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Abstract

Malaria remains a public health concern. Monitoring the fine-scale heterogeneity of the

malaria burden enables more targeted control efforts. Although malaria indicator surveys

(MIS) have been crucial in evaluating the progress of malaria control interventions, they are

only designed to provide a cross-sectional national and regional malaria disease burden.

Recent advances in geostatistical methods allow us to interpolate national survey data to

describe subnational disease burden that is crucial in informing targeted control. A binomial

geostatistical model employing Markov chain Monte Carlo (MCMC) parameter estimation

methods is used to understand the spatial drivers of malaria risk in Kenya and to predict

malaria risk at a fine-scale resolution, including identifying hotspots. A total of 11,549 chil-

dren aged six months to 14 years from 207 clusters were sampled in this survey and used in

the present analysis. The national malaria prevalence based on the data was 8.4%, with the

highest in the lake endemic zone (18.1%) and the lowest in the low-risk zone (<1%). The

analysis shows that elevation, proportion of insectcide treated net (ITN) distributed, rainfall,

temperature and urbanization covariates are all significant predictors of malaria transmis-

sion. The 5x5 Km resolution maps show that malaria is heterogeneous in Kenya, with hot-

spot areas in the lake endemic area, the coastal areas, and some parts of the shores of

Lake Turkana and Kajiado. The high-resolution malaria prevalence maps produced as part

of the analysis have shown that Kenya has additional malaria hotspots, especially in areas

least expected. These findings call for a rethinking of malaria burden classification in some

regions for effective planning, implementation, resource mobilization, monitoring, and evalu-

ation of malaria interventions in the country.
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Background

Malaria remains a public health concern and continues to be one of the most important tropi-

cal diseases affecting human populations to date [1]. In 2020, an estimated 241 million malaria

cases occurred worldwide, 90% of which were in sub-Saharan Africa [2]. The disease is caused

by protozoa of the genus Plasmodium of which five known species, Plasmodium falciparum, P.

vivax, P. ovale, and P. malariae, more recently, P. knowlesi, are responsible for human Infec-

tion [3,4]. The vector responsible for human transmission is the female anopheles mosquito.

In Sub-Saharan Africa, malaria is one of the leading causes of morbidity and mortality, espe-

cially in children under five. Other high-risk groups include pregnant women and immuno-

logically naïve persons like travellers coming from non-endemic places [5].

Malaria remains a significant public health problem in Kenya, accounting for an estimated

13% to 15% of outpatient cases, with nearly 70% of the population at risk for malaria [6]. Four

out of the five species of malaria parasite that cause human Infection are present in Kenya, but

the Plasmodium falciparum parasite is the predominant cause of Infection in the country.

Over the past decade, Kenya has substantially scaled up available malaria control tools, such as

insecticide-treated bed nets, indoor residual spraying and the use of artemisinin-based combi-

nation therapies [6]. Evidence of this massive scale-up of interventions is the observed decline

in prevalence. Kenya has experienced a decrease in the national prevalence of malaria among

children ages six months to 14 years, from 13 per cent in 2010 to 8 per cent in 2015, and % in

2020 [6].

One of the key objectives of the Kenya Health Policy 2014–2030 is the elimination of com-

municable diseases, including malaria. This is supported by the Kenya malaria strategy for

2019 to 2023, which sets a vision of a malaria-free Kenya and targets to reduce malaria inci-

dence and mortality by seventy-five per cent by 2023, with 2016 as the baseline year[6].

