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Chlorfenapyr metabolism 
by mosquito P450s associated 
with pyrethroid resistance 
identifies potential activation 
markers
Cristina Yunta 1, Jocelyn M. F. Ooi 1, Folasade Oladepo 1, Sofia Grafanaki 2, 
Spiros. A. Pergantis 2, Dimitra Tsakireli 3,4, Hanafy M. Ismail 1* & Mark J. I. Paine 1*

Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as 
a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted 
by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce 
tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated 
levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr 
activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly 
associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria 
and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 
and Ae. aegypti, CYP9J32. The  Kcat/KM value of 0.66 μM−1  min−1 for CYP9K1 was, 6.7 fold higher than 
CYP6P3 and CYP9J32 (both 0.1 μM−1  min−1) and 22-fold higher than CYP9J5 (0.03 μM−1  min−1). Further 
investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets 
(~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% 
and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr 
by mosquito P450s and highlights the need for continued investigation into effective vector control 
strategies.

Synthetic pyrethroids are the most widely used insecticides for vector control due to their knockdown effect, 
excito-repellency properties and low mammalian  toxicity1. However, the increasing use of pyrethroids in vector 
control operations has resulted in a widespread occurrence of species that are resistant to pyrethroid  insecticides2. 
For a long time, the range of available insecticides for vector control was limited to only a few classes, organochlo-
rines, organophosphates, carbamates and pyrethroids. However, to address the increased numbers of insecticide-
resistant vectors and non-target organism risks, new active ingredients with unique modes of action are being 
developed to ensure the sustainability and effectiveness of vector control  strategies3,4.

Chlorfenapyr, a pyrrole insecticide (IRAC group 13) that impairs mitochondrial activity and has been widely 
employed in agricultural and urban pest control since  19955, is one of the first of a new generation of malaria 
preventative products being developed by BASF with support from the Innovative Vector Control Consortium 
(IVCC). Chlorfenapyr is a highly potent insecticide with low repellent efficacy but high residual toxicity to 
mosquitoes, making it an attractive choice for combination with a pyrethroid to improve net user protection 
and reduce resistance selection.

In 2017, long lasting insecticide treated nets (LLINs) developed by BASF  (Interceptor® G2 LLIN) with dual 
ingredients (α-cypermethrin and chlorfenapyr) were prequalified by the World Health Organization (WHO) as 
first in class for dual insecticidal nets.  Interceptor® G2 LLIN is specifically designed to efficiently combat resistant 
mosquitoes, thereby safeguarding public  health6. Large-scale trials in Benin and Tanzania demonstrated that 
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 Interceptor® G2 LLIN reduced child malaria incidence by 46% and 44%, respectively, over 2 years compared to 
standard pyrethroid-only  nets7,8. This resulted in a recent WHO recommendation published in March 2023 for 
the deployment of pyrethroid-chlorfenapyr LLINs instead of pyrethroid-only nets to prevent malaria in adults 
and children in areas where mosquitoes have become resistant to pyrethroids. The increase in demand for these 
nets has sparked the development of other varieties of pyrethroid-chlorfenapyr nets, such as  PermaNet® Dual, 
which contains deltamethrin-chlorfenapyr, and has been recently added to the list of Prequalified Vector Control 
Products.

Chlorfenapyr is a pro-insecticide which becomes toxic when the N-ethoxymethyl group is removed through 
P450-mediated oxidation. This process creates the toxic metabolite tralopyril (also called the CL303268 metabo-
lite). (Fig. 1). Tralopyril is a mitochondrial electron transport uncoupler (METU) whose mode of action is to 
disrupt the proton gradient across the mitochondrial membranes and impairs the production of ATP (oxidative 
phosphorylation)5,9 leading to cell death. The mode of action of chlorfenapyr differs significantly from that of 
standard neurotoxic  insecticides10,11 raising expectations for minimal cross–resistance issues.

