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Abstract We set out to reveal the effects of long-
term changes in land use and long-term average 
climate on the regional biophysical environment 
in southern Malawi. Object-oriented supervised 
image classification was performed on Landsat 5 
and 8 satellite images from 1990 to 2020 to identify 
and quantify past and present land use-land cover 
changes using a support vector machine classifier. 

Subsequently, using 2000 and 2010 land use-land 
cover in an artificial neural network, land use-land 
cover for 2020 driven by elevation, slope, precipita-
tion and temperature, population density, poverty, 
distance to major roads, and distance to villages 
data was simulated. Between 1990 and 2020, area 
of land cover increased in built-up (209%), bare land 
(10%), and cropland (10%) and decreased in forest 
(30%), herbaceous (4%), shrubland (20%), and water 
area (20%). Overall, the findings reveal that south-
ern Malawi is dominantly an agro-mosaic landscape 
shaped by the combined effects of urban and agri-
cultural expansions and climate. The findings also 
suggest the need to enhance the machine learning 
algorithms to improve capacity for landscape mod-
elling and, ultimately, prevention, preparedness, and 
response to environmental risks.

Keywords Land use-land cover · Climate change · 
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Introduction

Anthropogenic change is considered a pertinent envi-
ronmental threat, and questions have been raised 
about the consequences of human-induced environ-
mental change on the landscape, lives, and livelihoods 
across Malawi (Jørstad & Webersik, 2016; Kreft 
et  al., 2016). Some of the questions to which there 
is a longing for answers are the following: What are 
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the underlying mechanisms linking human activities 
and broad-scale landscape changes in Malawi? How 
do Malawi’s agricultural commercialization, macro-
fiscal imbalances, and climate’s shock drive land 
use and habitat fragmentation in landscape mosa-
ics? Firstly, it has been established that anthropo-
genic activities are causing significant changes in the 
extent of grassland, forest, marsh, and water habitats 
(Ministry of Natural Resources Energy and Environ-
ment, 2010). This is mostly linked to land conversion 
for crop production, over-harvesting of wetland veg-
etation, construction, brick making, sand extraction, 
charcoal burning, and water diversion for cultivation 
(Bone et al., 2017; Gondwe et al., 2021; Kpienbaareh 
et al., 2022; Mawenda et al., 2020; Ministry of Natu-
ral Resources Energy and Environment, 2010; Ngwira 
& Watanabe, 2019). Secondly, it is well known that 
climatic vicissitudes are devastating lives and liveli-
hoods of Malawi, with southern Malawi being the 
most affected region (Jørstad & Webersik, 2016; 
Ministry of Natural Resources, Energy and Mining, 
2016). For instance, southern Malawi was impacted 
by Tropical Cyclone Ana in January 2022 and sub-
sequently Tropical Cyclone Gombe in March 2022 
(Otto et  al., 2022). Not surprisingly, both cyclones 
brought heavy rains and strong winds, causing floods, 
deaths, injuries, and infrastructure damage (UNICEF, 
2022). However, the analysis of land use-land cover 
(LULC) to regularly monitor and assess biophysical 
landscape changes across the country remains lack-
ing. Research to date have not yet determined how 
long-term changes in land use and long-term average 
climate relate to one another in driving and shaping 
the landscape in this geographical region. So far, the 
existing studies (e.g., Mungai et  al., 2022; Mwale 
et  al., 2014) have only modelled decadal land use-
land cover change (LULCC) at the district level with 
no simulation on how the regional landscape will 
transition under climatic, topographic, and socioeco-
nomic drivers. As a result, there is a paucity of direct 
knowledge on the combined effects of the land use 
and climate on land cover across the region.

Recently, however, in southern Malawi, the topic 
of environmental change is growing in importance in 
light of the increasing occurrence and intensity of cli-
mate hazards across the region (Kreft et al., 2016; Lee 
et  al., 2021; Ministry of Natural Resources, Energy 
and Mining, 2016). The need exists for up-to-date 
information regarding the implications of the past 

and present land use and climate on the natural and 
man-made ecosystems such as croplands, settlements, 
wetlands, lakes, shrublands, and forests across the 
region. Providing LULCC insight will improve our 
understanding of the effects of land use and climate 
on the biophysical environment across mosaic land-
scapes, and what environmental changes are in store 
for such complex landscapes in the future. Ultimately, 
such knowledge will inform, for example, renewable 
energy and land policies and regulatory directions.

