house walls.

The insecticides then must travel through the body to the target site, typically nerve cells,

to cause death. In recent years, mosquito resistance to insecticides has become a severe

problem leading to increased malaria mortalities, particularly in Africa. Finding out how

mosquitoes become resistant is a key step in trying to find a solution to the problem. Pre-

vious work showed that some mosquitoes have evolved a resistance mechanism whereby

they limit the amount of insecticide that passes through the legs, but how they did this was

unclear. Here we show that the mosquito has a transporter, or pump, specifically found in

the legs and head organs that actively removes the insecticide back out of the leg, similar

to bailing out a boat taking on water, before it can disseminate through the body. The pro-

tection provided by the transporter highlights a novel mosquito ‘detox’ mechanism that

could be targeted by insecticidal supplements that block the pump and restore insecticide

toxicity.

Introduction

Malaria is a major impediment to health and prosperity in the Global South [1]. Its prevention

is best achieved by vector control which relies heavily on insecticides [2]. Malaria incidence

halved between 2000–2015, with the majority of the reduction attributed to the use of insecti-

cides [2]. However, insecticide resistance is a critical threat to vector control, as some mosquito

populations now manifest a striking intensity of the resistance phenotype [3].

Due to the mode of insecticide delivery in vector control, Anopheles legs are the key sites for

contact insecticide uptake, representing the first barrier to be crossed in the insect [4]. Recent

studies highlighted the role of mosquito legs in insecticide resistance via structural alterations

which reduce the penetration rate of pyrethroids [5] and the overexpression of sensory

appendage proteins possibly sequestering the pyrethroid insecticide [6]. An ABCH transporter

was also identified in mosquito legs through proteomic and transcriptomic analysis [5,7] and

found to be induced by a short-term deltamethrin exposure in An. coluzzii [7].

ABC transporters are present in all kingdoms of life functioning as primary-active trans-

porters energized by ATP hydrolysis [8] in the highly conserved nucleotide binding domains

(NBDs) that are associated with the translocator transmembrane domains (TMDs) [9]. ABC

transporter involvement in insecticide resistance and toxicity has been suggested in some stud-

ies [7,10–13], and at the same time a differential expression of subsets of ABC proteins in pyre-

throid-resistant Anopheles mosquito populations has also been reported [14,15]. Additionally,

a number of investigations support the up-regulation of ABC transporters from pests, such as

Bemisia tabaci and Plutella xylostella after exposure to different classes of insecticides, impli-

cating a correlation between pesticide detoxification and transport [16,17]. ABC transporters

from the C-subfamily have been implicated in pest resistance to insecticidal pore-forming pro-

teins from Bacillus thuringiensis (Bt) [18]. Recently, a multidrug resistance-associated ABC,

CpMRP of the polar leaf beetle Chrysomela populi, was identified as the first candidate involved

in the sequestration of phytochemicals in insects [18,19]. Furthermore, an RNAi toxicology

screen in Drosophila implicated a C family ABC transporter (CG4562) in spinosad transport,

as well as pinpointing the role of the P-glycoprotein orthologue Mdr65 as the most important

ABC in terms of chemoprotection [20]. Much of this functional analysis of the interaction of

ABC transporters with insecticides has been studied through heterologous expression in insect

cells and Xenopus oocytes [21,22].
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Transporters of the H sub-family are present in all insects and other arthropods [23], Dic-
tyostelium and zebrafish, but are absent from plants, worms, yeast, or mammalian genomes

[24]. The H sub-family transporter members are export proteins sharing similarities with

members of the G group [9]. They are composed of a single NBD and TMD, hence they are

half-transporters, which means they need to dimerize to be functional [25,26]. In An. coluzzii,
three genes encode ABCH transporters (ABCH1, ABCH2 and ABCH3) [26]. ABCH transport-

ers have been implicated in lipid transport, as knock-down experiments in Drosophila melano-
gaster, Tribolium castaneum, Locusta migratoria, Plutella xylostella and Nezzara viridula result

in high lethality due to desiccation [27–31]. Immunofluorescence analysis showed that the

Drosophila Snu protein, an ABCH2 orthologue, localizes to the apical plasma membrane of the

epidermal cells of larvae.

ABCH transporters have been found differentially expressed in insecticide resistant popula-

tions or after insecticide exposure of several insect species [7,11,32–36], In Anopheles, all three

ABCH gene transcripts are enriched in sensory appendages (ABCH2 and ABCH1 in antennae

and palps, while ABCH3 only in palps) [15,37]. In the legs, proteomic analysis could only

detect the ABCH2 transporter, whereas more sensitive transcriptomic studies indicated differ-

ential regulation of the 3 H class transporters in the legs (as well as G, C, E subfamily members)

after short-term deltamethrin exposure [7]. This study showed that ABCH1 and ABCH2 were

up-regulated, while ABCH3 was down-regulated post-deltamethrin exposure [7]. However, in

a separate transcriptomic dataset taken from adult An. coluzzii, ABCH2 was found to be

down-regulated in the whole body extracts, 12 hours after sublethal deltamethrin exposure

[10], potentially indicating a tissue specific response to insecticides of ABCH2 expression fol-

lowing insecticide exposure.

To initiate the study of the ABCH family we have focused on differentially regulated

ABCH2 gene. We were interested to determine whether its upregulation specifically in the legs

following insecticide exposure was linked to the toxicity of deltamethrin and if so was this due

to direct binding/transport of insecticides or a consequence of other physiological roles.

Results

RNAi-mediated silencing of ABCH2 revealed its implication in pyrethroid

toxicity

As described above, former work of our group showed that ABCH2 was induced upon delta-

methrin exposure in mosquito legs [7] and this was confirmed by RT-qPCT expression analy-

sis (S1 Fig). Moreover, ABCH2 was previously identified uniquely in the leg proteome of An.

coluzzii [5] and as well in the leg transcriptome [7]. Here, more precise tissue specific analysis

of expression was performed, both at the transcript and protein level. The transcript abun-

dance in different dissected body parts and tissues of 3–5 day-old female An. coluzzii was eval-

uated with RT-qPCR, with the expression of all samples being normalized against the

expression of abdominal walls. As expected, the ABCH2 relative expression in legs is greater

than other dissected tissues (S2A Fig). The protein abundance of ABCH2 is higher in the legs

with protein detected in heads too, as evidenced by western blot analysis (S2B Fig). The

ABCH2 expression in head is detected in specific head appendages (antennae, proboscis, max-

illary palps) (S2C Fig) and not to the rest of the head.

To test whether ABCH2 exhibits phenotypes related to pyrethroid toxicity, we performed

RNAi-mediated silencing in newly emerged adults of a recently colonized An. gambiae popula-

tion from Burkina Faso [38,39], followed by bioassays. dsRNA specifically targeting ABCH2
transcripts were designed, generated and introduced intrathoracically into newly emerged An.

coluzzii females via nano-injections. The silencing efficiency was evaluated both at the
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transcript and protein levels. According to RT-qPCR, dsRNA-mediated silencing reduced

ABCH2 transcript levels in whole female mosquitoes by approximately 80% (Fig 1A). Western

blot analysis using the ABCH2 peptide antibody detected a specific signal at approximately 85

kDa, the expected size of the transporter and was used to prove the silencing efficiency at the

protein level. Indeed, ABCH2 protein in legs and head appendages (proboscis, antennae, and

maxillary palps) of female mosquitoes were barely detectable compared to dsGFP treated

counterparts (Fig 1B). Due to sequence similarity of ABCH2 with the other ABCH transport-

ers, we also tested potential non-specific targeting of the dsRNA construct against them and

find it non-significant (S3 Fig).