Constant selection pressure from pyrethroids used in bed nets and indoor residual spraying (IRS) has pro-
duced widespread pyrethroid resistant populations of malaria transmitting Anophelines across the African 
 continent12. Consequently, constitutively elevated levels of P450s associated with pyrethroid metabolism and 
insecticide resistance are commonly present in African mosquito species. These include CYP6M2, CYP6P2, 
CYP6P3, CYP6P4, CYP6P5, CYP9K1 and  CYP9J513–19 from An. gambiae, CYP6P9a, CYP6P9b, and CYP6M7 
from An. funestus20,21. Elevated levels of pyrethroid metabolizing P450s are also found in Ae. aegypti, the vec-
tor for dengue and zika viruses, which include CYP9J32, CYP9J24, CYP9J26 and  CYP9J2822,23. Given that 
chlorfenapyr is being introduced to populations of mosquitoes with high levels of P450s primed for xenobiotic 
metabolism, it is important to determine to what extent, if any, they might play a role in chlorfenapyr activation 
or detoxification. In this paper,we have screened chlorfenapyr against eight P450s that metabolise pyrethroids 
and are commonly associated with pyrethroid resistance in An. gambiae (CYP6M2, CYP6P2, CYP6P3, CYP6P4, 
CYP6P5, CYP9K1 and CYP9J5) and Ae. aegypti (CYP9J32).

Results
Mosquito P450 metabolism profile of chlorfenapyr. In order to examine the profile of chlorfenapyr 
metabolism, it was initially screened against seven An. gambiae P450s (CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 9K1 and 
9J5) and one Ae. aegypti P450 (CYP9J32). Four of the P450s were able to metabolize chlorfenapyr, An. gambiae 
CYP6P3, CYP9J5 and CYP9K1 and Ae. aegypti CYP9J32, as evidenced by chlorfenapyr depletion (Fig. 2 and 
Supplementary Table 1) and the production of a single NADPH dependent metabolite peak with a retention 
time corresponding to tralopyril (Fig. 3). The products of chlorfenapyr metabolism by CYP6P3, CYP9K1 and 
CYP9J32 were further investigated by LC–MS. Extracted ion chromatograms of [M +  H]+ confirmed the pres-
ence of the insecticidal tralopyril (m/z 131.01) (Supplementary Fig. 1). Selected ion monitoring failed to identify 
any other chlorfenapyr metabolites produced by the P450s.

Figure 1.  Scheme of chlorfenapyr N-dealkylation mediated by P450. (A) insecticides used in the study and (B), 
P450 oxidation produces tralopyril, a toxic N-dealkylated metabolite .
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The steady-state kinetics of tralopyril production by CYP’s 6P3, 9J5, 9K1 and 9J32 were compared (Fig. 4 
and Supplementary Table 2). Overall, the reactions followed Michaelis–Menten kinetics. CYP9K1 produced 
the highest rate of tralopyril production with a  Kcat of 6.70  min−1, followed by CYP6P3 and CYP9J32 (both 
 Kcat = 1.71  min−1) and CYP9J5 with a  Kcat of 0.59  min−1. Similarly, CYP9K1 produced the lowest  KM value of 
10.13 μM and CYP9J5 the highest  KM value of 22.81 μM. CYP’s 6P3 and 9J32 produced closely similar values of 
16.32 and 16.55 μM respectively. Comparing the catalytic efficiencies of the enzymes  (Kcat/KM) (Supplementary 
Table 3), CYP9K1 was found to be the most efficient enzyme with a  Kcat/KM value of 0.66  mM−1  min−1, 6.7 fold 
higher than CYP6P3 and CYP9J32 (both 0.1 μM−1  min−1) and 22-fold higher than CYP9J5 (0.03  mM−1  min−1).

Interactions of chlorfenapyr and a-cypermethrin. Since chlorfenapyr (200  mg/m2) is being used 
in combination with a-cypermethrin (100  mg/m2) in ITNs, we investigated the effect of α-cypermethrin on 
the production of the toxic metabolite tralopyril by CYP6P3 and CYP9K1, the two An. gambiae P450s with 
highest activity. Chlorfenapyr metabolism by CYP6P3 and CYP6K1 was significantly inhibited by 76.9% and 
56.8% respectively in the presence of α-cypermethrin at an equivalent ~ 1:2 molar ratio (Fig. 5A). By contrast, 
α-cypermethrin metabolism by CYP6P3 was minimally inhibited (9.3%) by chlorfenapyr, while CYP9K1 was 
similarly inhibited (41.2%) (Fig. 5B). The strong drop in CYP6P3 activity in the presence of α-cypermethrin 
coupled with the fact that this P450 is frequently elevated in pyrethroid resistant populations of An. gambiae24 
led to further inhibition tests using the fluorescent probe substrate, DEF, where α-cypermethrin produced ~ two-
fold stronger inhibition of DEF activity than chlorfenapyr (IC50 16.7 vs 30.4 μM), indicating a stronger affinity 
for the active-site of CYP6P3 (Fig. 6).