This study explores LULCC by integrating cli-
matic and socioecological factors to better understand 
drivers and shapers of southern Malawi’s landscape. 
We first classified the LULC in 1990, 2000, 2010, 
and 2020 using a supervised machine learning algo-
rithm, namely, support vector machine (SVM). This 
was followed by simulation of LULC in 2020 using 
the classified 2000 and 2010 maps, the drivers, and 
an artificial neural network (ANN) algorithm. The 
simulation of the LULC in 2020 was undertaken to 
determine whether the recent LULC in the study area 
is a product of the interactions between the climatic, 
topographic, and socioecological factors.

Materials and Methods

Study setting

The study area is southern Malawi (located between 
14°25′ S and 16°55′ S latitude and 35°16′ E and 35°12′ 
E longitude) covering an area of approximately 32,644 
 km2 (Fig. 1). Southern Malawi is a low-income region 
with its population highly dependent on rainfed agri-
culture (Jørstad & Webersik, 2016), fishery resources 
(Jørstad & Webersik, 2016), and forest resources 
(Bone et al., 2017; Kalipeni, 1992; Ministry of Natu-
ral Resources, Energy and Mining, 2016; Ngwira & 
Watanabe, 2019). With most of the working population 
(85%) practicing rain-fed cultivation, the local popula-
tion is heavily and directly dependent on the environ-
ment for their livelihoods, creating a perfect storm of 
deforestation, habitat loss and fragmentation, soil ero-
sion, and many others (Ministry of Natural Resources, 
Energy and Environment, 2010).

Droughts and floods are the most severe and fre-
quent climate hazards in the region—often caus-
ing loss of human life and livestock, crop destruc-
tion, property damage, and harm to natural resources 
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Fig. 1  Southern Malawi: 
districts and study area. 
The inset map shows the 
location of Malawi in the 
context of Africa
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(Ministry of Natural Resources, Energy and Mining, 
2016). For example, the floods across the country 
alter landscapes: through erosional and sedimenta-
tion processes, and indirectly through forest loss as 
local communities expand their footprint (Bone et al., 
2017). The dire consequences of floods are exempli-
fied in the 2015 and 2019 Post Disaster Needs Assess-
ment reports (FCFA, 2019). According to the reports, 
in 2015 and 2019, precipitation was four times higher 
above normal, resulting in heavy flooding in the south-
ern region which caused human death and significant 
seasonal ecological changes (FCFA, 2019).

Anthropogenic activities and climatic shocks con-
tribute to landscape changes in the region (da Silva 
Cruz et  al., 2022; Gondwe et  al., 2021; Joshua et  al., 
2016; Kalipeni, 1992; Kalipeni & Zulu, 2002; Mawenda 
et al., 2020). The seasonal changes in land use and wors-
ening climate impacts across southern Malawi make this 
region an excellent case study of how climate changes 
and anthropogenic activities affect the landscape patterns.

Datasets

This study uses the Landsat 5 Thematic Mapper 
(TM) and 8 Operational Land Imager (OLI) sensors 
(Poursanidis et al., 2015). The Landsat OLI and TM 
have been chosen for five reasons: (1) the imagery 
dataset covering the study area has a high temporal 
resolution—spanning from as early as the 1990s up 
to the 2020s, (2) they provide medium spatial resolu-
tions from 15 to 30 m/pixel and high spectral resolu-
tion from 7 to 11 bands, (3) evaluation of the quality 
of the data showed that adequate imagery with low 

cloud cover (less than 5%) is available for the study 
area, (4) the imagery is open access, and (5) they 
provide adequate coverage of the whole study area, 
unlike Landsat 7 Enhanced Thematic Mapper images 
which have scan gaps, leading to missing scenes. The 
satellite images were obtained from the open-access 
Google Earth Engine Explorer (http:// www. code. 
earth engine. google. com), a web-based computing 
platform for the Earth Engine JavaScript API. From 
this platform, yearly median (January–December) 
Landsat composite images acquired in 1990, 2000, 
2010, and 2020 with less than 5% cloud, covering 
the entire southern Malawi, were downloaded and 
utilized for the supervised classification (see Supple-
mentary Material Appendix A). Here, we used annual 
composites to minimize stochastic landscape changes 
that occur over shorter time periods and allow com-
parison of three decades using a common temporal 
unit of analysis, in this case, a year.