Next, the effects of ABCH2 silencing in pyrethroid toxicity were evaluated via deltamethrin

toxicity assays. Mosquito knock-down 1 hour post exposure in dsGFP injected mosquitoes was

23% while in dsABCH2 mosquitoes, it was 89.7%, showing a significant increase (two-sided

Fisher’s exact test, p-value<0.0001). The dsABCH2 mosquitoes did not recover, with a mortal-

ity of 98% after 24 hours, while in dsGFP controls, the mortality was 55% (two-sided Fisher’s

exact test, p-value<0.0001) (Figs 1C, 1D and S4).

To rationalize the increased deltamethrin mortality, we determined the amount of internal-

ized deltamethrin by using 14C-deltamethrin contact toxicity assays on silenced and control

An. coluzzii. dsABCH2 knockdown mosquitoes exhibit increased 14C-deltamethrin penetra-

tion compared to dsGFP controls by about 10% (Paired t-test, p-value = 0.0037) in the three

biological replicates (Fig 1E and S2 Table).

Fig 1. RNAi silencing efficiency and deltamethrin toxicity assays. A. Silencing efficiency estimation of dsABCH2
against dsGFP injected females with RT-qPCR. ABCH2 transcript level reduction by 78% accomplished, as indicated

by the mean of 6 biological replicates (depicted with semi-transparent circles), with 95% confidence intervals (CI); P-

value<0.0001 (****) determined by unpaired t-test, B. Western Blot analysis of leg and head appendages protein

extracts 3 days post injections, verified the reduced protein levels of dsABCH2 against dsGFP injected controls. Alpha

or beta-ΤUBULIN were used as loading control, C. % Knock down of dsABCH2 and dsGFP female An. coluzzii,
subjected, 72h post injection, to 1 hour deltamethrin exposure (0.016%); Mean(dsGFP) = 23% + 95% CI and

Mean(dsABCH2) = 89.6% +95% CI for n = 4 biological replicates depicted with transparent circles; P-value<0.0001

(****) determined with two-sided Fisher’s exact test, D. % mortality 24 hours post exposure, Mean(dsGFP) = 55% + 95%

CI and Mean(dsABCH2) = 98.75% +95% CI, for n = 4 biological replicates; P-value<0.0001 (****) determined with two-

sided Fisher’s exact test, E. % penetration of 14C-deltamethrin after 4 minutes of contact in dsGFP and dsABCH2
mosquitoes. Penetration corresponds to the percentage of internal counts compared to total counts (external and

internal) at this time point. Mean+/- SEM of three biological replicates (n = 116 total mosquitoes/ condition). Replicate

pairs are presented with different shapes (Rep 1: triangle, Rep2: square, Rep3: circle). Mean difference is 9.77; P-

value = 0.0037(**), determined with two-tailed paired t-test (S2 Table).

https://doi.org/10.1371/journal.ppat.1011226.g001
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ABCH2 appears localized in the leg/appendage epidermis, underneath the

cuticle, with apical polarity

As ABCH2, expressed in leg and head appendages, was thus implicated in deltamethrin toxic-

ity, our next objective was to determine its (sub)cellular localization in these tissues to gain

more insights into its role in insecticide toxicity. Towards this, a specific antibody against this

transporter was used in immunofluorescence experiments in leg cryo-sections. We consis-

tently obtained a specific signal (green) underneath the cuticle, as shown in the merged-fluo-

rescent images with the bright-field channel (Fig 2A and 2B). The signal observed followed the

linear contour of the leg, just underneath the cuticle and adjacent to the nuclei stained red

with TO-PRO-3 dye. Also stained were characteristic triangle-shaped protrusions towards the

cuticle. To confirm this location as sub-cuticular epithelia, we obtained a similar staining pat-

tern on leg cryo-sections with an E-cadherin antibody, known to stain these cells [40–43] (Fig

2C and 2D). The ABCH2 signal appeared to be located apically, as opposed to the more even

distribution of Cadherin over the whole plasma membrane.

A similar ABCH2 staining pattern was also observed in cryo-sections of head appendages

(Fig 2E–2H). Furthermore, using the DeepLoc-1.0 tool [44], we predicted a plasma membrane

Fig 2. Sub-cellular localization of ABCH2 transporter. Immunohistochemical images from longitudinal leg cryosections of 3–5 day old female An. coluzzii.
A. ABCH2 localization on epidermal cells, underneath the cuticle, polarized towards the apical side. C. Epithelial staining on leg cryosections with a marker-

antibody against E-cadherin validating the presence of an epidermal layer underneath the cuticle. B, D. Zoomed images of the selected, white squares of figures

A and C respectively, together with graphical depictions of the main structures observed. E,F,G. ABCH2 localization on epidermal cells of head appendages:

proboscis, maxillary palp and antenna respectively. H. Zoomed image of the selected, white square of figure G. Images were obtained with confocal microscope

(40x). RED: Cell nuclei are stained with TO-PRO-3; Green: antibody staining; Merged images with and without bright-field channel are also depicted;

C = cuticle, E = epidermis, M = muscles; scale bars of 10 or 20 μm are illustrated.

https://doi.org/10.1371/journal.ppat.1011226.g002
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sub-cellular localization for this multi-span transmembrane protein (S5 Fig). These lines of

evidence support that mosquito ABCH2 is localized on leg/appendage epidermal cells, most

probably apically polarized towards the cuticular structure.

Deltamethrin toxicity could not be attributed to CHC differences in the

legs

As several studies implicate ABCH transporters in lipid transport, we next sought to test

whether the increased mortality and penetration in ABCH2 depleted mosquitoes is due to

reduction of lipid species. An. coluzzii, D. melanogaster, L. migratoria, P. xylostells and T. casta-
neum possess three ABCHs (with one-to-one orthology relationships). Interestingly, all

ABCHs with reported roles in lipid transport are clustered within the same clade with

AcABCH2 (S6 Fig). Thus, we wondered whether ABCH2 also participates in transport of

cuticular hydrocarbons (CHCs), being the most abundant lipid species in Anopheles leg cuticle

[45] and having a documented role in reducing the penetration rate of insecticides [45]. To

address this, we performed CHC analysis in mosquito legs from control or dsABCH2 injected

mosquitoes. ABCH2 silencing of the injected mosquito batch was verified with western blot

analysis (S7 Fig). The analysis of hexane leg extracts indicated no significant difference either

in the total CHC content between dsABCH2 and dsGFP mosquito legs (Fig 3), or in the relative

abundance of individual CHC species (S8 Fig). These results suggest that the increase in

Fig 3. Total Cuticular Hydrocarbon content of legs derived from dsABCH2 and dsGFP injected mosquitoes.

Average total CHC content from three replicates analyzed for each condition (95 dsABCH2 and 103 dsGFP female

mosquitoes, 30–35 mosquitoes per replicate); Mean (ngCHC/mg dry leg weight) + SEM; Mean(dsGFP) = 5626.33+ 401.5

and Mean(dsABCH2) = 5981.67+ 112.5 for n = 3 biological replicates, depicted with semi-transparent circles; P-

value = 0.4422 (non-significant, ns), determined with unpaired t-test.

https://doi.org/10.1371/journal.ppat.1011226.g003
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deltamethrin toxicity observed in the ABCH2-silenced mosquitoes is not due to a change in

the amount or profile of epicuticular hydrocarbons.