Discussion
Here, we have shown that the pro-insecticide chlorfenapyr is metabolized by three P450s that are commonly 
overexpressed in pyrethroid resistant populations of An. gambiae CYP6P3, CYP9J5, CYP9K1 and one in Ae. 
aegypti,  CYP9J3213,15,16,22,25. HPLC and LC–MS/MS analysis indicates that the principal metabolite produced by 
these P450s was tralopyril, the N-dealkylated insecticidal form that disrupts oxidative  phosphorylation5,9. This 
suggests that populations of pyrethroid resistant mosquitoes where these P450s are overexpressed may have an 
enhanced capacity to activate chlorfenapyr, potentially resulting in improved susceptibility to the pro-insecticide.

This is supported by several early field and laboratory studies in Benin, Tanzania, India and South Africa that 
have demonstrated that chlorfenapyr is effective at controlling pyrethroid resistant mosquito species including 
An. gambiae, Cx. quinquefasciatus, An. arabiensis, An culicifacies, An. funestus, Ae. aegypti, and An. quadri-
maculatus10,26–31. Most recently, targeted indoor residual spraying of experimental houses with chlorfenapyr has 
proven effective against locally pyrethroid resistant Ae. aegypti (Merida, Mexico)32, while dual action bed nets 
containing pyrethroids α-cypermethrin or deltamethrin and chlorfenapyr have proven more effective against 
pyrethroid resistant An. gambiae in Burkina-Faso and Coted’Ivoire  respectively7,33, where elevated levels of 
CYP6P3 are  reported34,35.

Early studies have also indicated that chlorfenapyr appears to be more toxic to pyrethroid resistant pests such 
as the cattle horn fly, or the tobacco budworm,where pyrethroid resistance is based on elevated P450  activity36,37. 
However, caution must be applied in correlating metabolic pyrethroid resistance with chlorfenapyr activation 
given that only four of the eight P450s tested were capable of metabolizing chlorfenapyr and rates of metabolism 
differed widely. An. gambiae CYP9K1 was most effective in producing tralopyril  (Kcat, 6.70  min−1), while rates 
of production were ~ fourfold lower with CYP6P3  (Kcat, 1.71  min−1) and Ae. aegypti CYP9J32  (Kcat, 1.71) and 
11 fold lower with CYP9J5  (Kcat, 0.59  min−1).

While the P450s identified by our screening results may be considered activating markers of chlorfenapyr 
activity, the multiplicity of P450’s present in mosquito genomes (> 100) means it is feasible that chlorfenapyr may 
be susceptible to detoxification by other P450s, which if identified, should be considered potential metabolic 
resistance markers. To date reduced susceptibility in some pyrethroid resistant populations in the DRC, Ghana, 
and Cameroon has been  reported38, although some caution is required as bioassay testing guidelines have since 
been updated by WHO to take account of the strong influence of testing conditions that can lead to interlabora-
tory  variability39. Further work is needed to identify the full range of P450s that interact with chlorfenapyr and 
the active site determinants of chlorfenapyr activation and detoxification.