Table  1 presents a summary of the climatic and 
socio-economic variables used in the subsequent 
supervised classification. Administrative boundary, 
major roads (highway and primary road), and vil-
lage shapefiles for the region were obtained from 
the Malawi Spatial Data Platform (MASDAP, http:// 
www. masdap. mw/). Historic climate data, specifi-
cally average temperature and precipitation for the 
years 1970–2000, were downloaded from WorldClim 
(http:// www. world clim. org/). Gridded population den-
sity data (2000–2020) having 1 km spatial resolution 
were downloaded from WorldPop (http://www.world-
pop.org/datacatalog/). The Digital Elevation Model 
(DEM) data, 30 m spatial resolution, was downloaded 

Table 1  Remotely sensed and GIS datasets used for the LULC mapping and simulation

Data Spatial resolution Source Year(s) File format

Landsat 5 TM 30 m Google Earth Engine 1990, 2000 and 2010 GeoTIFF
Landsat 8 OLI 30 m, 15 m Google Earth Engine 2020 GeoTIFF
Administrative boundary - HDEX 2017 Vector
Precipitation ~1 km WorldClim 1970-2000 GeoTIFF
Temperature ~1 km WorldClim 1970-2000 GeoTIFF
Population density 1 km WorldPop 2000-2020 GeoTIFF
Elevation 30 m RCMRD 2018 GeoTIFF
Slope 30 m Calculated from DEM 2018 GeoTIFF
Poverty 100 m MASDAP 2019 GeoTIFF
Major roads - MASDAP 2014 Vector
Villages - MASDAP 2013 Vector

http://www.code.earthengine.google.com
http://www.code.earthengine.google.com
http://www.masdap.mw/
http://www.masdap.mw/
http://www.worldclim.org/
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from the RCMRD Open Data online portal (http:// 
www. opend ata. rcmrd. org/ datas ets/ malawi- srtm- dem- 
30met ers/ explo re). The slope was derived from the 
DEM using the terrain analysis function within QGIS 
3.28 (see http:// www. docs. qgis. org/ raste rs/ terra in/ 
analy sis).  Poverty level raster data were downloaded 
from the MASDAP. The metrics used to measure 
the poverty levels range from income/expenditure, 
assets, and access to health, sanitation, and education 
services. The datasets were all projected to WGS 84 
UTM Zone 36 South and resampled to 1 km × 1 km 
spatial resolution to match the geometries, thereby, 
precluding a random pixel not representing the same 
size of LULC in the other raster layers.

For this study, major roads and village location 
data in vector format were used to create raster lay-
ers of Euclidean distance to major roads and villages, 
respectively. We then used the proximity variables 
together with a suite of other climatic, topographic, 
and socioeconomic drivers—temperature, precipita-
tion, elevation, slope, population density, and pov-
erty—to simulate recent LULCC across the study 
area (Supplementary material Appendix B, C and D).

Data normalization

Recognizing that in machine learning, using raw 
input data tends to cause reduced accuracy and speed 
of ANN training, and the explanatory variables were 
normalized (Ostad-Ali-Askari et  al., 2017). In an 
ANN, the distribution of the data is not assumed; 
hence, normalization becomes useful when the input 
data has varying scales. Additionally, since ANNs 
incorporate weights, ensuring that all the predictor 
variables have a common numerical range is therefore 

essential (Omrani et al., 2012). It is for these reasons 
that in the present study, all the explanatory variables 
were normalized to a common numerical range using 
Eq. (1) in ArcGIS Raster Calculator, resulting in val-
ues between 0 and 1.

where X, Xnormalized, Xminimum, and Xmaximum represent 
input variable values, the normalized value, and the 
possible minimum and maximum values, respectively 
(Ostad-Ali-Askari et al., 2017).

Training sample collection

We used a seven-LULC classification schema: built-
up, forest, herbaceous, bare land, water, cropland, and 
shrubland (Table  2). This classification schema was 
derived from the 2013 Atlas of Malawi Land Cover 
and Land Cover Change (FAO, 2020) and the LULC 
categories that could be identified from the seg-
mented Landsat TM and OLI images (Supplementary 
material Appendix A), alongside the first author’s 
knowledge of the local landscape. Geographically 
uniformly distributed samples were collected across 
the study area from the segmented Landsat images 
using ArcGIS Pro’s Image Classification Wizard.

Supervised image classification

To identify and quantify LULCC, this study adapts the 
methods and best practices of LULCC analysis and 
mapping used by the Food and Agriculture Organization 
(FAO); see FAO (2020) and Lam (2008). The methods 

(1)X
normalized

=

(

X − X
minimum

)

(

X
maximum

− X
minimum

)

Table 2  LULC classification schema

ID Landcover Description

1 Built-up Developed areas and artificial surfaces, such as settlement (urban and rural), 
industrial, and roads. Features indicating building footprint were assigned to this 
category.