In silico and in vitro tools provide evidence for a membrane-bound ABC

transporter which functions most probably as a homodimer

The ABCH2 sequence was modelled after the homodimeric ABCG1 structure [46], identified

to be its closest homologue with an available structure. This analysis identified contacts stabi-

lizing the inter-protomer interfaces using the Protein Interaction Calculator (PIC) web-server

[47]. The number and nature of interactions stabilizing the dimeric ABCG1 interface is equiv-

alent to those occurring in the modelled ABCH2 one (Fig 4A and 4B and S1 File), suggesting

that ABCH2 adopts a homodimeric state. To verify this, we expressed ABCH2 using the bacu-

lovirus system and assessed its ATP hydrolytic activity in vitro. After validating the specific

expression in ABCH2-infected cells compared to cells infected with an empty-bacmid (S9A

Fig), we proceeded to sub-cellular fractionation. As expected, the transporter is only present in

the membrane fractions of the ABCH2-infected cells (Figs 4C and S9A, S9B). Inverted Mem-

brane Vesicles (IMVs) isolated from these cells, indicate an ATP hydrolysis specific to ABCH2

expression, as the amount of Pi released was increased significant compared to IMVs express-

ing an unrelated membrane protein (Figs 4D and S10). In order to approximate the rate of

ABCH2-related ATP hydrolysis, we performed comparative western blot analysis with known

quantities of a reference purified His-tagged protein, to estimate the amount of His-ABCH2 in

expressing IMVs (S11 Fig, S3 Table). Based on this estimate, free ABCH2 hydrolyzes

~178pmoles Pi/pmol ABCH2/minute (S4 Table), representing a substantial basal hydrolysis

rate compared to other membrane-embedded motor proteins [48,49].

Docking and in vitro experiments indicate that deltamethrin is a putative

substrate of ABCH2

To validate whether deltamethrin can act as an ABCH2 substrate, we initially performed dock-

ing analysis in silico. The model used ABCG1 which has been crystallized in many distinct cho-

lesterol-liganded states [46]. In the nucleotide-free inward facing conformation (PDB:7R8D),

cholesterol molecules have been allocated to the transmembrane part of the transporter. Two

of them at the channel interior and three additional ones at its exterior. In the ATP bound

state (PDB:7R8E), the cholesterol molecules were observed solely in the channel exterior. We

assessed the cholesterol binding pockets via the Protein-Ligand Interaction Profiler Web-

server and focused our subsequent analysis on the most well defined, interior pockets, present

within the translocation path [46]. Initial protein-ligand docking experiments were carried out

using AutoDock Smina [50] to retrieve the binding energies of cholesterol and deltamethrin.

From the top scores, we show (Fig 5A and 5B) the ones having binding modes resembling

closely the crystal structure [46]. The results indicate that both ligands docked to the pocket

with similar energies (Fig 5A). Moreover, the number and nature of interaction stabilizing the

two ligands into the pocket is equivalent (Fig 5A). These observations suggest deltamethrin

acting as a potential substrate of ABCG1. Next, to assess whether deltamethrin is an ABCH2

substrate, we performed protein-ligand docking experiments on the modeled ABCH2 without

a bias related to the substrate pocket. Thus, we widened our search grid to include the entire

translocator (i.e. transmembrane region). The top scores that emerged indicate a substrate

pocket in the translocator interior, just above the one defined by the crystal structure (compare

Fig 5A vs 5B, left panels). In such a pocket, both cholesterol and deltamethrin dock with equiv-

alent orientation, energies, and interactions (Fig 5B). To look for experimental evidence of

binding, deltamethrin was introduced in the in vitro assay to ask whether it stimulates the
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Fig 4. Functional expression of ABCH2, as a homodimer. A and B. Interface residues participating in interactions stabilizing the homo-dimeric interface are

presented with purple surface colors. Bound ATPs in the Nucleotide Binding Domains (NBDs) are presented with red spheres. The two protomers in the

ABCG1 structure (A) or in the modelled ABCH2 (B) are distinguished by two grey scales. C. Western blot analysis using ABCH2 antibody in whole membrane

preparations of ABCH2- and Empty Bacmid-expressing Sf9 cells. Different concentrations (1x, 2x, 4x) of membrane preparations were tested with

B-TUBULIN serving as loading control. D. ATPase activity of membrane preparations using malachite green. Mean + /- SEM of six biological replicates in

ABCH2- membranes and 3 biological replicates in unrelated protein-expressing membranes and the average of 2–3 technical replicates for each biological is

presented in bars. Mean pmoles Pi/μg protein +/- SEM; Mean(EMPTY) = 1.7+/- 5.67 and Mean(ABCH2) = 21.37+/- 3.32; P-value = 0.0148 (*).

https://doi.org/10.1371/journal.ppat.1011226.g004
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basal ABCH2-IMVs ATPase activity. Interestingly, a significant stimulation over the basal

activity was observed when deltamethrin was included in the reaction (Fig 5C and S5 Table).

Taking all together, we propose deltamethrin to be a physiologically relevant ABCH2

substrate.

Discussion

Mosquito legs/appendages are the first line of defense against insecticides when Anopheles vec-

tors come in contact with impregnated bed-nets and wall surfaces [4,51]. The presence of

transport systems in appendages apart from serving key physiological functions, could be

involved in conferring tolerance against chemicals, such as insecticides [15]. But whether and

how mosquito transporters are implicated in drug toxicity remains largely elusive. Here, we

show that the ABCH2 transporter has an essential role in alleviating pyrethroid toxicity in An.

colluzii, presumably by direct transport of pyrethroids out of cuticular epithelial cells, based on

several lines of evidence.

Firstly, RNAi-mediated silencing of the ABCH2, an ABC transporter previously shown to

be induced by deltamethrin, increased pyrethroid toxicity substantially (from 23% to 90%

knocked-down mosquitoes and from 55 to almost 99% mortality) (Fig 1C and 1D). Moreover,
14C-Deltamethrin penetration experiments revealed that An. coluzzii lacking the transporter

Fig 5. A. ABCG1 having docked cholesterol (CHL) and deltamethrin (DLM) as described in the text and methods.

CHL is presented with green sticks, whereas DHL with transparent red sticks. Zoom-in of the indicated dotted area is

presented (right top panel) together with the calculated energies and substrate-stabilizing interactions (right bottom

panel). The residues participating in the hydrophobic interactions with the substrates are given in the table for each

protomer (A) or B), and the number of hydrophobic bonds for each residue is indicated in brackets (when more than

one), B. As in A with the modelled ABCH2 structure, C. ATPase activity of membrane preparations using

deltamethrin. Pmoles of Pi produced per pmole of ABCH2 per minute of reaction are depicted in ABCH2-expressing

IMVs in reaction containing the organic solvent (DMSO) and deltamethrin (DMSO-DLM). Mean pmole Pi/pmole

ABCH2/min +/-SEM of three biological replicates performed in duplicate are depicted. Mean(DMSO) = 97.07+/-12.5

and Mean(DMSO-DLM) = 149.3 +/- 11.9; P-value = 0.0394 (*), determined with unpaired t-test.

https://doi.org/10.1371/journal.ppat.1011226.g005
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showed increased penetration of radiolabeled insecticide after short (4 min) contact (Fig 1E).

It is plausible that pumping out the insecticide, gives greater time for metabolic enzymes to

detoxify the insecticide, making the transporter-devoid mosquitoes far more vulnerable to

insecticides.

