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Objectives: Antiviral interventions are required to complement vaccination programmes and reduce the global 
burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate 
plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid 
against SARS-CoV-2. 

Methods: Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV- 
2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cy-
topathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays 
were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; 
EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters 
were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle 
for four twice-daily doses. 

Results: No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in 
total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of 
uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost 
body weight (P > 0.5). 

Conclusions: These data do not support probenecid as a SARS-CoV-2 antiviral drug. 

Introduction 
Many clinical trials have focused upon putative antiviral drugs re-
purposed either after approval for another indication (e.g. hydro-
xychloroquine, lopinavir, ivermectin1–7) or earlier in development 
for other viruses (e.g. remdesivir, molnupiravir, nirmatrelvir8–12). 
The speed at which drugs can be brought forward under the 

urgency of a pandemic is a significant advantage of drug repur-
posing, but this strategy is prone to failure in the absence of 
robustly conducted and validated preclinical data. 

Clinical trials incur significant costs and place additional bur-
den on healthcare systems,13,14 and it is important that only can-
didates that can be robustly justified are studied. Candidates 
should only be considered worthy of investigation if: (i) the 
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mechanism of action is plausible and supports the intended use; 
(ii) the pharmacokinetics (PK) at the proposed dose support that 
antiviral activity can be achieved in the target population; (iii) re-
producible preclinical data are available to demonstrate activity 
in preclinical models; and (iv) acceptable safety in the target 
population can be justified at the proposed dose. Although the 
safety and PK of drugs repurposed after approval for another in-
dication is usually well understood, the impact of the disease 
should also be considered, particularly when known adverse 
drug effects may overlap with disease symptomology. Caution 
is also required since PK in COVID-19 patients can differ to those 
of patients with the primary indication.15 During the pandemic, 
preclinical models of SARS-CoV-2 infection were developed at un-
precedented speed, and data to either support or refute candi-
dacy of repurposing opportunities have been forthcoming.16–20 

However, cross-validation of preclinical supporting evidence is 
needed to support progression of a drug from preclinical testing 
to clinical trials. 

Probenecid is a gout treatment for which antiviral activity was 
reported in vitro and in SARS-CoV-2-infected Syrian golden 
hamsters.21 At the time of writing, a clear mechanism of antiviral 
action of probenecid for SARS-CoV-2 has not been empirically evi-
denced. However, the low cost, favourable safety profile and wide 
availability of the drug would advance the implementation of this 
treatment if antiviral activity can be confirmed. Accordingly, the 
present study sought to further investigate the putative antiviral 
activity of probenecid. 

Materials and methods 
Materials 
PBS was purchased from Merck. Male Syrian golden hamsters were pur-
chased from Janvier Labs. Swabs (1 mL Liquid Amies Regular Flocked) 
were purchased from Appleton Woods. GoTaq® Probe 1-Step RT–qPCR 
System was purchased from Promega. SARS-CoV-2 (2019-nCoV) CDC 
qPCR Probe Assay, CDC RUO 2019-nCoV_N_Positive Control and the 
SARS-CoV-2 E SgRNA were purchased from IDT. TRIzol reagent, 
GlycoBlue™, Phasemaker™ tubes, Nanodrop and TURBO DNA-free™ kit 
were purchased from Thermo Fisher. A bead mill homogenizer was pur-
chased from Fisher Scientific. Precellys CKMix lysing tubes were purchased 
from Bertin Instruments. A Chromo4™ Real-Time PCR Detector was pur-
chased from Bio-Rad. Transmission cages were purchased from 
Tecniplast UK Ltd. GS-441524 was purchased from Carbosynth (UK). 

Viral isolates 
SARS-CoV-2 (hCoV-2/human/Liverpool/REMRQ0001/2020; Genbank MW0 
41156) was cultured from a nasopharyngeal swab from a patient.22 

SARS-CoV-2 B.1.1.7 (derived from hCoV-19/Belgium/rega-12211513/ 
2020; EPI_ISL_791333, 2020-12-21) was isolated from a nasopharyngeal 
swab of a traveller returning to Belgium and provided by Prof. Piet Maes, KU 
Leuven—Rega Institute, Belgium. The B.1.617.2 (Delta variant; hCoV-19/ 
England/SHEF-10E8F3B/2021; GISAID EPI_ISL_1731019) was kindly pro-
vided by Prof. Wendy Barclay, Imperial College London, London, UK. The 
titres of all isolates were confirmed in Vero E6 cells and the sequences 
of all stocks confirmed. 