2 Forest Woodland and broadleaved deciduous trees in a stand.
3 Herbaceous Vegetation having no persistent woody plants, such as grasses, reeds, and sugarcane.
4 Bareland Areas with exposed surfaces such as bare rock, dried up rivers, and lakeshore
5 Water Flowing and standing waterbodies
6 Cropland Areas used for cultivating rain-fed crops, including ploughed fields
7 Shrub land Areas characterised by low shrubs and widely dispersed trees

http://www.opendata.rcmrd.org/datasets/malawi-srtm-dem-30meters/explore
http://www.opendata.rcmrd.org/datasets/malawi-srtm-dem-30meters/explore
http://www.opendata.rcmrd.org/datasets/malawi-srtm-dem-30meters/explore
http://www.docs.qgis.org/rasters/terrain/analysis
http://www.docs.qgis.org/rasters/terrain/analysis
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involve (1) the use of supervised machine learning algo-
rithms to process and segment imagery and (2) inter-
preting and validating outputs using existing land cover 
atlases and local knowledge. Training samples were col-
lected by selecting segments—group of pixels character-
ized by a uniform color representing a class—from the 
segmented images using the Training Sample Manager 
Segment Picker in ArcGIS Pro 3.0.0. For each LULC 
class, we collected a minimum of 25 segments. Using 
the training samples, supervised classification was sub-
sequently performed on the segmented Landsat ETM 
and TM imagery. Of note, a near-infrared (NIR) or color 
infrared composite (NIR, red and green Landsat band 
combination) was used for the training sample collection 
and supervised classification.

Here, an SVM algorithm was used to classify the 
LULC between 1990 and 2020. The SVM classifier 
has been chosen here because of its superior perfor-
mance when compared to a parametric classifier, such 
as the maximum likelihood classifier, as demonstrated 
by Abdi (2020), Bahari et  al. (2014), Candade et  al. 
(2004), and Rokni Deilmai et  al. (2014). The SVM 
classifier performs well because it is less susceptible 
to noise, related spectral bands, and inconsistent num-
ber of training samples within each LULC category 
(Pal & Mather, 2005; Rokni Deilmai et al., 2014). As a 
non-parametric classifier, the SVM classifier does not 
require normally distributed samples and thereby can 
classify the data nonlinearly. In principle, it classifies 
the images by determining the boundaries in feature 
space and allocates the pixel of land cover class to a 
single class (Bahari et al., 2014). A detailed mathemat-
ical description of SVM is given in Cortes and Vapnik 
(1995) and Candade et al. (2004).

Annual rate of change

To better understand temporal change in urbanization, 
agricultural expansion, water body area, and deforest-
ation, annual rate of change was computed as follows:

where R is the rate of change per year in percent-
age, A1 and A2 are the area in square kilometre at the 
beginning and end of the analysis period, and t1 and 
t2 correspond to the time in years from start to finish 
(Mawenda et al., 2020).

(2)R =

{

1

t
2
− t

1

}

∗

{

ln
A
2

A
1

}

∗ 100

LULC simulation

We employed the ANN-multi layer perceptron (MLP) 
model using the Modules for Land Use Change Simu-
lations (MOLUSCE) in QGIS 2.18 to simulate LULC 
in 2020, based on LULCC between 2000 and 2010. 
The ANN-MLP model is a non-linear classifier and 
hence offers a more realistic way of simulating com-
plex LULC transitions driven by a set of complex fac-
tors (Gharaibeh et al., 2020). To detect land transition 
and simulate LULCC scenarios, the model computes 
the functional relationship between the inputs, in this 
case, the LULC classes and the explanatory variables 
(Charif et al., n.d.). The mathematical function of the 
ANN-MLP model is given by Eq. (3):

where yk is the output (in this case, built-up, forest, 
herbaceous, bare land, water, cropland, and shrub-
land) expressed as a function of the input x1, x2, …, 
xq (in this case, LULC and the explanatory variables). 
ωij and vjk are weights assigned to the connections 
between the input layer and the hidden layer, and 
between the hidden layer and the output layer, respec-
tively, ω0j and v0k are biases (or threshold values in 
the activation of a unit). Φ is an activation function, 
applied to the weighted sum of the output of the pre-
ceding layer (in this case, the input layer). Ψ is also 
an activation function applied, by each output unit, 
to the weighted sum of the activations of the hidden 
layer (Omrani et al., 2012).

In summary, the input layers receive the input data 
containing LULC classes and values of the explana-
tory variables described above and pass these to the 
hidden layer or artificial neurons. In the hidden layer 
of neurons, each neuron relates to each neuron of 
the next hidden layer by weighted input signals. The 
weights are summed up by the neurons and propa-
gated to the output layer through nonlinear and linear 
transfer functions. To learn the weights, the ANN-
MLP model finds the values that minimize the error 
by trying several different numbers as the weights.

