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Abstract

Background

Cryptosporidium is a gastrointestinal pathogen that presents a serious opportunistic infec-
tion in immunocompromised individuals including those living with human immunodeficiency
syndrome. The CRYPTOFAZ trial, previously published, was conducted in Malawi to evalu-
ate the efficacy of clofazimine in response to an unmet need for drugs to treat cryptosporidi-
osis in HIV populations. A combination of rapid diagnostic tests, ELISA, gPCR, and
conventional sequencing were employed to detect Cryptosporidium in 586 individuals dur-
ing pre-screening and monitor oocyst shedding and identify enteric co-pathogens in 22
enrolled/randomized participants during the in-patient period and follow-up visits.

Methodology

Oocyst shedding as measured by gPCR was used to determine primary trial outcomes,
however pathogen was detected even at trial days 41-55 in individuals randomized to either
clofazimine or placebo arms of the study. Therefore, in this work we re-examine the trial out-
comes and conclusions in light of data from the other diagnostics, particularly ELISA. ELISA
data was normalized between experiments prior to comparison to gPCR. The amount of all
identified enteric pathogens was examined to determine if co-pathogens other than Crypto-
sporidium were major causative agents to a participant’s diarrhea.

Conclusion

ELISA had higher sample-to-sample variability and proved to be equally or less sensitive
than qPCR in detecting Cryptosporidium positive samples. Compared to gPCR, ELISA had
equal or greater specificity in detecting Cryptosporidium negative samples. Sequencing
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identified several Cryptosporidium species including viatorum which has never been identi-
fied in Malawi and Southern Africa. In addition to Cryptosporidium, enterotoxigenic E. coli
was also identified as a pathogen in diarrheagenic amounts in 4 out of 22 participants.

1.0 Introduction

Cryptosporidium, the causative agent of cryptosporidiosis, is a gastrointestinal pathogen of
both humans and animals spread through fecal-oral route and has a global distribution [1].
Human infections of Cryptosporidium, thought to be caused primarily by C. parvum or C.
hominis [2], represent a serious opportunistic infection in immunocompromised individuals
including those living with human immunodeficiency virus (HIV) [3]. Globally, prevalence of
cryptosporidiosis is estimated at 7.6% [4] and amongst HIV-positive individuals, the global
pooled prevalence of Cryptosporidium is 14%. In Sub-Saharan Africa, the estimate is 21.1%
among HIV infected individuals [5].

Currently, nitazoxanide is the only US Food and Drug Administration approved drug for
treatment of cryptosporidiosis and is only recommended among people with healthy immune
systems [6, 7]. Given that nitazoxanide has been shown to be ineffective in HIV infected indi-
viduals and has about 56% efficacy in malnourished populations [8, 9], there is a huge unmet
need for drugs to treat this disease. Clofazimine (CFZ, sold as Lamprene™; Novartis, Switzer-
land) has recently been described as effective against Cryptosporidium in vitro, and was able to
eliminate C. parvum in a mouse model [10].

We conducted a Phase 2A clinical trial to evaluate CFZ efficacy in people with HIV present-
ing with persistent diarrhea (diarrhea lasting at least 14 days) due to Cryptosporidium in
Malawi (“CRYPTOFAZ”, clinicaltrials.gov study NCT03341767 [11]). We have published the
primary clinical outcomes [12] and pharmacokinetics and pharmacodymics of CFZ in treating
cryptosporidiosis [13] Unfortunately, the trial was unable to demonstrate CFZ efficacy for
cryptosporidiosis treatment.