Secondly, the anatomical localization, in relevance to insecticide uptake by legs and

appendages and the cellular localization within epidermal cells with an apical polarity, oriented

towards the cuticle (Fig 2) [43], is consistent with the ability of the transporter to remove insec-

ticides from the interior of the organism at the first point of entry. The ABCH2 orthologue in

D. melanogaster is also localized in epidermal cells, indicated by epidermal-Gal4/RNAi screen-

ing and by localization experiments with fused GFP, showing its topology on the apical surface

of larval epidermal cells [29]. It is common for transporters to compartmentalize on the mem-

branes towards the site they exhibit their function [52]. A polarity towards the outermost part,

i.e. the exoskeleton suggests the ability of the transporter to facilitate transport of cuticular

components and/or other substrates, such as insecticides, out of the organism and both scenar-

ios were explored.

Thirdly, we tested the scenario of transport of deltamethrin across cell membranes that

would lend support to the difference in penetration in being attributed to direct export from

epidermal cells and sequestration of the insecticide into the cuticular structure. Several reports

have shown that ABC transporters can participate in phase 0 detoxification [53]. To explore

this possibility, we performed in silico analysis and functional ABCH2 expression in vitro
which revealed that ABCH2 is a functional transporter of homodimeric nature. ABCHs are

half-transporters, meaning they need to form either homo- or hetero-dimers in order to be

functional [26]. In silico data support the homodimerization scenario due to the similar nature

and number of interface interactions observed in the modelled ABCH2, as in the homodimeric

ABCG1 crystal structure (Fig 4A and 4B and S1 File). Additionally, the elevated ATP hydroly-

sis observed in the ABCH2-IMVs in the absence of a substrate (Fig 4C), is indicative of an

active transporter with significant basal activity, as previously reported for other ABC trans-

porters [49]. Membrane preparations from recombinant Baculovirus infected Sf9 cells have

been widely used to detect interactions of compounds with ABC transporters of several fami-

lies [54–56], however to our knowledge this is the first in vitro functional expression of an

ABC transporter of the H sub-family. Moreover, evidence of insect ABCH2 orthologues also

supports the homodimer role in resistance, since in RNAi screens of [D. melanogaster [29,57],

N. viridula [30], T. castaneum [27]] mortality was observed only with ABCH2-orthologues

and no other paralogues exhibited similar phenotypes (mortality).

Our ensuing objective was to test whether deltamethrin is an ABCH2 substrate. In general,

providing direct proof of the ability of a transporter to translocate a specific molecule is chal-

lenging [58]. Decades of research in biological transport systems have highlighted the difficulty

in assigning a substrate to an ABC transporter and the low reproducibility arising when using

different systems [58]. As a first indication that deltamethrin could be a substrate of ABCH2,

we performed protein-ligand docking analysis on the modeled ABCH2 structure and demon-

strated that, deltamethrin could act as an ABCH2 ligand by the identification of a putative

binding pocket (Fig 5A and 5B). To further substantiate that deltamethrin is indeed an

ABCH2 substrate, we performed ATP hydrolysis measurements on isolated membrane vesi-

cles and we observed a substantial stimulation over its basal activity in the presence of deltame-

thrin. Based on in silico and in vitro evidence, we thus tentatively conclude that deltamethrin is

indeed an ABCH2 substrate (Fig 5C).

Lastly, we explored the possibility that the reduced insecticide penetration could be associ-

ated with the amount of cuticular lipids on ABCH2-silenced mosquitoes. Based on our phylo-

genetic analysis, An. coluzzii ABCH2 is an orthologue of other insect ABCH transporters
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implicated in transport of cuticular components in early developmental stages [30]. In the

insect, knockdown studies have associated ABCH transporters with cuticular lipid transport

abnormalities primarily through lipid staining of silenced individuals. Albeit, to our knowl-

edge, the exact molecules transported by this essential protein have not yet been identified

[27–29,31]. Recent work on another ABCH transporter, oksyddad (orthologue to ABCH1, S6

Fig), indicates that it is required for CHC deposition at the surface of the wing cuticle either

directly or indirectly, while it does not directly participate to the D. melanogaster cuticular bar-

rier formation, shown to be mediated by the ABCH2-orhologue Snu. [57]. Another study

revealed that the leg epicuticle of insecticide resistant Anopheles mosquitoes, which uptake del-

tamethrin slower upon tarsal contact, is thicker mainly due to enhanced deposition of cuticu-

lar hydrocarbons, the major lipid species in leg epicuticles [5]. When we analyzed ABCH2KD

legs versus controls, however, the total hydrocarbon content in both cases were similar and the

relative abundances of each CHC species identified also showed non-significant differences

(Fig 3). Therefore, the increase in deltamethrin toxicity demonstrated in the ABCH2-silenced

mosquitoes is not attributed to the reduction of CHCs, at least in the time frame we tested.

Summarizing, several lines of evidence presented here support that deltamethrin could be

an ABCH2 ligand (and a putative substrate for translocation): 1) the significant increase in

mortality and insecticide penetration in early time points in ABCH2-silenced An. coluzzii, 2)

the localization of the transporter on the apical membrane of the epidermal layer is in accor-

dance with the hypothesis that this molecule is able to pump out compounds into the exoskele-

ton and perhaps out of the organism, 3) the in silico docking experiments on the modelled

ABCH2, derived by the available crystal structure of the ABCG1 homolog, indicates that delta-

methrin is a potential ABCH2 substrate, 4) the increased deltamethrin-induced ATP hydroly-

sis in the in vitro system. Based on the above, we propose that ABCH2 mediates deltamethrin

efflux in An. coluzzii.
Although eukaryotic ABC transporters are well-known as efflux pumps, in the absence of

direct export evidence we cannot exclude alternative mechanisms of ABCH2 action that

would lead to higher mortality after silencing. One possible scenario would be ABCH2-me-

diated deltamethrin sensing and triggering of signaling pathways that lead to slower insecticide

entrance or stimulation of the detoxification process. Such a mechanism has been described so

far in bacterial systems and specifically in B. subtilis, where BceAB participates in bacitracin

resistance as a co-sensor for signal transduction [59,60]. Future studies focusing on the devel-

opment of membrane reconstitution systems, that is purified proteins incorporated into artifi-

cial lipid membranes (liposomes) [61,62], may provide direct evidence regarding deltamethrin

translocation.

Additionally, based on our datasets, we cannot fully exclude other possibilities concerning

the toxicity response we observe. Our CHC analysis in ABCH2-silenced versus control mos-

quitoes did not show any significant differences either in total CHC contents nor in any of the

32 individual CHC species identified. We focused on CHCs as it is the major lipid species in

Anopheles legs, however other (epi)cuticular lipids, such as fatty acids, esters, alcohols, sterols,

phenols or other components of the envelope such as wax and cement of unknown composi-

tion [63] not tested here, could be ABCH2 substrates, with relevant implication in the observed

phenotype.

Our data support that ABCH2 is involved in an acute insecticide toxicity response rather

than an adaptive mechanism constitutively expressed in insecticide resistant populations. One

possible explanation for that is that ABC transporter overexpression might be costly for the

mosquito, especially in the absence of the substrate that stimulates this response (in that case

deltamethrin). This is in line with the fact that several ABC-transporters are differentially

expressed in multiple datasets upon insecticide exposure [10–13,64]. This was also the case in
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An. coluzzii legs transcriptome analysis where a plethora of ABCs was identified after short-

deltamethrin exposure rather than found constitutively upregulated in resistant mosquitoes

[7]. There were also no constitutively expressed ABC transporters found differentially regu-

lated in in An. coluzzii leg proteome from resistant mosquitoes either (5). This might be

another indication that ABCH2 participates in a fast-acting mechanism present in the insecti-

cide entrance point, beneficial for the mosquito, as it would give some time to allow detoxifica-

tion responses to occur.