Accuracy assessment

Given that LULC classification and simulation is not 
a consistent process, the results from the supervised 

(3)yk = Ψ

(

p
∑

j=1

vjkΦ

(

q
∑

i=1

�ijxi + �
0j

)

v
0k

)
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LULC classification and prediction were vali-
dated, based on methods adapted from FAO (2020), 
Appiah et  al. (2015), and Mukherjee et  al. (2009). 
This includes calculating the kappa coefficient and 
“ground truthing” in Google Earth. High-spatial res-
olution Google Earth imageries (1989–2020) were 
used to verify the classified maps. The kappa meas-
ures the goodness-of-fit between the actual scenario 
and predicted scenario (Appiah et  al., 2015). The 
kappa values <0 signify no agreement, 0–0.2 as slight 
agreement, 0.2–0.41 as fair, 0.41–0.60 as moderate, 
0.60–0.80 as substantial, and 0.81–1.0 as almost per-
fect agreement (Appiah et al., 2015; Landis & Koch, 
1977). Mathematically, kappa is expressed as

where r is the number of rows in the matrix, Xii is the 
number of observations in row i and column i (the 
diagonal elements), x + 1 and xi+ are the marginal 
totals of row r and column i, respectively, and N is the 
number of observations (Mukherjee et al., 2009).

Additionally, we used the percentage of correct-
ness metric and learning curve graph outputted by the 
MOLUSCE to evaluate the performance of the simu-
lation model. The MOLUSCE determines the latter 
by calculating false predictions in the simulated map 
using a two-map comparison approach (Gharaibeh 
et al., 2020).

Results

Temporal patterns in LULCC from 1990 to 2020

The results from the LULC classification indicate 
that between 1990 and 2000, herbaceous area, crop-
land, bare land, and built-up area increased by 12.7%, 
1.9%, 1.1%, and 0.1%, respectively (Fig.  2a). In 
comparison, shrubland, forest land, and water area 
decreased by 12.4%, 2.7%, and 0.7%, respectively 
(Fig.  2a). Between 2000 and 2010, shrubland, for-
est, waterbodies, and built-up area increased by 7.3%, 
2.9%, 0.5%, and 0.1%, respectively, while herbaceous 
area, cropland, and bare land shrunk by 8.7%, 1.5%, 
and 0.7%, respectively (Fig.  2b). Between 2010 and 
2020, cropland, shrubland, and built-up increased 
by 5.8%, 2.2%, and 0.1%, respectively (Fig.  2c). In 

(4)� =
N
∑r

i=1
Xii −

∑r

i=1

�

xi+
��

x+i
�

N2 −
∑r

i=1

�

xi+
��

x+i
�

comparison, forest, herbaceous, bare land, and water 
decreased by 2.6%, 4.3%, 0.4%, and 0.9%, respec-
tively (Fig. 2c). Thus, over the 30-year period, there 
was an increase in built-up, bare land, and cropland 
and a decrease in forest, herbaceous, water, and 
shrubland. During the same period, southern Malawi 
was dominantly an agro-mosaic landscape.

Spatial patterns of LULC from 1990 to 2020

Figures 3 and 4 are clear demonstrations of the spa-
tiotemporal distribution of built-up, forest, herba-
ceous, bare land, water, cropland, and shrubland in 
southern Malawi over 30 years. What is striking is 
cropland dominance and the perturbations in for-
est, herbaceous, and shrubland areas. Losses in veg-
etation cover were higher during the 1990–2010 
period, evidently driven by cropland expansion. In 
the 2010–2020 period, vegetation gains are apparent. 
Here, bare land and built-up areas are lesser. Table 3 
shows the estimated quantities of the LULC catego-
ries over the four time periods. Overall, net gains in 
built-up (115  km2), bare land (28  km2), and cropland 
(2239  km2) and net losses in forest (−763  km2), her-
baceous (−84  km2), water (−344  km2), and shrubland 
(−897  km2) are evident.

SVM model performance

Table  4 below shows the kappa coefficient for the 
1990, 2000, 2010, and 2020 classified maps. Overall, 
the kappa values of ≥ 0.85 indicate that the goodness 
of fit between the ground truth data and the classi-
fied maps is almost in perfect agreement. This means 
that the accuracy of the LULC classification for 1990, 
2000, 2010, and 2020 Landsat imagery by the SVM 
classifier was up to standard.