Current diagnostic methods for Cryptosporidium include histology, microscopy, rapid
immunochromatographic diagnostic tests (RDTs), enzyme linked immunosorbent assay
(ELISA), and polymerase chain reaction (PCR) [14]. In developing countries, morphological
identification of Cryptosporidium oocysts by microscopy is the most widely used method for
the diagnosis due to its relatively low cost [15] and can be aided by fluorescent antibodies to
increase sensitivity and specificity against non-Cryptosporidium antigens [16]. As a primary
study objective, the CRYPTOFAZ study evaluated the reduction of Cryptosporidium oocyst
shedding following CFZ or placebo administration using qPCR as the primary diagnostic
method. However, multiple diagnostics were employed during the trial, including RDTs and
ELISAs. Nucleic acid-based methods for Cryptosporidium detection such as PCR have
increased sensitivity compared to both modified Ziehl Neelsen microscopy and antigen-based
assays [17, 18]. The specificity of PCR-based methods over antibody-based diagnostics enables
not only Cryptosporidium detection, but also subtype family identification [15, 16].

In light of a recent report indicating that certain enteropathogens, including Cryptosporid-
ium, may have prolonged shedding and persistence as detected through qPCR [19]. PCR has
potential to detect DNA from oocysts that are not intact and hence this may affect monitoring
of oocysts shedding in a clinical trial context. However, ELISA detects intact oocysts and may
not be affected by the issue of persistence or prolonged shedding. Because the (QPCR) assay is
quantitative by design, qPCR was the preferred monitoring method. We were nonetheless
interested in comparing to the ELISA result. Our purpose in this paper was to examine if and
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how data from other diagnostics used in the trial, particularly ELISA, as well as from the RDT,
array card PCR and genotyping support or confound the study conclusions achieved through
plate-based qPCR (PCR done using 96 well plate).

2.0 Materials and methods

All procedures were carried out at the Malawi-Liverpool Wellcome Trust Clinical Research
Programme in Blantyre, Malawi unless otherwise indicated.

2.1 Cryptosporidium rapid diagnostic test

A point of care immunochromatographic testing kit (rapid diagnostic test, RDT), Cryptospo-
ridium EZ VUE (Techlab, Blacksburg, VA, USA) was used as a screening tool according to the
manufacturer’s instructions. Briefly, all reagents and freshly collected stool samples were
brought to room temperature before testing. Prior to testing samples were mixed by stirring or
vortexing based on consistency. Either 50uL liquid or 0.05g solid fecal sample was diluted
before being exposed to a test strip. Results were read after 10 minutes and a positive result
was interpreted when the control and test lines appeared and a negative result when only the
control line appeared. Cryptosporidium RDT was performed on samples from pre-screening
visit.

2.2 Enzyme linked immunosorbent assay

A commercial ELISA kit, Cryptosporidium II (Techlab) was used to detect Cryptosporidium
antigens from samples corresponding to trial days -1 (baseline), 12, 4, 6, 19-24 days (follow up
1) and 41-55 (follow up 2) following manufacturer’s instructions. The test was carried out in
batches on fecal samples previously frozen at -80°C. Samples and reagents were brought to
room temperature prior to testing. Results were read at a dual wavelength of 450-620 nm
using a Biochrom EZ Read 400 ELISA reader (Biochrom, Cambridge, UK) with samples hav-
ing optical density (OD) of >0.090 considered positive and OD <0.090 was considered nega-
tive. Positive and negative controls were run within each batch of testing. ELISA data from
different plates then normalized.

2.3 Total nucleic acid DNA extraction, plate-based qPCR, and TagMan
array card

Total nucleic acid was extracted from fecal samples using the QTAamp Fast DNA Mini Kit
(QIAGEN, Hilden, Germany) with a procedure modified from that of the manufacturer as
previously described [20]. Briefly, 200mg solid stool or 200puL liquid fecal samples were first
mixed with InhibitEX buffer and glass beads before bead beating (Tissue Lyser II, Qiagen).
Resulting lysates were heated at 95°C for 5 minutes prior to proceeding according to the man-
ufacturer’s protocol. All samples were spiked with Phocine herpes virus (PhHV) and MS2
phage to be used as extraction controls. One extraction blank (200uL nuclease-free water as
the sample) was included in each batch of extractions to monitor for contamination.

