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A genomic appraisal of invasive Salmonella
Typhimurium and associated antibiotic
resistance in sub-Saharan Africa
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Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream
infection with high mortality is responsible for a huge public health burden in
sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimur-
ium) is the main cause of iNTS disease in Africa. By analysing whole genome
sequence data from 1303 S. Typhimurium isolates originating from 19 African
countries and isolated between 1979 and 2017, here we show a thorough
scaled appraisal of the population structure of iNTS disease caused by S.
Typhimurium across many of Africa’s most impacted countries. At least six
invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or
ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the
Democratic Republic of Congo around 1980 and further spread in the mid
1990s. We observed plasmid-borne as well as chromosomally encoded fluor-
oquinolone resistance underlying emergences of extensive-drug and pan-drug
resistance. Our work provides an overview of the evolution of invasive S.
Typhimurium disease, and can be exploited to target control measures.

Invasive non-typhoidal Salmonella (iNTS) disease has emerged as a
major cause of morbidity and mortality in sub-Saharan Africa (sSA)1,2.
There are an estimated 594,000 cases annually with a mean case
fatality rate of 14.5%, while these incidence figures may be an under-
estimation as surveillance for iNTS disease is infrequent3,4. This sys-
temic disease predominantly occurs among infants and young
children, children with malaria and malnutrition and individuals living
with human immunodeficiency virus (HIV) infections2. Data on iNTS
disease in sSA are still relatively scarce due to limited surveillance for
bloodstream infections across the continent but estimated incidences
show high variability in regions and countries in sSA, as well as within
countries5,6.

Salmonella enterica serovar Typhimurium (S. Typhimurium) is the
most common cause of iNTS disease in sSA7. While S. Typhimurium
strains causing gastroenteritis globally predominantly fall into multi-
locus sequence types (MLST) ST19 and ST348, strains causing blood-
stream infections in sSA are highly associated with clade ST313. These
African-associated ST313 broadly fall into distinct lineages known as 1
and 2, and both are associated with multidrug resistance (MDR)9.
Epidemiological and genomic analysis has shown that lineage 1

emergedfirst and is predominantly confined to the East African region.
Lineage 2 emerged later and has spreadbroadly across sSA, potentially
driven by the HIV epidemic and the use of chloramphenicol9,10. How-
ever, a strict division between invasive and non-invasive S. Typhimur-
ium based on the MLSTs does not appear to represent the situation
well. Invasive S. Typhimuriumdisease is not exclusively associatedwith
ST313 in sSA, as in Kenya, ST19 S. Typhimurium have also been
reported as a relatively common cause of such bloodstream
infections11 and non-lineage 1 and 2 ST313 S. Typhimurium isolates
isolated in the UK are generally associated with gastro-intestinal dis-
ease and present no travel association to sSA12.

ST313 isolates are typically MDR with some having acquired
extended-spectrum beta-lactamase (ESBL) genes driving ceftriaxone
resistance, whilst resistance to fluoroquinolones (FQ, both plasmid
and chromosomally encoded) andmore recently to azithromycin (AZI)
is emerging9,10,13,14. This development significantly limits treatment
options for iNTS disease in low- and middle-income countries
(LMICs)15.

Despite the significant burden of invasive S. Typhimurium disease
in sSA, our understanding of the bacterial population structure and
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consequently epidemiology is poor, which contributes to the lack of
appropriate disease interventions. Herein we report on a broad
genomic analysis approach involving 1303 S. Typhimurium strains,
isolated between 1979 and 2017 from 19 sSA countries, providing an
optimal update following on from the initial pan-African study by
Okoro et al.9. Our study yields a timely perspective on the distribution
and spread of the invasive S. Typhimurium pandemic of sSA including
an analysis of antimicrobial resistance, including hotspots defined as
geographical foci where extensive drug resistant (XDR) isolates are
emerging. These data will yield a better understanding of the disease
and will support the targeting of interventions.

Results
Several independent clades of invasive S. Typhimurium have
emerged in Africa
Although whole genome sequencing has been used to analyse iNTS
isolates, previous work focused on regional data or on the ST313 clade.
To obtain a pan-African perspective, we analysed whole genome
sequencing data of 1302 African S. Typhimurium in the context of 117
non-African S. Typhimurium isolates, including eight African travel-
associated isolates. The African isolates span 1979–2017 (Supplemen-
tary Fig. 1), with the greatest density of sampling between 2008 and
2017, when 73.8% (961 out of 1302) strains were isolated.

Our phylogenetic analysis captured more population diversity
than previously reported9,16, whereas two 313 lineages 1 and 2 were
reported before to cause invasive S. Typhimurium infections, we
identified 4 additional major ST19 lineages. The majority of isolates
(n = 1005) form a tight cluster within ST313 lineage II (ST313-L2),
including isolates fromEast, Central andWest African countries (Fig. 1a
and Supplementary Fig. 1). ST313 lineage I (ST313-L1) isolates were
much less prevalent (n = 87) and originated predominantly from East
African countries. An additional 258 African S. Typhimurium isolates
belonged to ST19 and included four monophyletic clusters (Supple-
mentary Fig. 3).

We identified six major clades associated with invasive S. Typhi-
murium infections in sSA. Four invasive S. Typhimurium clades were
ST19 (ST19-L1 to L4) while two clades were ST313-L1 and ST313-L2,
respectively (Supplementary Fig. 4 and Fig. 1a). Most of the invasive S.
Typhimurium clades were identified in multiple countries, suggesting
a widespread distribution of these clades (Fig. 1b). The East African
region showed the highest diversity of clades, with all six invasive S.
Typhimurium clades being identified. At the country level, Kenya and
DRCshowed the highest diversity, eachwith 5out of 6 of the invasive S.
Typhimurium clades being identified. Notably, ST19-L2 and ST19-L4
were apparently older clades and were identified in the 1980s in
Rwanda and DRC, while ST19-L4 isolates were still being observed
among the recent samples and in other regions. ST19-L1 and ST19-L3
were predominantly observed in the 2010s (Fig. 1c). ST313-L1 was
observed throughout the 1990s and until recently, while the ST313-L2
isolates bacame most dominant since 2001 and appear to be driving
the current pandemic in sSA. The ST313-L2 clade was further classified
in seven subclades, (Supplementary Figs. 5 and 6 and Fig. 2a) with each
subclade associated to one country, i.e., DRC (n = 5), Kenya (n = 1) and
Malawi (n = 1), which suggests local clonal expansions (Fig. 2b).