Altogether, our results provide evidence for an ABC transporter-based, fast-acting resis-

tance mechanism present at the appendages. As mosquito legs/appendages are a highly epide-

miologically relevant tissue with vector control relying on insecticide penetration through the

legs, the association of transporter proteins with pyrethroid toxicity and the understanding of

the underlying molecular mechanisms would be very useful in vector control innovations.

Due to the druggable characteristics of the ABCH2 molecule, specifically, an arthropod-spe-

cific, plasma membrane-bound transporter present in the cuticular epidermis of mosquito

appendages, we consider this as a potential target for insecticide formulation add-ons to syner-

gize pyrethroid toxicity.

Materials and methods

Mosquito strains

The mosquito strain used in this study belong to the An. coluzzii species complex and was

maintained in the laboratory under the same conditions for several generations before analy-

sis. The standard insectary conditions for all strains were 27˚C and 70–80% humidity under a

12-h: 12-h photoperiod with a 1-h dawn:dusk cycle. The strain is derived from Burkina Faso

(VK7) (40)and the colony used for the experiment is the VK7-LR colony, which has lost part

of its resistance, as described in [7].

Antibodies

Rabbit polyclonal antibodies targeting An. coluzzii ABCH2 peptide (residues 466–482:

VKEYYSDLDSALGAVRD) were synthesized and affinity purified by Davids Biotechnologie.

E-cadherin mouse antibody was kindly provided by Dr. Siden-Kiamos [65]. Mouse anti-beta-

tubulin and mouse anti-alpha-tubulin used for normalization control in western blot analysis

were purchased by Santa Cruz Biotechnology and Developmental Studies Hybridoma Bank

respectively.

Western blot analysis

To determine ABCH2 relative protein abundance in different tissues, 3–5 day-old female An.

coluzzii were dissected, RNA-extracted and subjected to western blot analysis using an anti-

body against ABCH2 and anti-tubulin serving as loading control. Dissected tissues (abdominal

walls, legs, heads, midguts/malp.tubules/ovaries) from 10–15 female mosquitoes were homog-

enized into 100–150 μl RIPA Buffer (50Mm Tris pH = 8, 150mM NaCl, 1% SDS, 1% NP-40,

1mM EDTA, 1mM EGTA and 1 mM PMSF). After a 10 min centrifugation step at 10,000g the

supernatants were immediately supplemented with equal volume (100–150μl) of Laemmli

Sample Buffer. Polypeptides were resolved by 12% acrylamide SDS-PAGE and electro-trans-

ferred on nitrocellulose membrane (GE Healthcare Whatman). The membranes were subse-

quently probed with anti-ABCH2 antibody at 1:250 dilution or anti-β-tubulin (Cell Signaling)

at 1:500 dilution in a 1% skimmed milk/TBS-0.1%Tween buffer. Antibody binding was

detected using goat anti-rabbit or anti-mouse IgG coupled to horseradish peroxidase (Cell
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Signaling) (dilution: 1:5000 in 1% skimmed milk in TBS-Tween). Visualization was performed

using a horseradish peroxidase sensitive ECL western blotting detection kit (SuperSignal West

Pico PLUS Chemiluminescent Substrate, ThermoScientific) and the result was recorded using

Chemidoc Imaging System (Bio-Rad Laboratories).

Tissue dissection and relative expression estimation

To determine ABCH2 expression levels in different tissues, 3–5 day-old female An. coluzzii
were dissected, RNA-extracted and subjected to RT-qPCR analysis. Heads, thoraces, guts with

the attached Malpighian tubules and ovaries, abdominal walls and legs were separated into

TRIzol Reagent. Each sample contained 20 dissected tissues in 200 μl reagent, and three repli-

cas per tissue were prepared according to manufacturer’s instructions. After elution, RNAs

were subjected to DNase I treatment (ThermoFisher Scientific, DNase I, RNase-free). The

quantity of DNase-treated RNAs was calculated using a Nanodrop spectrophotometer and

equal quantities (1μg) from each sample were used for cDNA synthesis. This was carried out

using EnzyQuest Reverse Transcriptase (Minotech Biotechnology) and oligodTs according to

the guidelines and the reaction products were used for RT-qPCR. RT-qPCR was performed in

a BIO-RAD cycler in the following conditions: 3 min at 95˚C, 40 cycles of 15 seconds at 95˚C

and 30 seconds at 60˚C and the analysis included three biological and two technical replicates

within each biological replicate. Relative expression was normalized with An. coluzzii Ribo-
somal Protein S7 (S7) housekeeping gene. The relative expression of ABCH2 among different

tissues was measured against abdominal wall samples. Graphs were produced and statistically

analyzed with GraphPad Prism software version 8 using Student’s t-test.

Cryosectioning, immunofluorescence and confocal microscopy

Localization analysis of ABCH2, was conducted in longitudinal leg and head appendage cryo-

sections using a specific antibody raised against ABCH2 and E-cadherin antibody, as an epi-

thelial cell marker. Legs and head appendages from 3–5 day-old An. coluzzii were dissected

and placed for 2 hours in PCR tubes containing 4% PFA in 1x PBS buffer for fixation. After

removal of fixative, legs were incubated overnight with 30% sucrose/PBS buffer at 4˚C. Legs

were then immobilized in eppendorf lids covered with Optimal Cutting Temperature com-

pound (O.C.T—Tissue-Tek SAKURA) and placed at -80˚C. 5 μm longitudinal leg sections

were obtained in cryostat (Leica CM1850UV) and were placed on superfrost microscope slides

(Thermo Scientific). The slides were washed (3 x 5 min) with 0.02% Tween/PBS, followed by a

10 minute incubation with 0.03% Triton/PBS. After 1 hour blocking with 1% Fetal Bovine

Serum in 0.03% Triton/PBS, the slides were incubated overnight with the ABCH2 antibody in

1:500 dilution, at 4˚C. The next day goat anti-rabbit or goat anti-mouse (Alexa Fluor 488,

Molecular Probes) were used in 1:1000 dilutions. TO-PRO-3 dye (Molecular Probes) was used

for nuclei staining after RNAse A (Invitrogen Ambion) treatment in a 1:1000 dilution for 5

min. Observation and image attainment were carried out at a Leica SP8 laser-scanning micro-

scope, using a 40x- magnification lense.

dsRNA design, generation, nano-injections and silencing efficiency

For gene silencing, a dsRNA construct targeting ABCH2 was designed, synthesized and

injected into newly-emerged female adult An. coluzzii. The silencing efficiency was estimated

72 hours after injection in legs and head appendages using RT-qPCR and western blot analysis.

Primer sequence (S1 Table) for dsRNA synthesis of ABCH2 were designed using PrimerBlast

and they amplify a product of 525 bp (primer sequence, S1 Table). The T7 promoter sequence

(5’ TAATACGACTCACTATAGGG 3’) was added at the 5’ end of both forward and reverse
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oligos. VK7 cDNA was used as template for PCR amplification using Phusion High-Fidelity

DNA Polymerase (New England Biolabs), following manufacturer’s instructions. Specific

amplification was verified on a 1.5% agarose gel and the rest of the reaction was purified using

Macherey-Nagel Nucleospin Gel and PCR Clean-up Kit. The purified product was used as

template for dsRNA synthesis using HiScribe T7 High Yield RNA Synthesis Kit (New England

Biolabs) with subsequent purification with MEGAclear Transcription Clean-Up Kit (Ambion).