Plate-based qPCR was performed as previously described [21]. These qPCRs were carried
out using the ViiA7 or QuantStudio 7 Flex Real-Time PCR instruments (Thermo Fisher, Wal-
tham, MA, USA). Primers and probes were sourced from Integrated DNA Technologies (IDT,
Coralville, Iowa, USA) and Sigma (Sigma-Aldrich, Haverhill, UK). Each gPCR run included a
dilution series of known amounts of Cryptosporidium genomic DNA (derived from extraction
of Cryptosporidium oocysts) and PhHV acting as positive controls and standard curves, as well
as a negative control (5uL nuclease free water in place of nucleic acid extract). Plate-based
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qPCR was performed on samples from the pre-screening visit (regardless of Cryptosporidium
RDT results), trial days 0-6, and the two follow-up visits.

Detection of stool pathogens at patient baseline was performed using custom-designed Taq-
Man Array Card (TAC) as previously described [20]. Briefly, nucleic acid extract was mixed
with the AgPath-ID One-Step RT-PCR kit (Thermo Fisher) prior to application to the array
card. Reaction conditions were as previously described. All TAC-PCRs were conducted on the
QuantStudio 7 Flex PCR instrument.

All resulting qPCR data from both plate- and TAC-based PCR were analyzed using QuantStu-
dio 6 and 7 Flex Real-Time PCR System Software, ver. 1.3 (Thermo Fisher), An analytical cutoff
of 35 cycles was applied to the data (i.e. C, values >35.0 were considered negative). In plate-based
qPCR, Cryptosporidium C, values were converted to a genome count through comparison to the
standard curve, and then to equivalent oocyst count by dividing by 4 (4 nuclei per oocyst). This
calculation was based on the assumption that all cryptosporidium oocysts in the sample came for
intact oocysts whose DNA was recovered during extraction from stool samples.

2.4 Sequencing for subgroup determination

Further characterization of Cryptosporidium from baseline samples targeted the 18S rRNA and
gp60 genes [22, 23] and was achieved using endpoint PCR performed at Houpt Laboratory at
the University of Virginia in Charlottesville, Virginia, USA followed by commercial Sanger
sequencing (Genewiz, South Plainfield, New Jersey, USA).

2.5 Statistical analysis

Full, reproducible R code for all analyses detailed below can be accessed from GitHub (https://
github.com/mlw-stats/ CRYPTOFAZ-diagnostics). While noting that the ELISA assay used in
this work is designed and licensed for qualitative (positive / negative) analyses only, we
explored the use of the OD measurements from this ELISA assay to quantify the amount of
Cryptosporidium oocysts. For these exploratory, quantitative analyses, ELISA OD values were
normalized using the positive and negative controls from each plate. Specifically:

OD = (ODraw - ODneg ctrl)/(OD

normalized ~

OD

pos ctrl neg ctrl)

For qualitative ELISA results, we determined positivity / negativity according to the manu-
facturer’s guidelines.

To compare qPCR C, values between ELISA negative and positive samples, we used a
mixed censored regression model with qPCR C, as response variable, ELISA positivity as a
fixed factor and participant ID as a random factor. This model accounts both for the correlated
nature of the data (multiple observations for the same individual) and the fact that for negative
detections with C; values of 40, the only information that is known is that the Ct value is at
least 40, but might have been higher had more PCR cycles been run. This model was imple-
mented using the R package censReg [24].

Within-subject repeated measures Pearson correlation coefficient was calculated using the
R package rmcorr v.0.3.1 [25, 26], while between-subject correlation coefficient was calculated
using the cor.test function from the stats [27] package in R.

Statistical analyses were conducted using Microsoft Excel 2013 and R v4.0.2 [27].