Figure 2.  Chlorfenapyr metabolism by mosquito P450s. Bars represent the proportion (% depletion) of 10 μM 
insecticide cleared by 0.05 µM P450 in the presence of NADPH. Values are given in Supplementary Table 3. 
Error bars represent standard error (N = 3).
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Widespread resistance to pyrethroids has driven the development of new dual action pyrethroid ITNs that 
incorporate insecticides with different modes of action, such as chlorfenapyr, or PBO, a synergist that is a 

Figure 3.  Representative HPLC chromatograms of chlorfenapyr metabolism by P450s. The overlaid 
chromatograms represent the results of 2 h incubations of 100 μl reactions containing a final concentration 
of 0.05 μM P450, 0.4 μM b5 and 10 μM compound in the presence (black) and absence (blue) of NADPH. 
Chlorfenapyr (C) and tralopyril (T) peaks are arrowed.
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broad-spectrum inhibitor of P450s that can negate metabolic detoxification to enhance pyrethroid activity. 
However, the inhibition of P450 activity could also inhibit the toxicity of pro-insecticides such as chlorfenapyr. 
Previous studies have shown extensive cross-reaction of Anopheline pyrethroid metabolizing P450s with the 
pro-insecticide pirimiphos-methyl, with potential to both inactivate or activate insecticidal  activity40. Pirimiphos-
methyl, an organophospate insecticide, is extensively used by malaria control programmes in Africa for indoor 

Figure 4.  Steady-state enzyme kinetics of tralopyril formation by CYP9J5, CYP6P3, CYP9J32 and CYP9K1. 
Data are mean values +/− SD (n = 4). KM and  Vmax values were calculated by nonlinear regression analysis using 
GraphPad Prism.

Figure 5.  Mixture effects on chlorfenapyr and α-cypermethrin metabolism. Mixing chlorfenapyr with 
α-cypermethrin (ACM) in vitro has a negative effect on the activation metabolism of chlorfenapyr (Clfp) to 
its toxic metabolites, tralopyril. Panel (A) illustrates the percentage depletion of 20 µM Clfp cleared by 0.1 µM 
CYP6P3 and CYP9K1 (n = 3, p < 0.05) with 0.8 µM b5 in the presence of NADPH and ± 10 µM ACM, while 
panel (B) represents ACM (10 µM) clearance at the same conditions in the presence of 20 µM Clfp.
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residual spray operations. Recent evidence from experimental hut trails in Benin indicates that PBO containing 
ITNs can reduce the efficacy of indoor residual spraying with pirimiphos-methyl against pyrethroid-resistant 
malaria  vectors41, supporting recommendations by the WHO to avoid the deployment of pyrethroid-PBO ITNs 
in areas that have already been programmed for IRS with pirimiphos-methyl IRS. Given that all four mosquito 
P450s that metabolized chlorfenapyr produced the toxic metabolite, tralopyril, and previous work has shown 
PBO to antagonize chlorfenapyr activity in  mosquitoes31,42, similar recommendations are applicable to chlor-
fenapyr and further studies are required to determine the optimal co-deployment of products containing PBO 
and chlorfenapyr.

Likewise, competitive interactions will affect the ability of cross-reactive P450s to detoxify or activate pyre-
throids and chlorfenapyr respectively. Alpha-cypermethrin is the pyrethroid most commonly used in com-
bination with chlorfenapyr in bed nets. Our data (Figs. 5 and 6) demonstrates that compound ratio mixtures 
equivalent to bed net dosing inhibits the metabolism of both compounds by An. gambiae CYP6K1 and CYP6P3. 
The mixture effects on chlorfenapyr metabolism were somewhat greater, consistent with a higher affinity for 
α-cypermethrin as measured by the lower  IC50 value for CYP6P3 (Fig. 6). While this suggests that chlorfenapyr 
activity could be compromised by the presence of α-cypermethrin, this may be counterbalanced by the increased 
susceptibility of mosquitoes to α-cypermethrin through dampened P450 activity. Furthermore, mosquitoes are 
likely to contain other compensatory P450s capable of chlorfenapyr activation, potentially non-cross reactive 
with pyrethroids; thus complex pharmacokinetic factors must be considered that will influence the insecticidal 
outcome.