LULCC simulation for 2020

The prediction of LULC in 2020 using a fine-tuned 
CA ANN-MLP model produced a kappa coeffi-
cient of 0.73 (73%) and a percentage of correctness 
of 85.2% (Table  5). This means that the simulated 
map showed good agreement with the reference 
map (actual LULC for 2020). Overall, this result 
shows that the climate, topographic, and socio-
economic predictor variables provided acceptable 
LULC simulation results. This is reflected visually 
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in Fig. 5 and quantitatively in Table 5. A compari-
son of observed (actual) and simulated LULC maps 
for 2020 indicates almost similar spatial patterns in 
LULC across the study area.

Table  6 shows the LULC area in the observed 
and simulated maps. From the table, in the simu-
lated LULC, the area of built-up (131  km2), for-
est (1403  km2), herbaceous (1462  km2), and water 
(1343  km2) was slightly lower when compared to 
the actual LULC area. On the other hand, cropland 

(25101  km2) and bare land (332  km2) were slightly 
overestimated.

CA ANN-MLP model performance

Figure 6 shows the learning curve for the calibrated 
model used to predict LULC in 2020. The generali-
zation gap between the training curve (displayed in 
green) and validation curve (displayed in red) is too 
wide. This usually happens when the training data is  

Fig. 2  Percentage change 
in LULC between 1990 and 
2000 (a), 2000 and 2010 
(b), and 2010 and 2020 (c)
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overfit (Ding, 2021). Clearly, a decrease in the training 
curve can be observed. The training quality decreased as 
the learning experience (number of iterations) increased.  
Consequently, the generalization gap widened, creating 
a “U-shape” training curve. This means that the model 
was overfitted, so it could not generalize new data well 
enough.

Discussion

Supervised LULC classification

Overall, the classification results reveal urban, bare 
land, and cropland expansions and a general decrease 
in water and vegetated areas. Over the 30-year period, 
built-up area tripled (209%), and bare land and crop-
land increased both by 10%. In contrast, forest, her-
baceous, waterbody area, and shrubland decreased 
by 30%, 4%, 20%, and 20%, respectively. Thus, the 
past and current temporal patterns of LULCC across 
southern Malawi can be summarized as follows: 
built-up, bare land, and cropland are increasing while 

forest, herbaceous, water, and shrubland are decreas-
ing. Additionally, these findings reveal that southern 
Malawi is dominantly an agro-mosaic landscape with 
expanding urban areas and bare land, and disturbed 
and declining primary forests, shrublands, grasslands, 
and water resources.

Clearly, there is significant LULC dynamism 
across the region (Fig.  4). Except for cropland, all 
LULC types showed substantial changes in their spa-
tial distribution over time, particularly forest, herba-
ceous, and shrubland cover. This reveals that, in the 
study area, vegetation areas often undergo transi-
tion. This result is consistent with the findings from 
sub-district level and district-level studies across 
the region (Bone et al., 2017; Mawenda et al., 2020; 
Minde et al., 2001).

Counter to what the authors expected, and perhaps 
in reflection of the moderate performance of the SVM 
model and differences in quality of the Landsat 5 and 8 
sensors, findings from the 2000 and 2020 LULC map-
ping contradict the hypothesized situation and the tradi-
tional view that the increase in built-up area and crop-
land will reduce forest land, shrubland, and waterbody 

Fig. 3  Spatial patterns in LULC distribution in 1990, 2000, 2010, and 2020 in southern Malawi
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area while increasing bare land. As it turned out, the 
LULCC in 2000 and 2020 was striking and progressed 
to different outcomes, graphically. In 2000, forest land, 
shrubland, and waterbody area increased. Why is this 
the case? The increase in herbaceous and waterbody 
area could be associated with the extreme heavy rain-
fall in 2000/1 caused by Tropical Cyclone Astride (Clay 
et  al., 2003). Similarly, forest and shrubland increased 
in the recent years (2010–2020 period), indicating the 
positive impacts of forest and land management poli-
cies. The region has two national parks (Lengwe and 
Liwonde), two wildlife reserves (Majete and Mwabvi), 
forest reserves (Machinga, Mangochi, Mulanje, Zomba, 
Michiru, and many others), and timber plantations found 
in Thyolo. This means that conservation and restoration 
efforts are likely to cause an increase in vegetation cover. 
Since 1990, these habitats have undergone significant 
degradation, mainly because of encroachment and defor-
estation (Bone et  al., 2017; Kalipeni, 1992; Mawenda 
et al., 2020; Zulu, 2010). However, from 2015 onwards, 
the conservation areas have been undergoing restoration 
(Bone et al., 2017; Kpienbaareh et al., 2022).

This then reasonably reveals that the anthropo-
genic activities and climate across this region cause 
noticeable LULC transitions at a landscape level. 
Thus, this study through land cover mapping dem-
onstrates that proximity to major roads and villages, 
population density, poverty, alongside temperature, 
precipitation, slope, and elevation provide a reason-
able explanation to the occurrence of open habitats or 
nonforested areas at decadal intervals.