2.6 Ethical approval

The main study was approved by the National Health Science Research Committee of Malawi
(Reference 17/05/1821) and the Liverpool School of Tropical Medicine Research Ethics

PLOS ONE | https://doi.org/10.1371/journal.pone.0289929  September 8, 2023 4/12


https://github.com/mlw-stats/CRYPTOFAZ-diagnostics
https://github.com/mlw-stats/CRYPTOFAZ-diagnostics
https://doi.org/10.1371/journal.pone.0289929

PLOS ONE Cryptosporidium diagnostics comparison

Committee (Reference 17-031). Approval for importation and use of the study investigational
products was obtained from the Pharmacy Medicine Poisons Board of Malawi (Reference
PMPB/CTRC/2A/CFZ-001). Written informed consent was obtained from the study partici-
pants before being enrolled into the trial.

3.0 Results

A total of 586 potential participants were screened for study enrollment, with 558 patient sam-
ples screened using both gPCR and RDT. PCR was performed on all samples regardless of
RDT results, hence PCR was the primary screening tool. Nine individuals were tested only
using RDT, 2 only with qPCR, and 17 potential participants were untested (Table 1). Five par-
ticipants were screening failures hence they were excluded from the analysis, 21 participants
(3.8%) tested positive for Cryptosporidium under both diagnostics and 54 (9.8%) tested posi-
tive with qPCR only. From these 75 qPCR positives, only 22 met the trial inclusion and exclu-
sion criteria and were enrolled and randomized into the study.

The primary objective of CRYPTOFAZ was to evaluate whether there was a reduction in
the fecal shedding of Cryptosporidium oocysts following the oral administration of Clofazimine
or placebo control. Monitoring of the 22 enrolled participants (12 randomized to CFZ, 10 to
placebo) was achieved through use of qPCR and ELISA during the in-patient period as well as
two follow-up visits. Because the assay is quantitative by design, qQPCR was the preferred moni-
toring method. We were nonetheless interested in comparing to the ELISA result. To achieve
this, for quantitative comparisons, we normalized the ELISA results from different batched
runs against one another (see Materials and Methods) and aligned the day-to-day results of the
two diagnostics, after verifying the consistency of the qPCR runs against each other (See S1 Fig
in S1 File). Fig 1A shows that on days when both methods were employed, qPCR and ELISA
were moderately correlated with one another. Indeed, by within-subject repeated measured
Pearson correlation coefficient, p = 0.38 (95% CI = [0.20, 0.53]), qPCR derived log, oocyst
count per gram stool and normalized ELISA ODs were moderately correlated. The between-
subject Pearson correlation coefficient was similar (but with a wider confidence interval given
the lower number of data points used in that calculation), p = 0.37 (95% CI = [-0.06, 0.69]). Of
a total 141 samples tested by both methods, 52 (36.9%) had fully concordant qualitative results
between the two diagnostics (Table 2). We stratified the data by qualitative ELISA result and
then examined the gPCR data using a positivity cut-off of C; 35. As shown in Fig 1B, samples
testing positive in ELISA had a median C, value of 26.3 (IQR, 23.9-28.5) which was lower com-
pared to the median C, value of 29.8 (IQR, 27.6-31.8) for those samples testing as ELISA nega-
tive. The 3.5-unit difference in values is statistically significant (p = 2e-04) and is roughly
equivalent to a one-log difference in detected DNA.

Table 1. Participant screening results.

qPCR (cut-off C, = 35)

Positive Negative qPCR untested
RDT Positive 21 0 0
Negative 54 483 9
RDT untested 0 2 17

Stool samples from potential study participants were screened for Cryptosporidium using both rapid immunochromatographic diagnostic tests (RDT) and plate based
quantitative PCR. For screening purposes, a sample was considered qPCR-positive if the resulting C; value was below 35.0. A total of 553 participants were screened
using both these methods. Nine individuals were tested only using RDT, 2 only with qPCR, and 17 potential participants were untested hence these were not included in
the analysis (N/A).