The purified dsRNAs were diluted to a 3 μg/μl concentration and 69 nl were injected into

CO2-anaesthetized female 0-day mosquitoes. The intrathoaracic dsRNA injections were per-

formed using a Nanoinject II Auto-Nanoliter Injector (Drummond Scientific Company). As

control a 500bp dsRNA prepared form the non-endogenous green fluorescent protein (GFP)

gene was used after similar preparation from a GFP plasmid template (primer sequence, S1

Table). Injected mosquitoes were placed in cups and kept in insectary conditions with 10%

sugar impregnated cotton wool for 72 hours. After that their legs were dissected, RNA

extracted, cDNA synthesized and RT-qPCR was conducted, as described in detail above. Prim-

ers for qPCR were designed out of the region-targeted by dsRNA resulting in 150–200 bp

product (primer sequence, S1 Table) and according to standard curve construction their effi-

ciency was 96%. Silencing efficiency for each dsRNA was estimated after comparison of rela-

tive expression of each gene of interest in dsRNA-injected against relative expression levels in

dsGFP-injected female mosquitoes. The dsABCH2 resulted in about 80% reduction of ABCH2
transcript level. Potential non-specific targeting of the dsABCH2 construct against the other

two ABCH transporters, ABCH1 and ABCH3 was also tested (S3 Fig). Primer sequences (S1

Table) were designed out of the aligned region with the dsABCH2 construct to avoid any

potential amplification of the provided dsRNA. Graphs were produced and statistically ana-

lyzed using GraphPad Prism software version 8 using Student’s t-test. For protein estimation,

polypeptide extraction from legs/appendages and western blot analysis were performed as

described in section “Western blot analysis”.

Deltamethrin toxicity assays

Deltamethrin toxicity assays were carried out on dsGFP and dsABCH2-injected female mos-

quitoes, in WHO tubes. 0-Day females were injected with dsGFP or dsABCH2 and then kept

in cups for 72 hours as described above. After this, they were exposed to 0.016% deltamethrin

(the estimated LC50 for this VK7 strain (VK7-LR) [7], using insecticide impregnated papers in

WHO tubes. The exposure lasted for 1 hour and after this the number of knocked-down mos-

quitoes were recorded. This was followed by 24 hour recovery in control tubes in insectary

conditions. A mosquito was classified as dead or knocked down if it was immobile, unable to

stand or take off. Specifically, four independent injection-exposure experiments with different

mosquito batches were carried out. In every replicate dsGFP- and dsABCH2 mosquitoes were

injected concomitantly, to ensure comparable injection, insectary and bioassay conditions.

The number of mosquitoes used in each replicate and each condition, and the numbers and

percentages of knocked-down and dead mosquitoes are shown in the S4A and S4B Fig. Graphs

were produced and statistically analyzed using GraphPad Prism software version 8 and statisti-

cal analysis was performed with two-sided Fisher’s exact test (S4C Fig).

14 C penetration in dsABCH2 and dsGFP mosquitoes

To estimate penetration of the insecticide, the internal and external deltamethrin in dsGFP-
and dsABCH2-injected mosquito pools were counted after 14 C-Deltamethrin exposure. The

external deltamethrin, removed with hexane rinsing and the internal deltamethrin of homoge-

nized mosquitoes were used for estimation of 14C penetration in the two experimental
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conditions. Specifically, penetration was assessed as previously described in (45). Briefly

newly-emerged dsABCH2- and dsGFP-injected mosquitoes, three days post injection, were

subjected to 4 minute contact on 0.01% 14C-deltamethrin paper, prepared using standard

WHO bioassay protocols (http://apps.who.int/iris/bitstream/handle/10665/64879/WHO_

CDS_CPC_MAL_98.12.pdf;jsessionid=5BF98105B548CDE77F152EE4713EE949?sequence=

1). Mosquitoes were collected in glass vials and three 1 minute-hexane washes were performed.

After that they were homogenized in PBS. In all samples 10ml of liquid Scintillation Counting

Mixture (Ultima Gold;6013326; PerkinElmer) were added and they were measured on a beta

counter (LS1701; Beckman). Internal counts per minute correspond to the PBS-homogenized

mosquitoes, while external counts per minute correspond to the average of the counts per min-

ute of the three hexane washes. Penetration was calculated as the ratio of the internal to the

total counts per minute in the two conditions. Three biological replicates were performed with

116 mosquitoes tested in total in each condition (S2 Table).

Phylogenetic analysis

Multiple sequence alignment was performed using Mafft v7.310 [66] with default parameters.

Alignments were trimmed using trimAl [67] and converted to a phylip format file using a cus-

tom Bash script. The phylogenetic tree was built under the maximum likelihood optimality cri-

terion using IQ-TREE2 [68] with the following parameters “-alrt 5000 -bb 5000 -mMFP”. Tree

visualization was performed using Evolview3 [69].

Extraction of cuticular lipids, cuticular hydrocarbons (CHCs)

fractionation, identification and quantitation

For CHC analysis, dried legs of injected dsABCH2 and dsGFP mosquitoes were extracted,

identified by gas chromatography-mass spectrometry (GC-MS) and quantified by GC-flame

ionization detection (FID). 3 days after dsRNA nano-injections performed in newly emerged

females, 95 dsABCH2 and 103 dsGFP female mosquitoes (3 replicates/ 30–35 mosquitoes per

replicate) were dried at Room Temperature for about 48 h. Legs of dry mosquitoes were sepa-

rated from the rest of the body. Legs of dried mosquitoes were pooled and weighed using a bal-

ance scale. Each replicate was approximately 1 μg and the number of mosquitoes used was

recorded to allow normalization per mosquito. CHC analysis was carried out in VITAS-Analy-

tical Services (Oslo, Norway) as described in [70]. Silencing for this batch of injections was

also tested with western blot analysis (S7 Fig). Statistics were analyzed using GraphPad Prism

software, version 8 and statistical analysis carried out with Student’s t-test.

ABCH2-overexpressing Sf9 insect cells, membrane preparations and

ATPase activity estimation

The recombinant expression of ABCH2 was achieved in Sf9 cells using the Baculovirus expres-

sion system. Isolated membrane vesicles of ABCH2- and control-expressing cells were used in

a colorimetric ATPase assay, in which the basal transporter activity and the response upon del-

tamethrin were calculated. More specifically, ABCH2 was expressed in Spodoptera frugiperda
Sf9 insect cells using the Pfastbac1 vector, which was synthesized de novo (GenScript) and

ABCH2 ORF was subcloned in between BamHI and EcoRI restriction enzyme sites. The

sequence was codon optimized for S. frugiperda using GenSmart codon optimization tool

(GenScript). Recombinant baculoviruses encoding ABCH2 cDNA were generated with BAC-

TO-BAC Baculovirus Expression Systems (Invitrogen), following manufacturer’s instructions.

2μg of Bacmid DNA, mixed with Escort IV Transfection Reagent (Merck) were used to
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transfect 5x105 Sf9 cells in 1ml of SF900 II SFM growth medium (ThermoFisher scientific).

The complex was incubated for 45 min/RT and the lipid complexes were added dropwise to

the appropriate well and were incubated at 27˚C for 6 hours. After that, another 1ml of

medium, supplemented with antibiotics (2x penicillin and streptomycin) and 20% FBS (Ther-

moFisher scientific) were added. After 24 hours DNA:lipid complexes were removed and 2ml

of supplemented growth medium were added to the cells which were subsequently incubated

at 27˚C for 72 hours. Medium, containing the virus stock were removed and stored, while cells

were also collected by pipetting in ice-cold 1 X PBS. Cell pellets (after 3000g/5min/4˚C centri-

fugation) were resuspended in RIPA supplemented with protease inhibitors followed by a

10,000g/10 min /4˚C centrifugation step. The supernatant was prepared for western blot analy-

sis with the addition of 5x Sample Buffer (SB).