Continental spread of the current ST313-L2 clade occurred in
1994–1996
A representative selection of 252 ST313-L2 isolates (Supplementary
Fig. 7) was subjected to a phylogeographical analysis in which the
country of the ancestral strains was predicted to gather further infor-
mation on the spread of invasive S. Typhimurium across sSA. Our
analysis assigned the DRC as the most likely source of ST313-L2, with
the most recent common ancestor (MRCA) predicted to have origi-
nated in 1980 (95% highest posterior density (HPD) confidence interval
1974–1986), refining the earlier prediction of the ST313-L2 MRCA from

1977 (95% HPD 1957–1988)9. We found no evidence that ST313-L2 was
present anywhere outside the DRC until 1994, supported by prob-
ability rates >97% for ancestry nodes in that period.

From 1994 onwards, we observed five independent introductions
from the DRC into the East African region (two times into Uganda in
1996, once to Malawi in 1996, once to Malawi in 2000 and once to
Kenya in 1995, all observed in Fig. 3 when the most likely location of a
branch changes from DRC to East Africa) and one major introduction
in the West African region (to Ghana in 1994) which preceded its
subsequent spread.We also identified further introductions fromWest
to EastAfrica. InWestAfrica,wedetected frequent transmission events
across borders, including transmission to Malawi, whereas in East
Africa, evidence for spread to neighbouring countries was less appar-
ent (Fig. 3 and Supplementary Fig. 8).

The ten ST313-L2 UK isolates could be directly linked to eight
separate transmission events fromAfrica12, underlining the importance
of travel-associated transmissions of invasive S. Typhimurium.

Multiple chromosomal SNPs conferring resistance to
ciprofloxacin have occurred in invasive S. Typhimurium
Acquisitions of chromosomal SNPs in quinolone resistance-
determining regions (QRDR) were observed across the population
and in the different regions of sSA (Supplementary Fig. 9). A total of 17
independent QRDR SNP acquisition events were observed in the Afri-
can invasive S. Typhimurium clades, resulting in substitutions of GyrA
S83F (n = 3), GyrA S83Y (n = 4), GyrA D87G (n = 1), GyrA D87N (n = 3),
GyrA D87Y (n = 5), GyrB E466Y (n = 1) (Table 1). Eight of these QRDR
SNP acquisition events gave rise to clusters of multiple isolates, sug-
gesting local outbreaks. Three of these were observed in Kenya, three
in DRC and two in Ghana. One of the Kenyan clusters contained iso-
lates from 2005 to 2014, while one DRC cluster contained 49 isolates
isolated between 2013 and 2017 without interruption, both suggesting
a long-term circulation of the decreased ciprofloxacin susceptibility
(DCS) clusters possibly linked to an ongoing outbreak.

The earliest observation of DCS was in 2002 (DRC, Lwiro), with
subsequent acquisitions being continuously observed since then in
East (Kenya), Central (DRC) and West (Benin, Ghana) Africa (Fig. 4).
QRDR SNP acquisitions originated from different regions across the
country and were not notably linked to a single local hotspot in Kenya
or DRC (Table 1).

The large GyrA S83Y cluster in ST313-L2 subclade 7 (n = 49) clade
showed nested phylogenetic substructures, with significantly
increased MIC values for ciprofloxacin in the emerging substructures
(P value = 0.0235), starting at a median MIC of 0.125mg/L and mean
MICof0.132mg/L and reaching amedianMIC of 0.190mg/L andmean
MIC of 0.188mg/L (Supplementary Fig. 2). No known genetic
mechanisms for ciprofloxacin resistance were identified that explain
these subtle increases in ciprofloxacin MIC values. However, non-
synonymous SNPs were acquired in virulence gene speC, nitror-
eductase gene nfsA, SBOV13191, ydhZ, ethanolamine reactivase gene
eutA and malate synthase gene aceB, none of which have been impli-
cated in ciprofloxacin resistance before.

XDR and PDR invasive S. Typhimurium is associated with the
presence of IncHI2 and IncI1 plasmids
Isolates that carried geneticmarkers underlying XDRor PDR, including
ESBL activity, FQ and AZI resistance, were scattered across the phy-
logeny (Supplemental Fig. 10). XDR and PDR were observed in four
different combinations (Fig. 5). Our data revealed that XDR has
emerged at least six times in invasive S. Typhimurium, with one
emergence underlying ST313-L2 subclade 310. XDRwas associated with
either acquisition of AZI resistance (mphA) and ESBL (SHV) markers, or
by acquired FQ resistance (qnr) andESBL (CTX-M)markers. PDR, on the
other hand, was observed three independent times, each time as a
combination of AZI resistance (mphA), ESBL (SHV) and FQ resistance
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Fig. 1 | The distribution of invasive S. Typhimurium in Africa. a Maximum like-
lihood phylogenetic tree of the 1419 S. Typhimurium isolates sequences from this
study (summarised in Supplementary Data 1). Sequencing reads weremapped to S.
Typhimurium ST313 reference strain D23580. The tree is based on 71521 chromo-
somal SNPs. Branches are coloured by the country of isolation. Invasive S. Typhi-
murium clades as identified in this study are annotated. Metadata is visualised on
the concentric rings in compliance to the legend, from the inside to outside; (1)
Country of origin, (2–5) presence of multidrug resistance markers (MDR; blaTEM,
cat, dfrA, sul), (6) invasive S. Typhimurium clades. Branch lengths represent the

number of SNPs as indicated in the scale bar. b Distribution of invasive S. Typhi-
murium clades per country for the studied isolates assigned to an invasive S.
Typhimurium clade (1 = ST19-L1, 2 = ST19-L2, 3 = ST19-L3, 4 = ST19-L4, 5 = ST313-L1,
6 = ST313-L2). Bar charts show the number of isolates per clade coloured by the
countryof isolation. cDistributionof S. Typhimurium isolates over time assigned to
an invasive S. Typhimurium clade (1 = ST19-L1, 2 = ST19-L2, 3 = ST19-L3, 4 = ST19-L4,
5 = ST313-L1, 6 = ST313-L2). Historical isolates (older than 1975) were excluded in
this representation.
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markers, which was either a qnr acquisition, chromosomal GyrA D87N
or GyrB S464Y substitutions. Strikingly, XDR or PDR isolates always
harboured an acquired plasmid: XDR coincided with either the pre-
sence of IncHI1 (n = 4) or IncHI2 (n = 50) replicons, while PDR was
associated with the presence of IncHI2 plasmids (n = 3). The IncHI2
plasmid conserved in ST313-L2 subclade 3 carries the XDR resistance
markers andwas found tohave high similaritywith the IncHI2 plasmids
of ST313-L2 isolates from Kenya and Malawi10.