In vitro Vero E6 cell assay 
Seven-point concentration–effect analysis was performed with probene-
cid in 96-well plates using Vero E6 cells. Cells were preincubated with pro-
benecid or remdesivir (control) at 25.00, 8.33, 2.78, 0.93, 0.31, 0.10 and 

0.03 μM, or control medium at 37°C with 5% CO2 for 2 h. Preincubation 
medium was replaced with 50 μL of minimal medium containing 
SARS-CoV-2 (moi 0.05), 100 μL of 2 × semi-solid medium and then 50 μL 
of minimal medium containing probenecid, remdesivir (control) or control 
medium. Plates were incubated at 37°C with 5% CO2. After 48 h, parafor-
maldehyde was added to achieve 4% and the plate incubated for 1 h at 
room temperature. Cells were stained with crystal violet and washed 
three times with water. Cytopathic viral activity was determined by meas-
uring absorbance of each well at 590 nm using a Varioskan LUX. Drug ac-
tivity was expressed as percentage inhibition of viral growth relative to 
uninfected/untreated control and the infected/untreated control on 
that plate. Automated analysis was performed to maintain data integrity 
and objectively assess output. Non-linear regression generated concen-
tration–effect predictions. 

In vitro human airway epithelial cell (HAEC) assay 
GS-G441524 was used as a positive control, which previously demon-
strated robust antiviral activity against SARS-CoV-2.23 HAECs (Epithelix, 
Geneva, Switzerland, catalogue no. EP01MD) of bronchial origin from a 
healthy donor were obtained in air–liquid interphase inserts. The inserts 
were washed with pre-warmed MucilAir medium (Epithelix, catalogue 
no. EP04MM) and maintained in 24-well plates, with the same medium 
at the basal site, at 37°C and 5% CO2 for at least 4 days before use. On 
Day 0, the HAECs were pre-treated for 1 h with basal medium with or 
without compounds, followed by exposure to 100 μL of SARS-CoV-2 
B.1.1.7 inoculum (500 TCID50/mL) from the apical side for 1.5 h, after 
which the inoculum was removed. The first apical wash with medium 
was performed 24 h after infection. Every other day from Day 0, subse-
quent apical washes were collected whereas medium, with or without 
compound, in the basolateral side of the HAEC culture was refreshed. 

For analysis of viral RNA, 5 µL of apical wash was mixed with 50 µL of 
lysis buffer (Cells-to-cDNA™ II cell lysis buffer, Thermo Fisher Scientific, 
catalogue no. AM8723), followed by incubation at room temperature for 
10 min and then at 75°C for 15 min. Nuclease-free water (150 μL) was 
added to the mixture prior to quantitative RT–PCR (RT–qPCR). In the 
same way a 10-fold serial dilution of corresponding virus stock, with 
known infectious titre, was extracted. The amount of viral RNA was quan-
tified by RT–qPCR using iTaq universal probes one-step kit (Bio-Rad, cata-
logue no. 1725141), and a commercial mix of primers for N gene 
(forward primer 5′-GACCCCAAAATCAGCGAAAT-3′, reverse primer 5′-TCTG 
GTTACTGCCAGTTGAATCTG-3′) and probe (5′-FAM-ACCCCGCATTACGTTTG 
GTGGACC-BHQ1-3′) manufactured at IDT Technologies (catalogue no. 
10006606). The reaction consisted of 10 μL of one-step reaction mix 2×, 
0.5 μL of RT, 1.5 μL of primers and probes mix, 4 μL of nuclease-free water, 
and 4 μL of viral RNA. The RT–qPCR was executed on a LightCycler 96 ther-
mocycler (Roche), starting at 50°C for 15 min and 95°C for 2 min, followed 
by 45 cycles of 3 s at 95°C and 30 s at 55°C. In the same RT–qPCR, a stand-
ard curve was included using the 10-fold serial dilution of the correspond-
ing virus stock with known infectious titre. The Ct was then expressed as 
TCID50-equivalents of the original virus stock. The results are therefore gi-
ven as TCID50eq/insert. 