Malaria transmission in Kenya varies geographically. This could be due to varied climatic

conditions, vector and parasite resistance, differences in intervention uptake across popula-

tions and other unmeasured factors that are thought to be responsible for this increasing het-

erogeneity [6,7]. The country is administratively divided into five malaria epidemiological

zones based on risk profiles. These zones include highland epidemic-prone areas, lake endemic

areas, coast endemic, semi-arid seasonal, and low-risk malaria areas. The endemic areas lie in

the lake and coastal regions with altitudes ranging from 0m to 1300 above sea level. These

areas have perennial malaria transmission due to rainfall, temperature, humidity and other

critical factors that drive malaria transmission. The semi-arid seasonal malaria transmission

areas are in the country’s northern, northeastern, and southeastern parts. These areas experi-

ence short periods of intense malaria. The highland epidemic-prone areas are located within

the western highlands and have seasonal malaria transmission with some yearly variation. The

altitude in these zones is relatively higher than the other zones, lying 1500 meters above sea

level. The malaria epidemics in the highland epidemic-prone zones are less predictable. Lastly,

the low-risk malaria areas cover Nairobi and the central highland. Temperatures are usually

too low to allow the completion of the sporogony cycle of the malaria parasite in the vector in

the low-risk zones [6].

Malaria indicator surveys (MIS) measure progress on key malaria indicators in Kenya. The

country has conducted four MIS in 2007, 2010, 2015 and 2020. The MIS are nationally repre-

sentative household surveys that provide estimates of national and regional malaria indicators

to assist malaria control programs in tracking their progress and evaluating the impact of strat-

egies and interventions. The MIS follow a standard methodology recommended by the Roll

Back Malaria Monitoring and Evaluation working group guidelines [8]. Originally, MIS sur-

veys were designed to measure the blanket scale up of interventions like bed nets, using a
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classic two-stage sample design and coverage indicators as the primary endpoints. Over time,

as coverage increased, interest expanded to the impact of parasite prevalence. While it is still a

norm that the MIS traditionally measures progress in these areas, the survey methodologies

need to consider the underlying disease heterogeneity [8]. Recent advances in statistical analy-

ses, including geostatistics, have made it possible to make fine-scale inferences of malaria

transmission from survey data like the MIS, that is not traditionally designed for such extrapo-

lations. In this paper, we use the Kenya 2020 MIS data to achive the following objectives:

i. understand the relationship between malaria prevalence and several factors including envi-

ronmental factors and

ii. understand the disease heterogeneity across the country’s surface including identification

of hotspots.

We hypothesized that:

i. There is a significant association between environmental factors (such as temperature,

humidity, and rainfall patterns) and malaria prevalence in different regions of Kenya as evi-

denced from the 2020 Malaria Indicator Survey (MIS) data.

ii. There is substantial heterogeneity in malaria prevalence across different regions of Kenya,

with identifiable hotspots of higher prevalence, as can be determined from an analysis of

the 2020 MIS data.

iii. The existing methodology of MIS, primarily focused on intervention coverage indicators,

might be inadequate in capturing the evolving complexities and heterogeneities of malaria

transmission in Kenya, and propose that model based geostatics has the potential to cap-

ture this very well.

Methods

Country profile

Kenya is an East African country that covers an area of 582,550 km2. It is bordered by Ethiopia

to the north, Tanzania to the south, Uganda to the west, South Sudan to the northwest, and

Somalia to the northeast. Approximately 80% of Kenya’s land is arid and semi-arid, only 20%

is arable, and only 1.9% of the total surface area is occupied by standing water. The great East

African Rift Valley extends from Lake Victoria to Lake Turkana and further southeast to the

Indian Ocean [9]. The country has a number of large rivers including the Tana, Galana, Turk-

wel and Nzoia [10]. Fig 1 below is a map of Kenya showing the five epidemiological zones as

defined by the national malaria program [6].

Data

This secondary analysis used data from the Kenya MIS [6]. Access to the dataset was given to

the authors on Apr 28 2022. The datasets were de-identified. The Institutional Review Board

(IRB-)approved procedures for Demographic Health Survey(DHS) public-use datasets do not

in any way allow respondents, households, or sample communities to be identified. Authors

had no access to the names of individuals or household addresses in the data files. Addition-

ally, the geographic identifiers only go down to the regional level, which is hard to identify

individuals.