We resolved the full plasmid sequence of all available XDR and
PDR isolates and subjected them to a comparative analysis (overview
in Table 2). IncHI2 plasmids contributing to XDR and PDR in invasive S.
Typhimurium isolates in sSAwerehighly related to eachother, but also
to non-XDR/PDR IncHI2 plasmids (Fig. 6a). High similarity was, for
example, observed with a plasmid from a non-invasive isolate from
Morocco (S15BD01306) carrying mobilised colistin resistance gene
(mcr-9). IncI1 plasmids contributing to XDR in invasive S. Typhimurium
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Fig. 2 | The distribution of invasive S. Typhimurium clade ST313-L2 in Africa.
aMaximum likelihood phylogenetic tree of ST313-L2 isolates, based onmapping to
reference strain D23580 (highlighted in blue in the phylogeny). The tree is basedon
5380 chromosomal SNPs. The tree is rooted with S. Typhimurium strain DT2B, a
European ST313 strain. Branches are coloured by the country of isolation. ST313-L2
subclades as identified in this study are coloured in the outher circle. Subclade 3
confers with the previously called ST313 sublineage II.1, and reference isolate
10433_3 is highlighted in blue10. Metadata are visualised on the concentric rings in

compliance to the legend, from the inside to outside; (1) Country of origin, (2–4)
antimicrobial resistance markers associated with XDR and PDR outbreaks (ESBL,
azithromycin resistance and the GyrA S83Y mutation associated with decreased
susceptibility to ciprofloxacin). (5) ST313-L2 subclades. Branch lengths represent
the number of SNPs as indicated in the scale bar.bDistribution ST313-L2 subclades
per country. Bar charts show the number of isolates per subclade coloured by the
country of isolation.
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isolates in sSA were similarly highly related to each other, but also to
other IncI1 plasmids (Fig. 6b).

All XDR and PDR isolates originate from the DRC, and were found
in multiple provinces (Sankuru, Tshopo [Kisangani], Kongo-Central
[Kisantu]), suggesting a widespread of the resistance plasmids in the
country. Related IncI1 and IncHI2 plasmids were however identified

across Africa, i.e., respectively in Nigeria and Kenya, and in Kenya,
Malawi and Morocco, which suggests a possible widespread reservoir
of these types of plasmids and thus AMR across the continent. Strik-
ingly, the historical isolate AA00491 (DRC, 1984) carried a hybrid IncI1-
IncHI2 plasmid showing similarity to both the recent IncI1 and IncHI2
plasmids.
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Hotspots for AMR in S. Typhimurium are found in Kenya
and DRC
PDR and XDR previously had only been detected in DRC while ESBL
productionandQRDRSNPacquisitionswereobserved across sSA. PDR
was observed in all three sites in DRC with extensive bloodstream
surveillance; Kinshasa, Kisangani and Kisantu in the DRC. However, in
Kisangani, Kisantu, Kinshasa, aswell as in Nairobi (Kenya), isolateswith
XDR or ESBL-producing plasmids co-circulated with isolates showing
QRDRSNPs, presenting a risk for PDR throughplasmid transfer (Fig. 7).

Most frequently, isolates with increased AMR presented as single,
sporadic cases, although in the Kisantu hospital area in the DRC, both
an XDR outbreak (ST313-L2 subclade 3) and a clade with a QRDR SNP
(ST313-L2 subclade 7) were observed. These outbreaks of ST313-L2
subclades 3 and 7 underly two separate waves with increased cases,
respectively from 2013 Q4 to 2015 Q1 and 2016 Q1 to 2017 Q3 (Sup-
plementary Fig. 11).

Evolutionary processes in invasive S. Typhimurium clades
Invasive ST313 isolates have previously been associated with sig-
natures of genome degradation associated with host adaptation17. To
assess this here, non-synonymous SNPs were extracted, and the genes
potentially inactivated in the invasive S. Typhimurium clades were
analysed (Supplementary Table 1). Twenty-six such genes were iden-
tified in at least two invasive S. Typhimurium clades, and thus present
parallel evolution towards loss of these genes in the separate invasive
S. Typhimuriumclades. Threeof these geneswere found in three of the
six invasive S. Typhimurium clades, i.e., malZ (ST19-L2, ST19-L3 and

ST313-L1), ssrA (ST19-L3, ST313-L1 and ST313-L2) and stfC (ST19-L4,
ST313-L1 and ST313-L2). These genes are involved in virulence in a gut
ormacrophage environment18–22 or survival outside the host23. Twenty-
three genes showed non-synonymous SNPs in two of the six invasive S.
Typhimurium clades and were related to metabolism (pdxK, eutA),
host interactions/virulence (shdA, steC),membrane/surface-associated
processes (dacD, fimA) redox-associated processes (ydiJ, ccmH2, bcp,
SL1344_1475) or phage (SL1344_2600, SL1344_2582). Of these, none have
previously been found as pseudogenes in human-associated S.
Typhimurium. However, fimA has been found as a pseudogene in
Bordetella pertussis24, ydiD and shdA are known pseudogenes in S.
Typhi and other host-adapted serovars25–27, and steC is a pseudogene in
some passerine-adapted S. Typhimurium28,29. Other molecular
mechanisms, such as subtle changes in expression of expression
pumps might also underly the observed differences in MIC values.

When analysed within a global S. Typhimurium context, the six
invasive S. Typhimurium clades from sSA presented different char-
acteristics than global S. Typhimurium isolates, which would suggest
that they have spread differently and have undergone different levels
of host adaptation (Fig. 8). Overall, the invasive S. Typhimurium clades
form distinct clades in the global phylogeny. Their difference from
global S. Typhimurium isolates underlines their specific importance
for sSA rather than across the globe, with however, few global isolates
interspersed with ST19-L1 and ST19-L4 isolates.