In vivo studies 
Prior to the start of the study, risk assessments and standard operating 
procedures were approved by the University of Liverpool Biohazards 
Sub-Committee and the UK Health and Safety Executive. Animal studies 
were conducted in accordance with UK Home Office Animals Scientific 
Procedures Act (ASPA, 1986) under UK Home Office Project Licence 
PP4715265. Male Syrian golden hamsters (80–100 g; Janvier Labs) were 
housed in individually ventilated cages with environmental enrichment 
under specific pathogen-free (SPF) barrier conditions and a 12 h light/ 
dark cycle at 21°C ± 2°C, with free access to food and water. Hamsters 
were randomly assigned into three groups of five and acclimatized for  
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7 days. Subsequently, hamsters were anaesthetized under 3% isoflurane 
and intranasally inoculated with either PBS (Group 1) or 100 μL of 1 × 103 

nCoV19 isolate SARS-CoV-2 Delta variant B.1.617.2 (Groups 2 and 3). 
Twenty-four hours post-infection (p.i.), hamsters were treated, through 
intraperitoneal (IP) administration, with vehicle, NaOH solution buffered 
to pH 7 (Groups 1 and 2) or probenecid in buffered NaOH solution 
(100 mg/kg; Group 3). Treatment continued twice daily for 48 h p.i. On 
Day 3 p.i., all animals were ethically euthanized with IP pentobarbitone 
followed by cardiac puncture. 

Quantification of viral load from in vivo study samples by 
qPCR 
A portion of lung lobe was homogenized in 1 mL of TRIzol reagent (Thermo 
Fisher) using a bead mill homogenizer and Precellys CKMix lysing tubes at 
3.5 m/s for 30 s. The resulting lysate was centrifuged at 12 000 × g for 
5 min at 4°C. Throat swab medium (260 µL) was added to 750 µL of 
TRIzol LS reagent. The clear supernatants were transferred to 
Phasemaker™ tubes and processed as per the manufacturer’s instructions 
to separate total RNA from the phenol-chloroform layer. Subsequently, 
the recovered RNA was precipitated using GlycoBlue™ according to the 
manufacturer’s instructions, washed and solubilized in RNAse-free water. 
The RNA was quantified using a Nanodrop. Samples were diluted to either 
20 000 or 200 ng/mL in 60 µL of RNAse-free water. The resulting RNA sam-
ples were DNAse treated using the TURBO DNA-free™ kit according to the 
manufacturer’s instructions. The DNAse-treated RNA was stored at −80°C 
prior to downstream analysis. 

The viral RNA derived from hamster lung was quantified using a proto-
col adapted from the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time 
PCR Diagnostic Panel17 and a protocol for quantifying the SARS-CoV-2 sub-
genomic E gene RNA (E SgRNA)18 using the GoTaq® Probe 1-Step RT-qPCR 
System (Promega). For quantification of SARS-CoV-2 using the nCoV assay, 
the N1 primer/probe mix from the SARS-CoV-2 (2019-nCoV) CDC qPCR 
Probe Assay (IDT) was selected. A standard curve was prepared (1 000  
000–10 copies/reaction) via a 10-fold serial dilution of the CDC RUO 
2019-nCoV_N_Positive Control (IDT). DNAse-treated RNA at 200 ng/mL 
or dH2O was added to appropriate wells producing final reaction volumes 
of 20 µL. The prepared plates were run using a Chromo4™ Real-Time PCR 
Detector. The thermal cycling conditions for the RT–qPCR reactions were: 
1 cycle of 45°C for 15 min, 1 cycle of 95°C for 2 min, followed by 45 cycles 
of 95°C for 3 s and 55°C for 30 s. 