https://doi.org/10.1371/journal.pone.0289929.t001
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Fig 1. Comparison of ELISA and qPCR results. Participant stools were monitored for oocyst shedding during the inpatient period and follow-up visits using
both ELISA and plate-based qPCR with a C, cut-off of 35. A) This heatmap depicts the day-to-day comparison of the qPCR result (orange hues) versus the
normalized ELISA OD value (blue hues) for the same sample. The more intense the coloration, the lower the qPCR C; value or the higher the ELISA OD value.
Quantitative PCR was conducted on all trial days, while ELISA was conducted on trial days -1, 1, 2, 4, 6, 19-24, and 41-55. B) Semi-quantitative correlation
analysis of ELISA vs. qPCR. CFZ, participant randomized to the clofazimine arm of the study; PCB, participant randomized to the placebo arm of the study. P,
positive; N, negative; grey square, no value/not tested.

https://doi.org/10.1371/journal.pone.0289929.9001

All 43 ELISA-positive samples are also qPCR positive, while most (89/132) of the gPCR-
positive samples are ELISA negative (Table 2). While in the absence of a gold standard, we can-
not know the true Cryptosporidium infection status of a given sample, this result implies that
ELISA was at best as sensitive, but more likely less sensitive than qPCR to detect Cryptosporid-
ium in our sample set. ELISA was, however, at least as specific for Cryptosporidium as qPCR
since all 9 negative QPCR samples are also negative with ELISA (Table 2). Further, computing
coefficients of variation and coefficients of quartile variation, ELISA was the more variable
measurement, both when calculated across all samples, within individuals or across individuals
(see S1 Table in S1 File).

Baseline samples (study day minus 1) for each participant were examined by both plate-
and array card-based qPCR, the latter of which was used to detect enteric pathogens in

Table 2. Cross-tabulation of qPCR and ELISA results.

ELISA (OD Normalized)
Positive Negative
qPCR Positive 43 89
Negative 0 9

Results from qPCR and normalized OD values from days -1, 2, 4, 6, 19-24 and 41-55. Out of 141 samples, 52 were
concordant (43 samples tested positive, and 9 samples tested negative by both methods). All ELISA positive samples
were also positive by gPCR.

https://doi.org/10.1371/journal.pone.0289929.t1002
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Table 3. For each participant in Part A of the CRYPTOFAZ study, the results from all DNA-based assays are displayed, including the plate-based Cryptosporidium
18s qPCR C, value for the Day 0 first sample of the day, the array card-based Cryptosporidium 18s qPCR C, value for the Day 0 first sample of the day, species and
subtyping results from dideoxysequencing, and the co-pathogens detected through the array card (C, value listed in parentheses).

Subject
ID

CFZ01
CFZ02
CFZ03
CFZ04
CFZ05

CFZ06
CFZ07
CFZ08

CFZ09
CFZ10
CFZ11
CFZ12
PCBO1
PCB02
PCB03
PCB04
PCB05
PCB06
PCB07
PCB08
PCB09
PCB10

Plate
Crypto. C,

24.6
29.3
28.2
20.5
31.8

28.2
28.9
30.2

30.2
26.9
22.5
30.1
29.1
26.3
28.5
26.8
23.3
28.7
29.5
29.5
26.7
29.7

TAC Crypto | Crypto. Species gp60-based TAC-detected co-pathogens

C,. detected subtype

29.8 viatorum XVaA3 Campylobacter pan (32.7), E. bieneusi (26.9), EAEC (25.7), ST-ETEC (22.6)

21.8 parvum IIcA5G3 EAEC (33.7), Shigella/EIEC (32.4)

24.2 hominis IeA11G3T3 Blastocystis (33.8), ST-ETEC (34.8), Sapovirus (34.8)

23.1 parvum IIcA5G3 E. bieneusi (23.0), Norovirus GII (28.0)

28.0 parvum n/a Blastocystis (34.6), Campylobacter jejuni/coli (33.0), Campylobacter pan (30.9), E.
bieneusi (26.7), EAEC (24.7), ST-ETEC (21.3), H. pylori (34.6)

33.0 parvum 1IcA5G3 Adenovirus pan (32.3), E. bieneusi (29.1), EAEC (30.2), aEPEC (30.4), ST-ETEC (18.6)