Conclusions
A recent review of the potential of pro-insecticides for resistance  management43 reveals chlorfenapyr to have 
a high capacity for negative cross-reactivity, being primarily effective against pyrethroid resistant insects. We 
have identified four pyrethroid metabolizing P450 enzymes that are often overexpressed in pyrethroid-resistant 
mosquito populations that can metabolise the pro-insecticide chlorfenapyr to generate tralopyril, a highly toxic 
molecule that interferes with oxidative phosphorylation. These data suggest that chlorfenapyr to be a viable 
option for managing pyrethroid-resistant mosquito populations. However, because not all P450s can metabolize 
chlorfenapyr and metabolic rates vary, the data must be interpreted with care. Furthermore, the general sup-
pression of P450 activity by synergists such as PBO or more targeted inhibition of chlorfenapyr activating P450s 
including CYP6P3, CYP9K1, CYP9J5, and CYP9J32 by α-cypermethrin and other competitive  substrates40 can 
influence the toxicity of chlorfenapyr. As a result, further studies are required to determine the full range of P450s 
that interact with chlorfenapyr and the active site determinants for chlorfenapyr activation and detoxification.

Material and methods.
P450 expression and bactosome preparation. P450s were expressed using pCWori + expression vec-
tor constructs as described previously for An. gambiae CYPs 6M2, 6P2, 6P3, 6P4, 6P5,  9J544 and  CYP9K145 and 
Ae. aegypti  CYP9J3222. E. coli membranes co-expressing P450 and An. gambiae NADPH cytochrome P450 oxi-
doreductase (AgCPR) were supplied by Cypex Ltd, UK (www. cypex. co. uk). Reactions were supplemented with 
An. gambiae cytochrome b5 (b5) supplied by Cypex Ltd, UK and prepared as described  previously19.

The membrane samples were analyzed for P450 quality and content by 30-fold dilution in Spectrum Buffer 
and CO-difference  spectroscopy46. Cytochrome c reductase activity was used to measure CPR  content47 and 
protein content was estimated by Bradford assay. Samples were stored in aliquots at − 80 °C.

Figure 6.  Determination of  IC50 values for α-cypermethrin (ACM) and chlorfenapyr (Clfp) on CYP6P3 
metabolism. Dose response analysis of ACM (closed triangles) and Clfp (closed circles) on P450 fluorescence 
substrate probe (DEF) metabolism.

http://www.cypex.co.uk
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Insecticide metabolism. To test for chlorfenapyr metabolism, P450s were incubated at 30 °C for 2 h in 
200  µl reactions containing 10  µM chlorfenapyr, 0.1  µM P450, 0.8  µM cyt b5 in 200  mM Tris–HCl pH 7.4, 
and NADPH regeneration components (1 mM glucose-6-phosphate (G6P), 0.25 mM  MgCl2, 0.1 mM  NADP+ 
(absent -NADP+), and 1 U/mL glucose-6-phosphate dehydrogenase (G6PDH)). Reactions were carried out in 
triplicate with 1200 rpm orbital shaking and quenched by adding 200 µl methanol. Samples were then incubated 
with shaking as before for an additional 5 min before centrifuging at 13000 rpm for 5 min. 150 µl of the super-
natant was then transferred to HPLC vials, stored at room temperature, and analyzed within 24 h. Chlorfenapyr 
was prepared as a working stock in ethanol and stored at − 20 °C; solvent content was 2% of the final reaction 
(v/v). Results were calculated as percentage depletion of the insecticide peak area in the presence of NADPH 
(+NADPH) versus absence of NADPH (−NADPH) to give a quantitative assessment of metabolism.

For kinetic measurements, catalytic activity was assessed by measuring tralopyril production using 200 µl 
reactions containing varying concentrations of chlorfenapyr (1 µM to 50 µM), 0.1 µM P450, 0.8 µM cyt b5 
in 50 mM potassium phosphate buffer (KPB) at pH 7.4, and NADPH regeneration components (1 mM glu-
cose-6-phosphate (G6P), 0.25 mM  MgCl2, 0.1 mM  NADP+, and 1 U/mL Glucose-6-phosphate dehydrogenase 
(G6PDH)). Reactions were performed in duplicate with two independent biological replicates and compared 
against a negative control with no  NADP+.

HPLC analysis. A standard curve of tralopyril (0.04 μM to 40 μM) was prepared to determine the assay 
detection limit. Samples were analyzed by reverse-phase high-pressure liquid chromatography, RP-HPLC (Ulti-
mate 3000 series, Dionex). 100 µl of reaction supernatant was analyzed with a monitoring absorbance at 226 nm 
using a 5 µm, C18 column (250 × 4.6 mm) (Hypersil Gold, Thermo Scientific) and a mobile phase consisting of 
70% methanol and 30% water containing 0.1% phosphoric acid. The system was run at a flow rate of 1 ml/min at 
40 °C. The production of tralopyril was quantified by peak integration (Chromeleon software, Dionex) and the 
concentration was calculated against the prepared standard curve.