We further investigated the genomedegradation of lineages using
the DBS, which is a measure for Salmonella invasiveness based on the
content of pseudogenes in the isolate’s genomes. S. Typhimurium

Fig. 3 | Estimated spread of ST313-L2 across sub-Saharan Africa. a Time-tree
from BEAST showing phylogeographical reconstruction of ST313-L2. Estimated
ages of nodeswhere transmission between African regions (East, Central andWest)
occurred are annotatedwithblack circles and predicted years are reportedwith the
95% HPD interval. Triangles and squares indicate transmission events respectively
within the region to a neighbouring country, and outside the continent (travel-
associated). Branches and nodes are coloured according to the country with the
highest posterior probability. Branch lengths represent the number of years as

indicated in the scale bar. Isolate D23580 fromMalawi is annotated in the three, as
well as all ST313-L2 subclades (black circle at most recent common ancestor).
Subclade 3 coincides with the previously identified ST313 sublineage II.110. Sup-
plementary Fig. 8 presents the raw data of (a) with confidence intervals included.
b A map showing the transmission events between the African regions (East,
Central and West) and the respective predicted years of transmission. Additional
cross-country transmission is observed in West Africa after the introduction in the
region in 1994, annotated with arrows in the region.

Table 1 | Quinolone resistance-determining region (QRDR) SNP acquisitions in African invasive S. Typhimurium clades

QRDR event N Location Year Amino acid substitution Clade

1 3 Kenya, Nairobi 2005, 2014, 2014 GyrA D87Y ST313-L1

2 1 DRC, Bwamanda 2008 GyrA D87Y ST313-L2

3 1 DRC, Kisangani 2011 GyrA D87N ST313-L2 subclade 2

4 1 DRC, Kinshasa 2008 GyrA D87N ST313-L2 subclade 3

5 4 Kenya, Siaya 2009, 2010, 2011, 2012 GyrA D87G ST313-L2

6 3 Kenya, Kombewa 2010, 2013 GyrA S83Y ST313-L2

7 1 DRC, Lwiro 2007 GyrA S83F ST313-L2

8 1 DRC, Lwiro 2002 GyrA S83F ST313-L2

9 1 DRC, Kisangani 2015 GyrA D87Y ST313-L2

10a 49 DRC, Kisantu 2013–2017 GyrA S83Y ST313-L2 subclade 7

11 3 DRC, Kisantu 2017 GyrA D87N ST313-L2 subclade 7

12 1 DRC, Kisantu 2014 GyrA S83Y ST313-L2

13 1 DRC, Kisantu 2014 GyrA S83F ST313-L2

14 2 DRC, Kisantu 2009, 2012 GyrA D87Y ST313-L2

15 3 Ghana 2010, 2012 GyrB E466D ST313-L2

16 3 Ghana 2011 GyrA S83Y ST313-L2

17 1 Benin 2015/2016 GyrA D87Y ST313-L2

Isolates with QRDR SNPs are listed. When isolates formed a monophyletic group showing the same genetic marker, they were grouped as a single QRDR SNP acquisition event. For each isolate or
group of isolates their location and year of isolation is given, as well as the resulting amino acid substitution resulting from the QRDR SNP and the invasive S. Typhimurium clade as defined in this
study.
aThe 49 isolates within ST313-L2 subclade 7 are not listed separately.
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lineages belonging to global clade-α30 had a low DBS, indicative for
little genome degradation and lower signatures of invasiveness, and
included ST19-L1 and ST19-L2 with DBSs of −0.0089 and 0.07,
respectively (Fig. 8b). The lack of genome degradation in ST19-L1 was
consistent with this, containing strains with a broad host range. In
contrast, ST19-L2 had an elevated DBS, suggesting greater host adap-
tation, although there might be sampling bias or a local outbreak
underlying these data as the ST19-L2 isolates were sampled over a
short time frame at only one location. S. Typhimurium lineages
belonging to global clade-β30 had a wider range of DBSs. ST19-L3 and
ST19-L4 (both ST19) had a mean DBS of 0.0337 and 0.0013, respec-
tively. The high DBS of ST19-L3 is consistent with a highly degraded
genome, considered to be a signature for increased invasiveness and
similar to that described in the neighbouring DT56 complex. ST19-L4
has emerged from the DT204 complex that caused an MDR epidemic
in Europe during the 1980s31. ST313-L1 and ST313-L2 are part of clade-β
and presentmoderate to high genomedegradationwithmeanDBSs of
0.0105 and 0.0197.

Discussion
We present an overview of invasive S. Typhimurium in sSA, maximally
using a geographically and temporally balanced dataset of 1302 Afri-
can isolates. Okoro et al. previously identified two phylogenetic ST313
lineages (called 1 and 2) as drivers of the S. Typhimurium epidemic in
sSA9. We identified four further significant clades and underlined the
importance of ST313-L2 in the current pandemic. Our data identified
similar evolutionary signatures in each clade involving the acquisition
of multiple AMR determinants and signs of genome degradation,
potentially linked to host adaptation. Two of the ST19 clades were
observed recently to bedominant in Kenya andwere called theKenyan
ST19 lineages I and II11, coinciding with ST19-L3 and ST19-L4. The other
two ST19 clades described here, have not been described earlier.
Another recent study has identified a novel clade in Malawi, likely
presenting a seventh emergenceof an invasive S. Typhimuriumclade16.

We present an updated numbering system to annotate those different
invasive S. Typhimurium lineages with ST313-L2 as the current domi-
nant clade in sSA, associated with highest levels of AMR. The emer-
gence of multiple, independent lineages across the S. Typhimurium
population, presenting similar evolutionary patterns towards inva-
siveness, implies that S. Typhimurium, ST19 and ST313, have the
intrinsic capability of becoming invasive. In addition, as long as these
drivers are present, one can assume that it is likely that new invasive
lineages will continue to appear.

A limitation to this and other iNTS genomics studies is the scarcity
of bacterial isolates available from bloodstream infections in sSA,
associated with intrinsic sampling bias. First, healthcare utilisation is
relatively low and frequently delayed in sSA. Second, blood culture
analysis and surveillance are increasingly performed across sSAbut are
still not routinely done in all countries as it is expensive and poorly
implemented in clinical care. Lastly, sample storage and sequencing
are not systematically done on all samples. Whilst this situation is
changing, this study is therefore opportunistic but nonetheless covers
multiple regions across sSA, combining data from blood culture sur-
veillance projects undertaken across sSA in the recent decades. The
intrinsic sample bias however implies that patterns, such as the
diversity of clades, that we observed between regions might be
skewed. We have however taken steps throughout the study to miti-
gate these effects, including the use of rigourous statistical methods,
to present the best possible predictions.