26.0 hominis IdA20 Campylobacter jejuni/coli (26.0), Campylobacter pan (24.3), LT-ETEC (25.9)

27.9 unknown n/a Adenovirus pan (33.5), E. bieneusi (33.7), EAEC (21.0), aEPEC (28.9), Shigella/EIEC
(33.2)

22.8 parvum 1IcA5G3 Blastocystis (32.6), EAEC (31.3), aEPEC (24.5), LT-ETEC (33.8), Giardia (31.1)

20.9 meleagridis IIIdA6 E. bieneusi (25.5)

23.1 parvum 1IcA5G3 B. fragilis (29.9), aEPEC (22.9), ST-ETEC (33.3), Salmonella (34.0)

32.6 parvum IIcA5G3 Adenovirus 40/41 (33.3)

31.7 parvum 1IcA5G3 Astrovirus (25.6), EAEC (15.0), LT-ETEC (32.7), Giardia (34.3), Norovirus GII (25.5)

16.8 unknown n/a EAEC (24.0), aEPEC (28.9), ST-ETEC (34.2), Giardia (28.2),

26.6 hominis n/a EAEC (22.5), LT-ETEC (31.8), Giardia (33.5), Shigella/EIEC (32.4)

32.7 meleagridis 111dA6 EAEC (22.9), ST-ETEC (33.0), Giardia (33.4), Shigella/EIEC (33.6)

23.1 parvum IIcA5G3 EAEC (18.7)

24.7 meleagridis I11dA6 EAEC (30.2), aEPEC (22.0), ST-ETEC (17.5)

26.8 unknown n/a E. bieneusi (26.0)

27.9 parvum IIcA5G3 Adenovirus pan (30.9), Campylobacter pan (31.9)

30.3 meleagridis IIIdA6 Blastocystis (33.4), EAEC (33.2), aEPEC (25.4), Entamoeba pan (29.8)

25.9 parvum 1IcA5G3 Blastocystis (32.9), E. bieneusi (25.2), EAEC (24.1), aEPEC (33.9), ST-ETEC (34.2),

Giardia (33.8), Sapovirus (25.2), Shigella/EIEC (28.5)

CFZ, participant randomized to the clofazimine arm of the study; PCB, participant randomized to the placebo arm of the study; TAC, TagMan Array Card; EAEC,

enteroaggregative E. coli; EHEC, enterohemorrhagic E. coli, EIEC, Enteroinvasive E. coli; aEPEC, atypical enteropathogenic E. coli, tEPEC, typical enteropathogenic E.

coli; LT-ETEC, heat labile toxin-producing enterotoxigenic E. coli; ST-ETEC, heat stable toxin-producing enterotoxigenic E. coli; n/a, subtype undetected.

https://doi.org/10.1371/journal.pone.0289929.t003

addition to Cryptosporidium. As shown in Table 3, 100% of enrolled patients (n = 22) had
Cryptosporidium detected by both plate-based and array card-based qPCR with an average
1.35 difference in C, values between the two PCR formats, with the plate-based PCR usually
having the higher value. TAC PCR confirmed that many of our study participants were
infected with enteric pathogens in addition to Cryptosporidium, but not necessarily in diar-
rheagenic amounts (i.e. pathogen load in a patient at which the pathogen is most likely con-
tributing to diarrhea; see below). Amongst these were Shigella (or enteroinvasive Escherichia
coli), Norovirus GII, and Campylobacter jejuni/coli. Utilizing PCR C; cutoffs previously devel-
oped for the Global Enteric Multisite Study (GEMS) [28] we assessed detected pathogens for
amounts considered diarrheagenic (See S2 Table in S1 File for cutoff values). As shown in
Table 3 (TAC-detected co-pathogens), we noted 7 Cryptosporidium detections (below C,. 24.0,
5 in the treatment group and 2 in the placebo group) and 4 heat stable toxin-producing entero-
toxigenic E. coli detections (below C, 22.8 (ST-ETEC; 3 in the treatment group, 1 in the placebo
group) at diarrheagenic amounts. Of note, these two pathogens were not detected together
wherein both pathogens were detected at diarrheagenic amounts.
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Baseline samples for our participants were analyzed to determine their Cryptosporidium
species and subtypes using commercial sequencing. As shown in Table 3, half of all identifiable
infections were caused by C. parvum. Sequencing of the gp60 gene revealed that 9 of these
belonging to family IIcA5G3, a family of C. parvum previously observed in other human infec-
tions [29, 30] (See S3 Table in S1 File for NCBI accession numbers for 18S rRNA and gp60
sequences). Also identified were C. meleagridis and C. viatorum.