Quantification of SARS-CoV-2 E SgRNA was completed utilizing primers 
and probes previously described elsewhere19 and were used at 400 and 
200 nM, respectively (IDT), using the GoTaq® Probe 1-Step RT-qPCR 
System. Quantification of 18S RNA utilized previously described primers 
and probe sequences,16 used at 300 and 200 nM, respectively (IDT), using 
the GoTaq® Probe 1-Step RT-qPCR System. Methods for the generation 
plan of the 18S and E SgRNA standards have been outlined previously.18 

Both PCR products were serially diluted to produce standard curves in 
the range of 5 × 108–5 copies/reaction via a 10-fold serial dilution. 
DNAse-treated RNA at 20 000 ng/mL or dH2O were added to appropriate 
wells producing final reaction volumes of 20 µL. The prepared plates were 
run as per the nCoV assay described above with one change: the final 
stage of the thermal cycling conditions was 60°C for 30 s. Both N and E 
SgRNA data were normalized to 18S data for subsequent quantitation. 

Quantification of viral load from in vivo study by plaque 
assay 
Vero E6 plaque assays were performed for quantification of plaque for-
mation within individual samples. A portion of lung lobe was placed in 
screw-top microcentrifuge tubes containing a single stainless-steel 
bead cooled to 4°C. A 500 µL aliquot of EMEM (Gibco; 670086) was added 
to each microcentrifuge tube and the lung tissue homogenized using a 
TissueLyser LT (QIAGEN, 85600) for approximately 4–5 min at 50 Hz. 

Microcentrifuge tubes were centrifuged at 2000 rpm for 5 min at room 
temperature. The homogenized tissue supernatant was collected, and 
stored at −80°C. Homogenized samples were thawed, diluted in EMEM 
(1:4, 1:20, 1:100, 1:500, 1:2500 and 1:125 000) and layered over conflu-
ent Vero E6 cells in 100 μL volumes, in triplicate, in 96-well plates. 
Semi-solid medium (100 μL) was then added to each well. Plates were in-
cubated at 37°C with 5% CO2. After 72 h, paraformaldehyde was added 
to each well to achieve a final concentration of 4% and the plate incu-
bated for 1 h at room temperature. The medium was removed, cells 
were stained with crystal violet and washed three times with water. 
The number of plaques in each well were enumerated at the highest 
countable concentration. The average value was used to calculate the 
concentration of each sample in viral plaque-forming units (PFU). 

Statistical analysis 
An unpaired t-test was used to compare differences in body weight be-
tween probenecid-treated and vehicle-treated groups on Day 3 p.i. using 
R (v.4.1.2)24 

Results 
In vitro Vero E6 cell assay 
Seven-point concentration–response analysis was performed in 
triplicate with three independent biological replicates. All plates 
passed quality control. The control compound, remdesivir, gener-
ated a robust four-parameter fit (Figure 1): EC50 = 2.43 μM, EC90 =  
9.39 μM, Emax = 98.86 and hillslope = 1.80. No detectable activity 
was observed for probenecid at any concentration up to 25 μM 
(Figure 1a). 

In vitro HAEC assay 
A previously optimized HAEC model23 was used to assess antiviral 
activity of probenecid versus the parental form of remdesivir, 
GS-441524. As presented in Figure 1(b), TCID50 values observed 
in probenecid-treated cells directly mimic those obtained from 
untreated controls through the course of infection, whereas the 
parental form of remdesivir suppressed viral replication with le-
vels of antiviral activity observed in previous models using this 
compound.23 

In vivo hamster model of SARS-CoV-2 infection 
All data generated from in vivo investigations are reported in ac-
cordance with the updated ARRIVE 2.0 guidelines.25 Hamsters 
were inoculated with virus and 24 h p.i. were treated with pro-
benecid, (IP 100 mg/kg twice daily) for four doses before being 
ethically euthanized. Figure 2 shows animal weight relative to 
baseline (Day 0, prior to SARS-CoV-2 inoculation). All animals dis-
played moderate weight loss 24 h following infection (4%–7% of 
body weight) regardless of treatment. Mean body weight re-
mained relatively consistent in uninfected animals throughout 
the study (Figure 2). 

To determine the viral load in animals infected with 
SARS-CoV-2 and dosed with either vehicle control or probenecid, 
total RNA was extracted from the lung samples harvested on Day 3 
p.i. Viral replication was quantified using RT–qPCR to measure total 
and subgenomic viral RNA relative to the E gene (sgE) as a proxy. 
These data are illustrated in Figure 3. There was no apparent reduc-
tion in either total lung or sgE RNA for probenecid-treated animals  
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compared with infected controls (P > 0.5). RNA levels for uninfect-
ed control samples were below the assay limit of detection 
(Figure 3). The concentration of PFU per mL of terminal lung sam-
ples from SARS-CoV-2 infected animals treated with either 
vehicle or probenecid was also measured (Figure 4). 