The 2020 MIS, the fourth conducted by the country, followed a similar design and set-up as

the former ones. It was conducted during the peak malaria season in November and December
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2020. A two-stage stratified sampling design was used, powered to give malaria parasite preva-

lence estimates and other key malaria indicators at the national level (urban and rural areas)

and for the five epidemiological zones. The first stage sampling unit was a cluster developed

from enumeration areas (EAs). EAs are the smallest geographical areas created for purposes of

census enumeration. The EAs used were based on the 2019 Kenya population census. In the

Kenya MIS, a cluster was defined as either an EA or part of an EA. A total of 301 clusters (134

urban and 167 rural) were sampled in this first stage using the probability proportional to size

approach. The second stage sampling unit was households. In each cluster, 30 households

were selected from a line listing of the sampled clusters using a systematic random sampling

approach. A total of 7,952 households were sampled. All women aged 15–49 in the selected

households were eligible for individual interviews. They were asked questions about prevent-

ing malaria during pregnancy and treating childhood fevers. In addition, the survey included

testing for anaemia and malaria among children aged six months to 14 years using a finger- or

heel-prick blood sample.

Permission to use the dataset was obtained from The Demographic and Health Surveys

(DHS) Program through the archiving office. The original study received ethical clearance

from the Kenyatta National Hospital/University of Nairobi Scientific and Ethics Review Com-

mittee. All participants provided oral informed consent.

Variables

Outcome variable. In this analysis, the outcome variable was a binary outcome derived

from the total number of children tested and the total number testing positive. This was

extrapolated to estimate the cluster-level plasmodium falciparum malaria prevalence (PfPR).

Fig 1. Kenya epidemiological malaria zones.

https://doi.org/10.1371/journal.pgph.0002260.g001
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Explanatory variables. The explanatory variables included cluster-level factors such as

rainfall, temperature, elevation, and urbanization and individual-level characteristics such as

gender and age. These variables have been shown to affect malaria transmission [11].

Data cleaning

The data cleaning and analysis were done in R [12]. Maps produced in the analysis were fur-

ther processed for better visualization in QGIS (Version 3.2). Relevant variables were extracted

and renamed to shorter names for ease of coding. Coordinates in the initial dataset were given

the longitude and latitude system, which were transformed into the universal coordinate sys-

tem (UTM). All distances were scaled to kilometres.

Exploratory analysis

The initial exploratory analysis was descriptive to understand the data and to explore the initial

relationships between the outcome variable of prevalence with the covariates in the data set.

Scatter plots with fitted linear regression lines were used for this step to observe the relation-

ship between prevalence and the explanatory variables. To further understand the variables,

correlation plots were used to understand the relationships between the variables to guide the

decisions of which covariates to include in the Model. The additional exploratory analysis

involved plotting the clusters on the Kenyan map’s surface, showing the sampled cluster’s dis-

tribution and the crude malaria prevalence.

Model fitting

The first objective of the analysis was to understand the relationships between malaria preva-

lence and several factors, including environmental factors. Several steps were followed:

1. Fitting a generalized linear model

2. Assessing evidence of residual correlation

3. Fitting a generalized linear mixed model

4. Reassessing evidence of residual correlations

5. Fitting a binominal geostatistical model and parameter estimation

6. Model validation

The model description for the generalized linear Model and the generalized linear mixed

Model are described in S1 File.