4.0 Discussion

The CRYPTOFAZ trial was conducted in response to the unmet need for new Cryptosporid-
ium treatments in the HIV population. For the screening/recruitment and for monitoring of
oocysts shedding during the trial period, several different diagnostic methodologies were
employed for the detection and characterization of Cryptosporidium, namely RDTs, ELISA,
both plate- and array card-based qPCR, and Cryptosporidium subtyping.

Both RDTs and plate-based gPCR were used to screening potential participants, this was
done to take advantage of the combined specificity of these methods to exclude those patients
who were experiencing diarrhea for reasons excluding cryptosporidiosis. The use of gPCR for
this purpose proved quite advantageous, owing to its increased sensitivity over rapid diagnostic
tests for Cryptosporidium detection, and is consistent with previous research conducted in
Malawi in a study employing RDTs and PCR [31]. Of the 75 potential Cryptosporidium-positive
individuals (i.e. those that were qPCR positive) considered for the trial, >70% (n = 54, Table 1)
were considered for participation based on the qPCR result alone. None of these individuals
would have been considered had only an RDT been performed for screening/recruitment.

Both ELISA and plate-based qPCR were used to monitor daily oocyst shedding during the
in-patient period and two follow-up visits to determine if those study participants receiving
CFZ cleared Cryptosporidium more effectively versus participants randomized to placebo. In
our comparative analysis of the two methods, we saw good qualitative agreement between the
two methods, but noted that overall, ELISA was less sensitive and more variable. It is generally
acknowledged that qPCR possesses higher sensitivity to detect the presence of bacteria as com-
pared to ELISA [17, 18]. And in our analysis, it was also the method with lower variability.
However, qPCR results can be affected by the likely persistence of Cryptosporidium nucleic
acid in the gut 40 days after the initial detection [19].

The use of TAC allowed us to further confirm Cryptosporidium infections and detect other
co-pathogens. Examining the C, values for all enteric pathogens detected allowed us to conclude
that for most participants, Cryptosporidium appeared to be the pathogen of highest abundance
including 7 instances (5 in the CFZ treatment group and 2 in those receiving placebo) where it
was detected with a C, value below what is highly associated with diarrhea, giving us confidence
that screening protocols had worked as intended. However, while Cryptosporidium was detected
in the baseline samples of all our participants, in 4 participants the likely major contributor to
their diarrhea was ST-ETEC rather than Cryptosporidium. The finding that Cryptosporidium
was the most abundant pathogen in stool samples of our study population is consistent with
findings of Carcamo et al [34] in Peru who found that Giardia lamblia and /or Cryptosporidium
was strongly associated with Diarrhea among HIV infected individuals [32].

Given that our data demonstrates that our population all had multiple enteric infections in
addition to Cryptosporidium, we would submit that if budget allows, future investigators carry-
ing out similar research should consider conducting an initial screening for multiple patho-
gens among diarrhea patients. This would allow researchers to know which pathogens are
present and determine whether or not cryptosporidium is likely a major contributor to the
patients’ diarrhea before conducting cryptosporidium ELISA or PCR on follow up samples.