After validation of recombinant protein expression of expected size in Sf9 cells and deter-

mination of viral stock titers using baculoQUANT ALL-IN-ONE (GenWay), according to

manufacturer’s instructions, infection was performed. For infection 106 cells/ml were seeded

in T75 Flasks in a final volume of 15 ml antibiotic and FBS supplemented growth medium.

After 4–5 hour incubation at 27˚C, viruses were added at the desired MOI and infected cells

were incubated for other 96 hours. Along with the ABCH2 infections, cells infected with an

empty Bacmid and an unrelated membrane protein served as negative controls. This unrelated

protein is a cytochrome P450 protein (An. coluzzii CYP4G16), which is anchored to the mem-

branes with a single N-terminal transmembrane domain [70] and has no known transport or

ATPase activity.

After incubation the cells were harvested and microsomes prepared. Following centrifuga-

tion at 2,000g/3min/4˚C, cell pellets were homogenized using a glass-Teflon tissue homogeni-

zator in a mannitol-containing buffer as described in [71]. Final ultracentrifugation step at

100,000g/1hour/4˚C (Beckman AirFuge CLS Ultracentrifuge) resulted in pellets which were

resuspended in the same buffer [71]. After estimation of total protein content of the membrane

preparations by Bradford protein assay using BSA to generate a linear control standard curve

(0.5–20μg) the membranes were further diluted to 1–2 μg/μl to be used for downstream exper-

iments or stored at -80˚C as 20μl aliquots.

The ATPase activity of the Sf9 membranes was estimated with a colorimetric assay by mea-

suring inorganic Pi released from ATP hydrolysis as described by [71,72], with some modifica-

tions. Briefly, we prepared a malachite green solution (340 mg of Malachite Green (Sigma) in

75 ml deionized water) and an ammonium molybdate solution (10.5 g ammonium molybdate

in 250 ml 4N HCl). Mixing the two solutions followed by filtration through paper resulted in

the malachite green stock solution that was stored at 4˚C. The malachite working solution

(MGWS) was freshly prepared by adding 20% Triton-X-100 in malachite green stock solution

to a 0.1% final concentration. Phosphorous standard solutions incubated with MGWS (50 μl

of each with 0.8 μl MGWS) were used to generate linear control standard curves (0–20 nmoles

Pi) [73]. Pi standards were incubated in MGWS for 5 minutes and then 100ul 37% citric acid

was added to stop the reaction.

The reactions were then incubated for 40 minutes at Room Temperature and absorbance

was measured at 630nm. For estimation of Pi liberation in membrane preparations, reactions

were set up using 0.5 μl of 0.1 M ATP, 2 μl of 10mg/ml BSA, 10 μg of membrane protein, 5 μl

of a 10X buffer (500mM Tris/HCL Ph = 8, 50mM MgCl2, 50mM KCl and 10mM DTT) and

deionized water was added up to 50ul. The reactions were incubated in a water-bath at 37˚C

for 15 minutes to allow ATP hydrolysis to occur and afterwards they were mixed with 0.8μl

freshly prepared MGWS. Then a further 5 minute incubation was performed and terminated

by adding 100 μl of 37% citric acid to avoid further ATP hydrolysis. The reactions were kept at

RT for 40 minutes and then absorbance measured at 630nm.
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In every replicate empty, ABCH2 or unrelated protein membranes were tested simulta-

neously. The empty Bacmid was used to remove the Sf9 non-specific ATPase background. In

every ATPase experiment two control solutions were used: a reaction containing the buffer

without proteins and two reactions containing no ATP, one for each membrane preparation.

We used the first control as blank which was subtracted at every absorbance value and thereaf-

ter the liberated phosphate was quantified based on the Pi standard curve. As this comparison

is based on total protein content estimation, whole membrane protein extracts were tested on

SDS-Page and the separated polypeptides were visualized with Coomassie Blue (S9C Fig).

According to the staining ABCH2 was weakly expressed in Sf9 membranes since an induced

band was not apparent when expressing and control membranes were compared.

For ATPase experiments with deltamethrin, the same set-up was used. Deltamethrin was

resuspended in DMSO/ethanol (1:1 v/v). A working stock of 0.6 mg/ ml was used and 5μl del-

tamethrin was added in each reaction (3μg-120μΜ). Each reaction contained 10μg of total pro-

tein from empty and ABCH2 membrane isolations. Reactions containing only DMSO/ethanol

were also processed. The empty/DMSO/ethanol and empty/deltamethrin Pi/μgr of total pro-

tein/minute of reaction estimated values were subtracted from the ABCH2/DMSO/ethanol

and ABCH2/deltamethrin accordingly, thus removing the background and allowing estima-

tion of ABCH2-deltamethrin stimulation over the deltamethrin controls (S5 Table).

Estimation of ABCH2 content in Sf9 membranes

For the approximate estimation of ABCH2 content in Sf9 membrane preparations, we used a

His-tagged ABCH2 construct and a purified His-tagged protein in western blot analysis. In

detail, parallel to the infection with ABCH2 bacmid, infection with a His-tagged ABCH2 bac-

mid was carried out and membranes were prepared to allow quantification based on a known

quantity of his-tagged purified protein. Total protein content of His-ABCH2 expressing mem-

branes was quantified using Bradford protein assay and known quantities ran on the same gel

with a known concentration of either a His-tagged, purified, unrelated protein or the ABCH2

membranes. Upon separation, the polypeptides were electro-transferred on two separate nitro-

cellulose membranes, which were blotted with anti-His or anti-ABCH2 respectively (S11 Fig).

Then, imageJ was used for pairwise band density analysis (His-ABCH2 and His-protein, His-

ABCH2 and ABCH2). Based on the estimation described in S3 Table, ABCH2 was about 11 ng

per μg of total protein, which corresponds to 0.12 pmoles (based on the expected molecular

weight of the transporter, 85kDa).

Structural analysis and molecular docking simulations

The amino acid sequence of ABCH2 (Uniprot:A0A6E8VHH0) was submitted to the SWISS-

MODEL in the automated protein modelling server provided by the GlaxoSmithKline center,

using its standard settings [74]. The same software was also used to identify the best template

for the homology-based modelling [74]. The human homodimeric ABCG1 transporter

involved in cholesterol trafficking [46] was identified as the closest homologue. For both the

ABCG1 structure and the ABCH2 predicted model, the Protein Interaction Calculator (PIC)

webserver was used to predict intermolecular interactions [47]. All Molecular Docking studies

were performed using Autodock Smina, a fork of Autodock Vina software (includes changes

from the standard Vina version 1.1.2) [50], and visualized using the PyMOL Molecular Graph-

ics System (Version 2.0.6 Schrödinger, LLC). The structure used as receptor for the ABCG1

transporter was obtained from Protein Data Bank (PDB code: 7R8D), [75], and the 3D struc-

tures of the ligands were obtained from PubChem database [76]. The nature of all protein-

ligand interactions was identified using Protein-Ligand Interaction Profiler (PLIP) [76].
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Supporting information

S1 Fig. ABCH2 relative expression in non-induced legs, 1hour-deltamethrin induced legs

and bodies. Mean + SEM of three biological replicates per condition (n = 45 per condition).

ABCH2 expression is 2.8-fold higher in induced legs, compared to non-induced (P

value = 0.0487, *) and 8.6-folds higher in induced legs compared to induced bodies (P

value = 0.0192, *). Bodies represent the whole female mosquitoes, lacking the legs.