Evaluating the effectiveness of the LULC 
classification model

What is evident from the classification results is that 
the optimised SVM classifier has proved to be not 

Fig. 4  Dynamics of LUCC from 1990 to 2022 across southern 
Malawi. Note that the connection width (thin or thick) is pro-
portional to the LULCC (small or large)

Table 3  Area of LULC in 
1990, 2000, 2010, and 2010

LULC 1990 (sq.km) 2000 (sq.km) 2010 (sq.km) 2020 (sq.km)

Built-up 55 87 134 170
Forest 2560 1680 2655 1797
Herbaceous 2073 6191 3398 1989
Bare land 287 661 435 315
Water 1701 1472 1651 1357
Cropland 21538 22116 21856 23777
Shrubland 4437 388 2810 3540
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only useful in classifying heterogenous land cover, 
but also land cover of similar spectral signature (e.g., 
cropland and shrubland). In summary, a highest over-
all accuracy of 94% was observed in the 2020 Land-
sat 8 OLI. For the Landsat 5 TM, the highest overall 
accuracy was observed in the 1990 image (91%), fol-
lowed by the 2020 image (89%), and lastly, the 2000 
image (85%). The classifier showed high accuracy in 
discriminating bare land, followed by forest. How-
ever, pixels in the built-up, herbaceous, water, crop-
land, and shrubland were often misclassified. This 
means that the classifier yielded moderate accuracy 
for these four LULC classes across the study area. It 
could be argued that during the dry season, low den-
sity of green as a result of dry conditions in the shrub-
land, alongside bush fires, exposes the soil, causing 
similar spectral signatures between the shrubland 
and cleared cropland/cleared land. The classifier also 
frequently misclassified water pixels as herbaceous. 
In the study area, wetlands are dominated by differ-
ent types of emergent vegetation (partly submerged 
plants) and water, making these classes difficult to 
differentiate. This was evident in areas with standing 
water and floodplains. However, the reason for the 
misclassification of water with shrubland is not clear. 
This is an important result for future research.

These findings broadly corroborate the findings 
of Kpienbaareh et  al. (2022) and Palamuleni et  al. 
(2007) who demonstrated that the close associa-
tion of LULC classes often leads to mixed pixels, 
particularly in savanna landscapes where habi-
tats are spatially clustered and scattered and have 

gradual boundaries. Thus, in addition to Clinton 
et al. (2010), who reported that classification inac-
curacy is a resultant of poor classifier and/or poor 
segmentation, this study suggests that classification 
accuracy is also affected by spatial patterns in habi-
tat (LULC) distribution.

LULC simulation

The simulation reveals an intricate LULCC dynamic 
system, broadly a resultant of the non-linear inter-
play of land use and climate. Using Landsat 5 and 
8 images, CA ANN-MLP model, and evidential 
reasoning, it has been shown that significant spati-
otemporal changes in LULC occurred under devel-
opment, conservation, and long-term variability 
of climate. Thus, we deduce that southern Malawi 
has a strong record of LULC dynamism shaped 
inclusively by land-use (agriculture, urbaniza-
tion), topography and climate. Despite the interplay 
not being apparent, the long-term temporal LULC 
changes are consistent with built-up area and crop-
land expansions and climate.

Of note, cropland (76.2%) was the main LULC 
in the predicted map, followed by shrubland (9.6%). 
So in the actual map—cropland and shrubland areas 
were 72.2% and 10.7%, respectively (Table 5). Simi-
larly, in both maps, bare land was the least land cover 
type, 0.9% in the actual map and 1.0% in the pre-
dicted map. Overall, the differences in area of LULC 
classes between the actual and simulated are mini-
mal, attesting to the similarity between the two maps. 
This then means that proximity to major roads and 
villages, population density, poverty, alongside tem-
perature, precipitation, slope, and elevation across the 
study area do directly and indirectly (1) cause signifi-
cant perturbations in land use-land cover, in general, 
and (2) result in expansion and dominance of crop-
land, expansion and persistence of bare land, decline 
in water area, expansion of built-up, decline in veg-
etated areas in some areas, and persistence in vegeta-
tion in others, specifically.