Discussion 
Repurposed agents usually exert their activity via fortuitous simi-
larity in a target or a secondary mechanism of action, which is of-
ten poorly understood. Accordingly, a repurposed drug cannot 
necessarily be expected to exhibit levels of potency that can be 
achieved through development of a mechanism-based inhibitor. 
Nonetheless, drugs such as remdesivir, molnupiravir and nirma-
trelvir have shown efficacy in COVID-19, demonstrating the utility 
of drug repurposing for candidates with a plausible mechanism 
of action and robust supporting preclinical evidence. 

The speed at which preclinical methodologies were devel-
oped in the first years of the pandemic is laudable but substan-
tive interlaboratory differences in assay conditions and 
outcomes are evident. For the most part, concordant overall 
outcomes have been achieved despite subtle differences in 
the methodology employed, and overarching conclusions 
have been consistent. To confidently progress a molecule to 
clinical evaluation, activity needs to be reproducibly demon-
strated, and resilient to subtle differences in methodology. 
The presented data do not support probenecid as an antiviral 
treatment for COVID-19, and demonstrate that significant in-
hibition of SARS-CoV-2 infection is not achieved at dosages 
where efficacy was previously reported.21 

Plasma and tissue-site protein binding is known to impact the 
likelihood of success for some, but not all, drug therapies and 
should be carefully considered when interpreting candidacy of 
putative antiviral interventions.26 It is important to note that 
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proposed target Cmax/EC90 ratios for probenecid against 
SARS-CoV-2 in humans are yet to be investigated and that neither 
the current study, nor previous studies, empirically investigated 
the consequences of protein binding directly for probenecid. 

OAT3 (SLC22) has been proposed as a host target for probene-
cid activity against influenza A.27 However, the role of OAT3 in 
SARS-CoV-2 replication has not been empirically investigated 
and differences in the OAT3 expression across different cell lines 
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Figure 3. Lung viral RNA normalized to the total RNA (a) and 18 S subunit (b) in untreated controls and SARS-CoV-2-infected animals, treated with 
vehicle or probenecid. Error bars represent standard deviation between samples obtained from individual animals. Limit of detection (LOD) is set 
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is unexplored. Probenecid also remains unexplored clinically for 
influenza and efficacy in influenza is therefore also currently un-
certain. The combination of probenecid with oseltamivir was in-
vestigated in healthy volunteers in 2005 (NCT00304434), but 
this study was not premised upon an anticipated antiviral contri-
bution of probenecid.28 More recently, probenecid was demon-
strated to down-regulate ACE2 expression in a renal cortical 
cell line but this mechanism has not been investigated in 
lung.29 An anti-inflammatory mechanism of action for probene-
cid has also been suggested via targeting the pannexin-1 gene 
(PANX1), but disease-modifying activity in the absence of an anti-
viral effect is beyond the scope of the current manuscript.30 

Evidence from Vero E6 cell and HAEC assays is presented, 
which were conducted independently by two separate labs 
with two independently procured supplies of probenecid. 
Probenecid did not exert antiviral activity against SARS-CoV-2 
Pango lineage B or alpha variant in either study. Differences in 
the duration of in vitro experiments may influence the outcome 
depending upon the mechanism of action, but robust antiviral 
drugs should be resilient to these differences. Furthermore, the 
absence of virological efficacy in the animal experiments were 
concordant with the presented in vitro data. 

Positive controls based upon remdesivir were successfully em-
ployed for the presented in vitro studies, with a clear parallel 
demonstration of their antiviral activities. However, differences 
in carboxylesterase activity between rodents and humans render 
remdesivir an unsuitable control for small animal studies. The 
lack of a positive control in the reported hamster study is a limi-
tation, but the successful application of the hamster model in 
demonstrating effectiveness of interventions has been published 
by the investigators.31,32 The presented data therefore do not 

support the use of probenecid as an antiviral drug for 
SARS-CoV-2 infection. 
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