(TIF)

S2 Fig. ABCH2 expression in different tissues. A. Relative expression levels of ABCH2 in dif-

ferent dissected tissues normalized against abdominal walls of 3–5 Day old female VK7 mos-

quitoes. Bar graphs represent mean values; error bars standard mean error; n = 3 biological

replicates and B. Western Blot using specific antibody against ABCH2, depicting ABCH2 in

different dissected tissues of 3–5 day old female VK7. Each band corresponds to the tissue of

the bar above. C. Western blot analysis indicating ABCH2 presence in head is exclusively

attributed to sensory appendages. β-tubulin was used as loading control.

(TIF)

S3 Fig. Relative expression of ABCHs in the dsGFP and dsABCH2-injected mosquitoes.

For each gene, expression is normalized against dsGFP. ABCH2 relative expression in

dsABCH2-injected mosquitoes is reduced by 81.9% (P-value = 0.0085, **), ABCH3 is reduced

by 41.4% (P-value = 0.134, ns) and ABCH1 expression is reduced by 29.7% (P-value = 0.354,

ns).

(TIF)

S4 Fig. Number of knocked-down (KD), alive and dead mosquitoes used in deltamethrin

toxicity assay. A. Numbers of dsABCH2 and dsGFP mosquitoes exposed in deltamethrin per

biological replicate, B. Graphical depiction of total dsABCH2 and dsGFP alive-KD (left panel)

and alive-dead (right panel) after 1 hour and 24 hours post deltamethrin exposure respectively,

C. Statistical analysis using two-sided exact Fisher’s test: P-value and effect size (odds ratios

and reciprocal odds ratio) values are shown for KD and mortality after deltamethrin exposure.

(TIF)

S5 Fig. ABCH2 subcellular localization is predicted to be on the plasma membrane using

DeepLoc-1.0: Eukaryotic protein subcellular localization predictor.

(TIF)

S6 Fig. ACON003680 is one-to-one ortholog of snustorr. Phylogenetic analysis of ABCH

transporters from Anopheles coluzzii (ACON), Anopheles gambiae (Ag), Drosophila melanoga-
ster (Dm), Plutella xylostella (Px), Nezara viridula (Nv), Tribolium castaneum (Tc) and Locusta
migratoria (Lm). Tree was created under the LG+R5 substitution model with 5,000 bootstraps

and was rooted using the Danio rerio ABCH gene as an outgroup. Nodes with bootstrap

support< 50% and between 50% and 75% are indicated with light grey and grey circles respec-

tively. Nodes with bootstrap support greater than 75% are indicated with black circles.

(TIF)

S7 Fig. Western blot analysis of a portion of the injected mosquito batch that was used for

CHC analysis. Legs from 10 dsGFP and 10 dsABCH2 were used to validate the silencing.

(TIF)

S8 Fig. Relative abundance of cuticular hydrocarbons (CHCs) identified in legs of dsRNA

injected mosquitoes (dsABCH2 and dsGFP-control). Relative abundances in % area are
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depicted for each one of the identified CHCs. Mean of 3 biological replicates +SEM.

(TIF)

S9 Fig. In vitro expression of ABCH2 in Sf9 membranes. A. Western blot analysis using

ABCH2 antibody in whole cell extracts of ABCH2- and Empty Bacmid-infected Sf9 cells, B.

Western blot analysis using ABCH2 antibody in cytoplasmic fractions (supernatant). In all

cases B-TUBULIN was used as loading control. C. Coomassie blue staining in ABCH2 and

Empty membrane fractions.

(TIF)

S10 Fig. Functional expression in Sf9 IMVs. ATPase activity of membrane preparations

based on the malachite green colorimetric assay. A. Mean + SEM of six biological replicates in

ABCH2 and empty-bacmid expressing membranes. Mean + SEM; Mean(EMPTY) = 32.04+ 4

and Mean(ABCH2) = 52.4+ 3.32 for n = 6 biological replicates; P-value = 0.0021 (**). B. 3 biolog-

ical replicates in unrelated protein-expressing membranes and ABCH2 membranes. The aver-

age of 2–3 technical replicates for each biological is presented in bars. Mean + SEM;

Mean(UNRELATED PROTEIN) = 33.74+ 5.67 and Mean(ABCH2) = 57.94+ 3.68; P-value = 0.0238 (*).
Empty-bacmid values were used to subtract the Sf9 cell background (Fig 4D).

(TIF)

S11 Fig. Western blot analysis for the estimation of the amount of ABCH2 in the ATP

hydrolysis reactions. Sf9 infections using ABCH2 and His-ABCH2 bacmids were carried out

simultaneously. After isolation of membrane fractions and total protein content estimation

using Bradford, the indicated calculated amounts were analyzed by SDS-PAGE and blotted

using an ABCH2 specific antibody. At the same time the His-ABCH2 was analyzed simulta-

neously together with a purified His-tagged control protein to allow estimation of the His-

ABCH2 amount using the anti-His antibody. According to densitometry analysis using ImageJ

and subsequent calculation (Supplementary file 3), we estimate ABCH2 to be about 11 ng

per μgr of total membrane protein, which corresponds to 0.12 pmoles of ABCH2 per μgr of

total protein.

(TIF)

S1 Table. ABCH2 primers for dsRNA construction and RT-Qpcr.

(XLSX)

S2 Table. A. 14C measurements of three biological experiments are presented: External, inter-

nal, total and % penetration of 14C-deltamethrin after 4 minutes of contact in dsGFP and

dsABCH2 mosquitoes. Penetration corresponds to the percentage of internal counts compared

to total counts at this time point. B. Statistical analysis was performed with paired t-test (*) and

statistical details of the comparison (P value = 0.0037, **).
(XLSX)

S3 Table. Calculation details for the estimation of ABCH2 quantity (ng) used in ATPase

assay. Known quantities of a His-tagged purified protein were blotted with His-ABCH2 and

ABCH2 membrane preparations (S11 Fig). ImageJ was used for pairwise band density analysis.

The density values and the μgr of total protein were used for standard curve construction. The

standard curves were subsequently used for estimation of the ng of ABCH2 per μgr of total

protein.

(XLSX)

S4 Table. The estimated ABCH2 pmoles in our preparation (S7 Fig) allows us to extract

the pmoles of Pi per pmole of ABCH2 per minute of reaction. As shown in red, the
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hydrolysis rate is ~178 pmoles of Pi/ pmole of ABCH2/ minute of reaction. Even if our estima-

tion is indirect and prone to errors, the rate value is substantial indicating that ABCH2 under-

goes consecutive ATP hydrolysis rounds.

(XLSX)

S5 Table. ATPase assay using deltamethrin diluted in DMSO in ABCH2 and empty-bac-

mid expressing membrane preparations. 120μM deltamethrin was added in 50ul reaction

containing 10μgr membranes (approximately 100 ngr ABCH2). The values of pmoles Pi/ μgr

of total protein/ minute of reaction and the vales of pmoles Pi/ pmoles of ABCH2/ minute of

reaction from two biological replicates (3 technical replicates each), are shown. The addition

of deltamethrin results in ~1.6 folds of stimulation of the basal activity.

(XLSX)

S1 File. The inter-protein interactions of the solved or modelled structures, retrieved form

the Protein Interaction Calculator (PIC) webserver (47). The standard cut-off distances for

all interaction types (hydrophobic, hydrogen-bonds, ionic, aromatic, cation-Pi) were used.

The interactions were also manually inspected using Pymol (Molecular Graphics System, ver-

sion 1.6 Schrödinger, LLC).

(PDF)
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