We postulate that the current pandemic ST313-L2 clade emerged
in the DRC in 1980 and has spread across sSA from the DRC. Historical
invasive S. Typhimurium isolates also have only been observed and
reported in DRC and Rwanda. Although this might be a causal effect of
the clade only being present in Central Africa, sample scarity and bias
could be a limitation for this analysis.

The success of ST313-L2 has earlier been contributed to its
chloramphenicol resistance9. Chloramphenicol was used frequently in
DRC as first choice treatment for bacterial meningitis and typhoid

0.0
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2.0

2005 2010 2015
Years
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Country

Benin

DRC

Ghana

Kenya

Fig. 4 | Continuous emergence of individual genetic events of quinolone
resistance-determining regions (QRDR) SNP acquisitions in African invasive S.
Typhimurium clades over time. Events are plotted per year and coloured by the

country of isolation. The years of the oldest isolate from a genetically related
cluster of isolates presenting the same QRDR SNP are plotted. DRC Democratic
Republic of Congo.
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fever32, and we observe chloramphenicol resistance in ST19-L4 from
Lwiro, DRC isolated in 1984–1985. The main transmission events of
ST313-L2 at the continental level happened in a time frame of only 2
years. Coincidently, major wars took place in de DRC during this per-
iod being the First Congo War or Africa’s First World War (1996–1997)
and the SecondCongoWar or the Great AfricanWar (1998–2003) took
place. During that time, there was substantial travel due to important
foreign involvement and there were large numbers of refugees in the
DRC after the Rwandese War (1994)33. At the same time, the HIV pan-
demic was still expanding in sSA, creating a large susceptible popula-
tion to iNTS infections9. Political instabilitymay, therefore, haveplayed
a role in the intracontinental spread of invasive S. Typhimurium, which
has also been seen for other diseases such as cholera34.

Higher-order subclades present in ST313-L2 were confined to
specific countries, suggesting a slow local spread of iNTS at the
country level. Two subclades with increased AMR have emerged in
DRC, namely one presenting XDR and one DCS, again implying that
DRC might be a source for emerging subpopulations. Similarly, one
ESBL ST313-L2 sub-branch emerged from Kenya, a country also pre-
senting a high diversity of invasive S. Typhimurium clades and sug-
gesting that Kenya might be another hotspot for emerging

subpopulations. Four specific locations were identified as hotspots
where IncHI2-plasmid-driven resistance coincides with chromosomal
DCS (Kisantu, Kisangani and Kinshasa in DRC; Nairobi in Kenya). It will
be important in the coming years to maintain genomic surveillance in
these sites, and others. At the moment, single PDR cases have been
reported in DRC10. Acquisition of XDR and PDR involved plasmids
highly related to the IncHI2 and IncI1 plasmids, suggesting the exis-
tence of a mobile AMR-reservoir for S. Typhimurium in sSA. These
IncHI2 and IncI1 plasmids are commonly found in the S. enterica
species35, but also in other related organisms such as Escherichia coli36,
with which the invasive S. Typhimurium isolates might exchange
plasmids.

The increase of AMR is worrying in S. Typhimurium, especially
with limited antimicrobials available and resistance being observed
against all available antimicrobials. iNTS vaccines are currently in
development37, but it is however unlikely for these to become licensed
and WHO prequalified before the end of the 2020 s. In addition, spe-
cific risk factors for iNTS infection (malnutrition, HIV and malaria co-
infections) still are significant in the human population. There has
never been a clinical endpoint trial of themanagement of iNTS disease
and there is an urgent need for holistic approaches to prevention

PDR
subclade 7

PDR
subclade 3

pSTm-ST313-II.1,
ESBL + AZI

SNP in 
QRDR

Mobile resistance
ESBL

+ AZI + FQ+

n = 2
2735 (Kinshasa, 2008)

21989_3 (Kisantu, 2017)

n = 1
5390_4 (Kisangani, 2016)

n = 50
(Kisantu, Kinshasa, Kisangani, 2013-2016*)

XDR
subclade 3

pSTm-ST313-II.1,
ESBL + AZI

+

XDR ST313-L2
FQ + ESBL
Mobile resistance

ESBL
+ FQ+

+

n = 5
10530_17 (Sankuru, 2017), 22400_3 

(Kisantu, 2017), 23060_3 (Kisantu, 2017), 
22392_3 (Kisantu, 2017), A54560 (Blantyre, 

2009)

IncHI2 IncI1/
IncHI2

IncHI2
IncHI2

Fig. 5 | Observed molecular mechanisms of extensive drug resistance (XDR)
and pan-drug resistance (PDR) in invasive S. Typhimurium. XDR in invasive S.
Typhimuriumpresented as either caused by a plasmid carrying geneticmarkers for
extended-spectrum beta-lactamase (ESBL) activity and azithromycin (AZI) resis-
tance or by a plasmid carrying genetic markers for ESBL and fluoroquinolone (FQ)

resistance. PDR in invasive S. Typhimuriumpresented as either caused by a plasmid
carrying XDR in an isolate carrying a SNP in a quinolone resistance-determining
region (QRDR) or by a plasmid carrying resistance markers for ESBL, AZI and FQ.
The plasmid type is annotated per the observed mechanism. The specific plasmids
per isolate are listed in Table 2. *Described as part of ref. 10.
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combining novel treatment strategies and preventive measures,
including vaccine development andmeeting Sustainable Development
Goals around water, sanitation and hygiene (WASH), nutrition and
control ofmalaria andHIV in endemic regions. Our study supports and
urges for further action by providing a timely and continental per-
spective of invasive S. Typhimurium and its AMR in sSA.