LC–MS/MS experiments. We incubated 0.25 μM of recombinant CYP (CYP9K1, CYP9J32, CYP6M2 or 
CYP6P3) and 2 μM b5 in 100 μl Tris–HCl buffer. Reactions contained 20 µM chlorfenapyr and NADPH regener-
ation components (1 mM glucose-6-phosphate (G6P), 0.25 mM  MgCl2, 0.1 mM  NADP+, and 1 U/mL Glucose-
6-phosphate dehydrogenase (G6PDH)). Reactions were incubated for 0 and 2 h at 30 °C with 1250 rpm orbital 
shaking and quenched by adding 100 µl acetonitrile. Samples were then incubated with shaking as before for 
an additional 30 min before centrifuging at 14000 g for 5 min. The supernatant was then transferred to LC–MS 
vials and analyzed within 24 h. Reactions were performed in duplicate (two independent biological replicates) 
and compared against a negative control with no NADPH regenerating system to calculate substrate depletion.

The analytes were separated by a UniverSilHS C18 column (250 mm × 4.5 mm i.d, 5 μm, Fortis Tech.). The 
mobile phase consisted of 85% methanol (A) and 15% of 40 mM Ammonium Acetate in water (B). Elution was 
performed with an isocratic mode. The flow rate was 0.8 ml  min−1. The eluate from the HPLC column was split 
and then introduced into the MS detector at the flow rate of 0.24 ml  min−1. The injection volume was 10 μl. 
Analysis of chlorfenapyr and tralopyril was conducted on a TSQ Quantum (Thermo Scientific, USA) equipped 
with an electrospray ionization (ESI) source.

The ESI–MS/MS detection was performed in negative ion mode and the monitoring conditions were opti-
mized for target compounds. The conditions were described as follows: The Spray Voltage was set at 3.5 kV, the 
Capillary Temperature was held at 320° C and Sheath Gas pressure, and Aux Gas pressure were set at 30 and 15 
Arb respectively. The selected reaction monitoring (SRM) mode was operated for each compound. The same 
SRM transitions were used for Chlorfenapyr and Tralopyril (Supplementary Fig. 1). Chlorfenapyr was detected 
in negative ion mode, and not in the protonated molecular ion form, due to the loss of the N-ethoxymethyl 
group when introduced in the ESI source. Quantitation was possible after HPLC separation. All the parameters 
for SRM transitions were optimized to obtain the highest sensitivity (Supplementary Table 3).

Inhibition. To determine the  IC50 values of CYP6P3 and CYP9K1, varying concentrations of α-cypermethrin 
and chlorfenapyr were used as ligands, and diethoxy fluorescein (DEF) substrate was utilized at approximately 
the  Km value. Dimethyl sulfoxide (DMSO) was added as a solvent to dissolve the insecticide and DEF substrate. 
The final concentration of DMSO in the 200 μl enzyme reaction mixture was 2%. Each reaction was carried out 
in triplicate and incubated for 30 min at 30 °C in 50 mM KPB at pH 7.4, using opaque white 96-well (flat-based) 
plates. A DEF concentration of 1.0 μM was mixed with 0.1 μM CYP6P3, and three replicates of positive and 
negative control reactions were also performed for the CYP6P3/DEF combination. The reaction mixture con-
tained 1 mM glucose-6-phosphate (G6P), 0.1 mM  NADP+, and 0.25 mM  MgCl2.  NADP+ and G6P were excluded 
in the minus NADPH controls. The plate was read on a FLUO star Omega plate reader (BMG LABTECH) using 
an excitation wavelength of 482 nm and an emission wavelength of 520 nm. The IC50 values were determined 
using GraphPad Prism 9 by fitting the data to a dose–response model, and plots with  R2 values below 0.95 were 
excluded.

Data availability
Raw data files are available upon request from mark.paine@lstmed.ac.uk and hanafy.ismail@lstmed.ac.uk.
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