Evaluating effectiveness of the LULC simulation model

The simulated map showed good agreement with the 
reference map (Fig. 5). This indicates that the climate, 
topographic, and socio-economic predictor variables  

Table 4  LULC classification accuracy for 1990, 2000, 2010, 
and 2020 images by the SVM classifier

Satellite imagery Kappa value (𝜅) Agreement level

1990 Landsat 5 TM 0.91 Almost perfect
2000 Landsat 5 TM 0.85 Strong
2010 Landsat 5 TM 0.89 Strong
2020 Landsat 8 OLI 0.94 Almost perfect

Table 5  Performance of the trained neural network

Learning 
rate

Maximum 
iterations

Hidden 
layers

Kappa 
overall 
(𝜅)

% of correctness

0.001 2000 500 0.73 85.2
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Fig. 5  Comparison of the 
observed or classified map 
with the best predicted map

Table 6  Comparison of 
observed and simulated 
LULC

LULC Observed 2020  
(sq.km)

Simulated 2020  
(sq.km)

Actual 2020 (%) Simulated 
2020 (%)

Built-up 170 131 0.5 0.4
Forest 1797 1403 5.5 4.3
Herbaceous 1989 1462 6.0 4.4
Bare land 315 332 0.9 1.0
Water 1357 1343 4.1 4.0
Cropland 23777 25101 72.2 76.2
Shrubland 3540 3173 10.7 9.6
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provided acceptable LULC simulation results. How-
ever, the hyperparameters used in this prediction model, 
namely, learning rate, momentum, and number of hid-
den layers, did not converge towards the least minimum 
error (i.e., best fit). As evidenced in the learning curve 
(Fig. 6), the ability of the calibrated models to learn is 
decreasing with experience. Clearly, this indicates over-
fitting in the model. Overfitting means that the model 
has learned the data, statistical noise, and errors too 
well and thereby is less capable to generalize to new 
data (Igiri et al., 2015; Sohil et al., 2022).

This, then, suggests that the prediction model also 
learned LULC patterns caused by random processes 
rather than by the explanatory variables. This prob-
lem is likely to be related to the main drawback of 
the least mean squares (LMS) algorithm in the ANN-
MLP, which is used to minimize the error in the net-
work (Collobert & Bengio, 2004). As with high-order 
polynomials, the LMS suffers from “ill-condition” 
problem, where a small change in the input results in 
a significant change in the output (Deng et al., 2009). 
In principle, the overfitting can be minimized by 
reducing the learning rate and/or number of the hid-
den layers. However, the ANN is stochastic, and the 
LMS is sensitive to the propagation of its input, mak-
ing it “very hard (if not impossible) to choose a learn-
ing rate that guarantees stability of the algorithm” 
(Haykin, 2002, para.2).

The wide gap between the training and validation 
curves indicated that the model was trained for too 
long, and the training dataset is unrepresentative. 

Possible explanations for this are the following: 
(1) the number of iterations was set too high (2000 
iterations), causing the model to learn for too long, 
and (2) the complex and multivariate nature of the 
input variables used here is making the model draw 
unrepresentative samples from one dataset, in com-
parison to another dataset. Consequently, the iden-
tification of the intricate patterns by the model 
proved difficult.

Conclusion

Using Landsat 5 and 8 images, SVM classifier, CA 
ANN-MLP model, and evidential reasoning, it has 
been shown that significant spatiotemporal changes 
in LULC occurred under development, conserva-
tion, and long-term variability of climate. Thus, we 
conclude that southern Malawi has a strong record 
of LULC dynamism shaped inclusively by land use 
(agriculture, urbanization), topography, and climate. 
Despite the interplay not being apparent, the long-
term temporal LULC changes are consistent with 
built-up area and cropland expansions under busi-
ness-as-usual climate change. Overall, the LULCC 
trend across southern Malawi presents a threat to the 
biodiversity across the region. The long-term vegeta-
tion loss does not bode well with the spatial distribu-
tion of natural habitats. Thus, the LULC trend merits 
stepped-up conservation and restoration efforts.

This study points out the need for further research 
to (1) investigate the effect of band combinations on 
the SVM classifier accuracy, (2) elucidate the influ-
ence of the above explanatory variables on the LULC 
transition, (3) explicate the effect of urban and crop-
land expansion on spatial heterogeneity of forest and 
shrubland habitats and influence of fire regimes and 
surficial geology on long-term vegetation distribu-
tion, and (4) experiment parameter optimization using 
the stochastic optimization algorithms outside the 
MOLUSCE framework. This is motivation to develop 
a QGIS plugin for automatically determining optimal 
hyperparameters and variable combinations.

In conclusion, greater understanding of LULCC in 
southern Malawi will not only require coarse-grained 
stochastic climatic models or advanced hybrid socio-
economic models, but also using fine-resolution data 
or less explored ecological predictors (or both).

Fig. 6  Learning curve for the 2020 CA ANN-MLP model 
indicating training loss
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