Methods
Bacterial isolates
A total of 1419 S. Typhimurium isolates were included in this study,
containing 1302 isolates from Africa. These originated from surveil-
lance studies in 19 countries spanning different subregions of Africa
(East, Central and West) (Supplementary Data 1 and Supplementary

Fig. 6 | Related IncHI2 and IncI1 plasmid drive XDR and PDR in African invasive
S. Typhimurium. Pairwise similarity of IncHI2 and IncI1 plasmids of invasive S.
Typhimurium isolates. a Pairwise comparison of IncHI2 plasmid pSTM-10530_17
with pSTM-3152_4, pSTM-5390_4, pSTM-7593_12, pSTM-ST313-II.110, pKST31313,

pSTm-A5465043 and Illumina assembled contigs of pSTM-S15BD01306 and pSTM-
AA00491. b Pairwise comparison of IncI1 plasmid pSTM-23060_3 with pSTM-
22392_3, pSTM-22400_3 and Illumina assembled contigs of pSTM-889213, pSTM-
K171 and pSTM2-AA00491.
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Fig. 1). Of these African isolates, 115 (8.1%) isolates were part of the
study by Okoro9 providing the S. Typhimurium overview in 2012, and
including the ST313 lineage II D23580 isolate, used here as reference
genome38. An additional 815 (57.4%) isolates were sequenced as part of
the studies with isolates from sSA from Van Puyvelde et al.10,39, Post
et al.40, Kariuki et al.11,13,41, Feasey et al.42, Msefula et al.43, Park et al.14 and
Maclennan et al. (in preparation). As part of this study, 372 (26.2%)
additional isolates from sSA were whole genome sequenced. Of these,
three isolates originate from bacterial surveillance in the Centre
National Hospitalier Universitaire Hubert Koutougou MAGA of Coto-
nou, Benin; 33 (2.3%) originate from bloodstream surveillance studies
and human reservoir and transmission studies conducted in the Clin-
ical Research Unit of Nanoro (CRUN) in Burkina Faso, 134 (9.4%) ori-
ginate from the Democratic Republic of Congo (DRC), including
ongoing bloodstream surveillance44–47 and historical isolates which
were bio-banked in the University Hospital Saint-Pierre Brussels
(Belgium)48–51; 3 (0.2%) isolates originate from returning travellers from
Gabon, Guinea andMorocco stored by Sciensano (Belgium); 86 (6.0%)
isolates originate from the Malawi Liverpool Welcome (MLW) bacter-
aemia archive and dedicated stool samplings by the MLW Research
Programme in Blantyre, Malawi52; 29 (2.0%) isolates from Nigeria ori-
ginate from the Community Acquired Bacteremic Syndrome in Young
Nigerian Children CABSYNC study and the Community Acquired
Pneumonia and Invasive Bacterial Disease (CAPIBD), 69 (4.9%) from
Rwanda of which one recent isolate collected by the RwandanNational
Reference Laboratory in Kigali (Rwanda) and 68 historical isolates
which were bio-banked in the University Hospital Saint-Pierre Brussels
(Belgium)48–51; 15 (1.1%) isolates originate from population-based sur-
veillance by the Medical Research Council (MRC) Unit The Gambia at
the London School of Hygiene & Tropical Medicine (LSHTM) in the
Basse region of The Gambia53. We have included the 75 (5.3%) pub-
lished sequences from Ashton et al.12, including ST313 sequences iso-
lated by Public Health England in the UK, as context. Information on
the sample sourcewas available for 1102 of the African S. Typhimurium
isolates, and include abattoir (1; 0.1%) human blood (1006; 91.4%),

stool (84; 7.6%), urine (4; 0.4%), pus (1; 0.1%), cerebrospinal fluid (4;
0.4%) and unspeccified human sample (1; 0.1%). Sixty-one of the 84
African stool isolates originate from endemic settings and presented
invasive clones in the stool samples11,54. All available informationon the
isolates is available in Supplementary Data 1.

Genome sequencing
Each of the collaborating laboratories used their own individual
methodologies for the extraction of genomic DNA. Index-tagged
paired-end Illumina sequencing libraries were prepared as previously
described55. These were combined into pools of 96 uniquely tagged
libraries and sequenced on the Illumina HiSeq 2000 or HiSeq 2500
platform (San Diego, USA) according to the manufacturer’s protocols
to generate paired-end reads of 100–150bp in length. Sequencing read
quality was confirmed for all samples, including the presence of
sequencing adapters, contamination level, GC fraction, insert size, qX
yield, match with reference genomes and coverage of mapping, using
the sequencing pipelines (Wellcome Sanger Institute, Hinxton, UK).
Purity of the samples was confirmed by sorting reads per species for
each sample using Kraken v.1.1.156. Samples were assembled using
Velvet v.1.2.1057 and needed to cover at least 4.5 Mbp of the genome.
Detailed statistics of the individual assemblies, including the number
of contigs, average contig lenthg,max contig length andN50 are given
in Supplementary Data 2.

Seven isolates from this study were subjected to MinION
sequencing to resolve their plasmid sequences (Supplementary
Data 3). These included all isolates which were available for additional
sequencing and which showed high AMR (XDR, PDR and/or ESBL). For
monophyletic branches with the same AMR profile and plasmid con-
tent, one isolatewas subjected toMinIONsequencing. DNA forMinION
sequencing was extracted using the MasterPure Complete DNA and
RNA Purification Kit (Epicentre, Madison, USA), following the manu-
facturer’s guidelines. Nuclease-free water (Thermo Fisher scientific,
Waltham,USA)wasused to resuspend theDNA.GenomicDNAextracts
were natively barcoded (with EXP-NBD104, SQK-LSK109) and

PDR
XDR
ESBL

QRDR SNP

IncHI2/IncI1 plasmid mediated

Chromosomal

Kisantu, DRC

Kinshasa, DRC

Nairobi, Kenya

Kisangani, DRC

Fig. 7 | Antimicrobial resistance (AMR) hotspots for invasive S. Typhimurium in
sub-Saharan Africa. GPS locations are plotted for isolates showing IncHI2/IncI1
plasmid-mediated pan-drug resistance (PDR), extensively drug resistance (XDR)
and extended-spectrum beta-lactamase (ESBL) activity as well as locations with

isolates presenting chromosomal quinolone resistance-determining region (QRDR)
SNPs. Locations where plasmid-driven PDR, XDR or ESBL isolates co-circulate with
chromosomal QRDR SNPs are annotated on the map, presenting a risk for
increased AMR through plasmid transfer.
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sequenced on a MinION using flowcell type R9.4.1. The sequence was
determined from the raw fast5 output files using guppy basecaller
in high accuracy mode (default parameters with --config
dna_r9.4.1_450bps_hac.cfg, Guppy basecalling suite, (C) Oxford Nano-
pore Technologies, Limited. v3.0.3) to obtain fastq files. These fastq
files were demultiplexed with guppy barcoder v3.0.3 and porechop
v0.2.3 (default parameters with --barcode_kit EXP-NBD104). Hybrid
assemblies from Nanopore and Illumina read sequences were con-
structed using Unicycler v0.4.658 and the assembly graphs were eval-
uated using Bandage59. Sequences were then annotated using PROKKA
v1.1160.