PLOS ONE | https://doi.org/10.1371/journal.pone.0289929  September 8, 2023 8/12


https://doi.org/10.1371/journal.pone.0289929

PLOS ONE

Cryptosporidium diagnostics comparison

Normalized OD
00 02 04 06 08 1.0

-0.2

Using both RDT and plate-based qPCR at screening (though study inclusion was based on
the qPCR result) was advantageous for identifying potential trial participants. However, use of
TAC on baseline samples allowed us to identify that only 7 of 22 participants had Cryptosporid-
ium in diarrheagenic amounts by using the GEMS study cut-off. As this was a population that
was targeted for drug efficacy evaluation according to the trial protocol, future researchers
may need to take this phenomenon into account when conducting similar studies.

We employed Sanger sequencing to determine the Cryptosporidium species and subtypes.
Unsurprisingly, the majority of contributing infections involved C. parvum. Further, amongst
those C. parvum infections, gp60 sequencing revealed that 10 of 11 infections were of family
IIc. This subtype is thought to be anthroponotic and it has been previously observed in other
Cryptosporidium infection clusters. However, the remaining 5 identifiable infections were
shown to be comprised of C. meleagridis and C. viatorum. At time of writing, to our knowledge
this is the first documented case of C. viatorum in Southern Africa, having only been previ-
ously documented in Ethiopia and Nigeria [33-35].

We are mindful that CRYPTOFAZ was designed to test the efficacy of CFZ and not explic-
itly designed to test the robustness of the diagnostics. Because of this, the analysis presented in
the current work has a few limitations. Samples collected during the inpatient and follow-up
visits were frozen prior to batch processing and testing in ELISA and qPCR. Because these
samples underwent a freeze-thaw cycle, it may be possible that this may have led to some loss
in sensitivity in both diagnostics. In addition, single concentration positive controls were used
in ELISA rather than fitted standard curves as were employed in qPCR. Having an oocyst stan-
dard curve for ELISA derived from the same oocyst source used for Cryptosporidium genomic
DNA would have allowed us to perform more direct comparisons of sensitivity and detection
between the diagnostics. Our analyses of the ELISA as presented in Figs 1A and 2 rely on

—-©- CFzZ Placebo
P« /\5‘ N
> ~ B - P _ 7 N <
1 1 2 ‘ ' 5 6 19:24  41-55

4
Study Day

Fig 2. Mean normalized ELISA optical density over time. Normalized OD values from days -1, 1, 2, 4, 6, 19-24, and 41-55 were averaged according to
participant randomization to the CFZ or placebo arms of the trial. Circle markers—participants randomized to CFZ; square markers—participants randomized

to placebo.

https://doi.org/10.1371/journal.pone.0289929.g002
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normalized optical density values. This amounts to a quantitative analysis, which this particu-
lar ELISA test was not designed/validated for. We should note that our use of C, cutoffs for
determination of diarrheagenic amounts of enteric pathogen should be interpreted with cau-
tion. The C, cutoffs were developed as part of the GEMS study whose participants were chil-
dren, who had moderate to severe diarrhea and a significant proportion of children were
immunocompetent as opposed to our study participants who were immunocompromised
adults with persistent diarrhea. Unfortunately, no similar C; cutoffs have been developed for
use with adult HIV populations. in addition, we genotyped samples from study day minus 1
only, there the possibility that subtypes shifted between the initial week (day -1 to day 6) and
the day 19-24 and day 41-55 follow-up visits.

In summary, this study demonstrates that ELISA and qPCR can demonstrate differences
between groups under study for cryptosporidium. The limitation of the ELISA is the numbers
of subjects are much less than can be detected with qPCR. However, the relative ease of ELISA
may outweigh the need for enrolling high numbers of subjects in certain groups where crypto-
sporidiosis is of high prevalence.

Supporting information

S1 File. The supplementary information file contains 1 supplementary figure (S1 Fig: log2
oocyst per gran vs. PCR Ct values plot) and 3 supplementary tables (S1 Table: overall,
intra- and inter-individual coefficients of variation (CV) and coefficient of quartile varia-
tion (CQV) for ELISA and qPCR; S2 Table: qPCR cut-offs; S3 Table: NCBI accession num-
bers for 18s and gp60 sequences).
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