In silico identification of AMR and plasmid replicons
To detect AMR genes, the ARIBA software v.2.14.661 with default
thresholds and CARD database v.3.0.762 were used. For the detection
of plasmids, the PlasmidFinder63 database was used with themapping-
based allele tool SRST2 v.0.2.064.

MDR was defined as the co-presence of genetic markers con-
ferring resistance to chloramphenicol, ampicillin and co-trimoxazole;
XDR as the co-presence of genetic markers which are responsible for
the resistance to twoof the three current treatment options (AZI, FQor
ceftriaxone) on top of MDR; pan-drug resistance (PDR) was defined as
co-presence of genetic markers conferring resistance to AZI, FQ and
ceftriaxone combined with MDR10,15.

SNP analysis
Illumina HiSeq reads were mapped to the S. Typhimurium reference
genomes of ST313 lineage II (D23580, FN424405.138) using SMALT
v0.7.4 to produce a BAM file. SMALT was used to index the reference
using a kmer size of 20 and a step size of 13, and the readswere aligned
using default parameters but with themaximum insert size set as three
times themean fragment size of the sequencing library. PCR duplicate
reads were identified using Picard v1.92 (Broad Institute, Cambridge,
MA, USA) and flagged as duplicates in the BAM file.

Variation detection was performed using samtools mpileup
v0.1.19 with parameters “-d 1000 -DSugBf” and bcftools v0.1.1965 to
produce a BCF file of all variant sites. The option to call genotypes at
variant sites was passed to the bcftools call. All bases were filtered to
remove those with uncertainty in the base call. The bcftools variant
quality score was required to be greater than 50 and mapping quality
greater than 30. If not all reads gave the same base call, the allele
frequency, as calculated by bcftools, was required to be either 0 for
bases called the same as the reference, or 1 for bases called as a SNP.
The majority base call was required to be present in at least 75% of
readsmapping at the base, and theminimummapping depth required
was 4 reads, at least two of which had to map to each strand. Finally,
strand_bias was required to be less than 0.001, map_bias less than
0.001 and tail_bias less than 0.001. If any of these filters were not met,
the base was called as uncertain.
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Fig. 8 | Phylogenetic relationship of invasive S. Typhimurium clades in the
global population structure of S. Typhimurium. a Maximum likelihood phylo-
genetic tree containing 10 isolates from each invasive S. Typhimurium clade (blue
branches) and a representative collection of 131 global S. Typhimurium isolates
(black branches). The tree was constructed using sequence variation (SNPs) in the
core genome with reference to S. Typhimurium strain SL1344. The root was iden-
tified using S. Heidelberg (accession number NC_011083.1) as the outgroup (not
shown). Theheatmap to the right of the tree highlights the invasive S. Typhimurium
clades and the 19 previously determined population structure groups of the
131 strains (Bawn et al.,30). Isolate names are shown as branch labels where high-
quality long-read reference sequences, clonal complexes described in literature are

also shown. The bifurcations giving rise to S. Typhimurium clade-α and clade-β are
annotated. b Box plots of the geometric meanDelta Bitscore (DBS: bitscore SL1344
(FQ312003)—test strain bitscore) of proteomes of the same representative collec-
tion of 131 S. Typhimurium isolates are shown. Centres represent the geometric
mean DBS, minima andmaxima of the boxes represent the first and third quartiles,
vertical lines indicate first or second quartile + 1.5× the interquartile range, and
outliers > or less than these values plotted as points. The number of genomes
(biological replicates) analysed in each group are indicated within the figure (n = ).
Boxes are coloured to indicate phylogroups in (a). Basally rooted population
structure group 1 not shown.
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Phylogenetic analysis
A pseudo-genome was constructed by substituting the base call at
each site (variant and non-variant) in the BCF file into the reference
genome and any site called as uncertain was substituted with an N.
Insertions with respect to the reference genome were ignored and
deletions with respect to the reference genome were filled with N’s in
the pseudo-genome to keep it aligned and the same length as the
reference genome used for read mapping.

Recombinant regions in the chromosome such as prophage
regions and the fljB ORF in the chromosome were removed from the
alignment and checked using Gubbins v1.4.1066. SNP sites were
extracted from the alignment using snp-sites v.2.5.167 and used to
construct a maximum likelihood phylogeny with RAxML v8.2.868 with
substitution model GTR-GAMMA. For the full tree, support for nodes
on the trees was assessed using 100 bootstrap replicates and S. Para-
typhi A270was included as anoutgroup to root the tree. For the ST313-
L2 tree, 1000 bootstrap replicates were used and isolate S. Typhi-
murium DT2 was included as an outgroup to root the tree. Trees were
visualised using Figtree v1.4.2 and iTOL69.

Identification of clades and subclades
For the identification of clades and subclades within the African S.
Typhimurium population, a similar approach was used as previously
employed for the classification of S. Typhi70. FastBaps v.1.0.371 wasused
with the ‘baps’ prior. Hierarchal clustering analysis was run on the full
dataset allowing identification of six clades, here defined as invasive
Typhimuriumclades ST19-L1–4 and ST313-L1-2. Clade ST313-L2 isolates
(formerly defined as ST313 sublineage II) were separately subjected to
hierarchal clustering thereby yielding seven subclades (ST313-
L2 subclades 1–7). Hereto, ten nested levels of molecular variation
were fitted to the data and level 2 allowed identification clusters until
single-member clusters thereby following the approach used for S.
Typhi classification72, and the level 2 classificationwas further used for
the (sub)clade definitions. The hierarchal clustering method is a
phylogeny-free approach, and population structure was taken into
account by integrating level 2 clusters with the phylogenetic trees.

Clades were defined as FastBaps clusters presenting as mono-
phyletic branches. Neighbouring and nested clusters were merged in
one clade while the differentiating branch showed a minimum of 50
SNPs difference. Neighbouring clusters were merged until the next
cluster was dominated by non-African non-invasive isolates, allowing a
representative classification of invasive African S. Typhimurium iso-
lates in 6major clades. This results in 21 of the 118 non-African isolates
being clustered within the invasive S. Typhimurium clades. Unclassi-
fied isolates were assigned to the ancestry clade (Supplemen-
tary Data 1).

Subclades of ST313-L2 were defined similarly as clades, i.e., as
FastBaps clusters presenting as monophyletic branches. All neigh-
bouring and nested clusters were merged in subclades, with the dif-
ferentiating branch showing at least 4 SNPs difference. Merging of
neighbouring clusters was continued as far as possible. To maintain
compatibility with the phylogeny, few single nested isolates needed to
be reassigned. Some isolates did not reach the criteria for clustering as
they were part of polyphyletic lineages and were assigned to the
ancestry subclade of ST313-L2 This approach uses stringent settings,
thereby limiting classification of all potential substructures of ST313-L2
but provides a framework with significant subclades and a nomen-
clature which can be extended in the future.

Evolutionary context analysis
To determine the evolutionary context of the African strains, 10
representatives randomly selected from the phylogeny (Supplemen-
tary Data 4) of each invasive S. Typhimurium clade were placed in a
phylogenetic context with strains from a well-characterised dataset of
131 S. Typhimurium strains30 (Supplementary Data 5). Maximum

likelihood phylogenetic trees were constructed as previously
described30. Briefly, reads were mapped to the SL1344 whole genome
sequence assembly (FQ312003) and SNPs were determined using the
Rapid haploid variant calling and core SNP phylogeny pipeline SNIPPY
v.3.0 (https://github.com/tseemann/snippy). The software was also
used to construct a sequence alignment of core genome variant sites
from which a maximum likelihood phylogenetic tree was generated
using theGTRCATmodel implementedwith an extendedmajority-rule
consensus tree criterion in RAxML73. The Delta Bitscore (DBS) was
calculated for the proteome inferred from each genome to estimate
the level of genome degradation as previously described30. Briefly,
reads were mapped to the SL1344 reference genome to create align-
ment sequences which were then annotated using Prokka v1.1160.
Genes in each annotated sequence were then analysed in a pairwise
fashion against SL1344 using DBS74 as described previously30. The
mean DBS per genome was plotted.

Phylogeography
A representative selection of ST313-L2 isolates was made by first stra-
tifying the dataset by year and using CD-HIT v.4.8.175 at a 0.99
threshold per group of isolates to identify isolates representing the
genetic diversity within the group. A total of 220 isolates were selected
using this approach and complemented with 31 isolates which were
selected based on the RAxML phylogeny and present additional geo-
graphical transmission events in the maximum likelihood tree. Refer-
ence isolate D23580 was also included.

A temporal signal was identified in the dataset with TempEST
v.1.5.376. The phylogeography was reconstructed using BEAST v1.8.477.
BEAUti xml’s were constructed to compare the different substitution
models (GTR + I, GTR+Gamma), molecular clocks (Strict, Relaxed Log-
Normal) and population size models (Constant, Exponential, Logistic,
Expansion, Skygrid, Sky Ride, Bayesian Skyline, Extended Bayesian
Skyline). The ratio of the marginal likelihoods were compared using
Bayes factor78,79 and yielded the general time reversible (GTR) sub-
stitution model with diffuse gamma distribution prior (shape 0.001,
scale 1000) and invariant sites, an uncorrelated log-normal relaxed
molecular clock and a model with exponential population size as
optimal. Countries were added as traits in the BEAST model, and
ancestors states were reconstructed at all ancestors.

Three independent runs of 80 million MCMC generations were
calculated and samples were taken every 8000 generations. Log files
were inspected in Tracer v1.7.180 for convergence, proper mixing, and
sufficient sampling. A 3.75% burn-in was removed from each run. Log
and tree files were combined using LogCombiner v2.5.0. The posterior
sample of the time-trees were summarised in TreeAnnotator v1.8.4 to
produce amaximumclade credibility treewith the posterior estimates
of node heights visualised on it.

We inferred transmission events along branches where the pre-
dicted country changed between internal nodes in the final BEAST
maximum credibility tree. These data were used to generate the
inferred transmissions shown on the map. For the phylogeographical
analysis, the Bayes_factor_comparison.py, replace_BEAST_blocks.py
and prepare_BEAST_alignment.py scripts were used, available at
Github page https://github.com/sanger-pathogens/bact-gen-scripts.

Plasmid comparisons
XDR and PDR IncI1 and IncHI2 plasmids were pairwise compared using
BRIG v.0.9581. The respective IncHI2 and IncI1 plasmids that were
complete, circular and had the longest sequence were used as refer-
ences for comparison, which were IncHI2 plasmid pSTM-10530_17
(296484 bp) and IncI1 plasmid pSTM-23060_3 (97430bp). Included
plasmid sequences obtained through this study using MinION
sequences were IncHI2 plasmids pSTM-10530_17, pSTM-3152_4, pSTM-
5390_4, pSTM7593_12 and IncI1 plasmids pSTM-23060_3, pSTM-
22392_3, pSTM-22400_3, pSTM-8892. Public sequences of IncHI2
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plasmids pSTm-ST313-II.1 (S. Typhimurium, ERS1310131), pKST313 (S.
Typhimurium, LN794248) and pSTm-A54650 (S. Typhimurium,
LK056646) were included.

A de novo assembly was performed based on Illumina sequences
of isolates AA00491, S15BD01306, K171 and 889282 and the contigs of
the plasmid sequence were identified using a pairwise blastN v. 2.10.0
analysis of these sequences with respectively pSTM-10530_17 and
pSTM_23060_3 as the query. All contigs covering more than 3% of the
query sequencewere retained for this analysis. Contigswere reordered
using Mauve version 2015_02_2583.

Ciprofloxacin susceptibility testing and statistical analysis
Antimicrobial susceptibility of the DRC isolates was done before47,
following CLSI guidelines by assessing Minimum Inhibitory Con-
centrations (MIC) with the E-test macromethod (bioMérieux, Oxoid)
for ciprofloxacin. An increase ofMIC values per nested substructure of
S. Typhimurium ST313-L2 subclade 7 was statistically analysed using a
generalised linear model (glm function) using R software, with a
Gaussian distribution. The nested substructures are given in Supple-
mentary Fig. 2a.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study are available at
SRA, accession IDs per isolate are available in Supplementary Data 1
and 3. All data generated during and/or analysed in the current study
are available from the corresponding author on request. The exchange
of biological material should always be in agreement with the
local teams.
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