Description for the binominal geostatistical model

A detailed description for the model based geostatistics developed by Diggle and Giorgi are

described elsewhere [13]

Let Yi denote the number of individuals that test positive for plasmodium falciparum at sur-

vey cluster location xi

And that the survey team went to the sampled clusters given by xi and sampled mi: i = 1. . ..

n individuals at risk in the cluster and recoded the outcome of every person that tests positive

and negative for plasmodium falciparum malaria.
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Then standard geostatistical Model assumes that:

Yi � Binomial ðmi; PðxiÞ

Yi is a Binomial distribution with mi trials and probability of a positive test P(xi) specified in

the binomial geostatistical Model below:

log
PðxÞ

1 � PðxÞ

� �

¼ aþ dðxiÞ
T
bþ SðxÞ þ Zi

Where α is the intercept parameter, S(x) are the spatial random effects, representing the

spatial variation between the sampled clusters. Zi are mutually independent zero-mean Gauss-

ian random variables with variance r and in this analysis represent the spatial variation within

cluster variation, measurement error or small-scale spatial variation.

d(xi)
T is a vector of observed spatially referenced explanatory variables associated with the

response Yi, and β is a vector of spatial regression coefficients for the covariates.

The Matérn correlation function for the stationary Gaussian processes S(x) used in this

analysis, a two-parameter family is given by:

pðu;φ; kÞ ¼ 2ðk� 1Þðu=φÞk KK þ ðu=φÞ

Where:

• u denotes the distance between two locations x and x0,

• φ>0 is a scale parameter that determines the rate at which correlation decays to 0 as the dis-

tance increases, and

• k>0, is a smoothness parameter which determines the analytic smoothness of the underly-

ing process S(x).

In the binomial geostatistical regression for this analysis, the Matérn shape parameter k was

set to 0.5 variance parameters τ2 to 0.

The covariates d(xi)
T used in the binomial geostatistical Model for prediction were obtained

from an exploratory analysis set to understand the relationship of the variables with the out-

come variable of malaria prevalence. This Model included the covariates: elevation, ITN usage,

mean temperature, rainfall, and cluster urbanization (urban vs rural). The Markov chain

Monte Carlo (MCMC) methods were used for parameter estimation in this Model. Confi-

dence intervals of the estimates are calculated on the log scale then transformed back to the

non-log scale that is used to report the results.

To test whether there was any evidence against spatial correlation in the data, empirical var-

iogram methods are used. A simulation of 1000 empirical variograms around the fitted Model

is ran and these are used to compute 95% confidence intervals at any given spatial distance of

the variogram. A conclusion is reached that that there is a spatial correlation in the data if the

empirical variogram obtained from the data falls outside the 95% tolerance bandwidth.

The second objective is to understand the disease heterogeneity across the surface of the

country, including identification of hotspots and the uncertainty attached to these hot spots.

For this purpose, a binomial geostastical model was used as described above but with covari-

ates that were available as raster. These included urbanization, temperature, and precipitation.

The target for the predictions was a prevalence of malaria over the 5 x 5 km regular grid surface

covering the whole surface of Kenya. A map of malaria prevalence was generated. Uncertainty

of the prevalence was addressed using Exceedance Probabilities, an approach that is more rele-

vant to policy makers, than the traditional approach of using confidence intervals. Exceedance
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Probabilities (EP) method sets policy relevant thresholds. The EP can be formally expressed as:

EP ¼ Probability f; PðxiÞ > tjdatag

where t is the prevalence threshold, set to 10% in this analysis.

Results

A total of 11,549 children aged six months to 14 years were sampled. The analysis used 297

clusters. The number of clusters per transmission zone is shown in Table 1 below. The lake

endemic area had the greatest number of clusters (97), while the coastal endemic area had the

lowest number of clusters (29). The national malaria prevalence based on the data was 8.4%,

with the highest in the lake endemic zone (18.1%) and the lowest in the low-risk zone (<1%).

The map in Fig 2 below shows the sampled locations and the cluster-level malaria preva-

lence on. The lake endemic area has the highest number of clusters sampled and is also the

zone with the highest prevalence estimates at the cluster level.

The weather pattern varies across the surface of Kenya. The maps in Fig 3 below show the

variation in temperature across space on the top, and the variation in annual precipitation for

the year 2020 on the bottom.

Binomial geostatistical model results

The binomial geostatistical Model results indicate that the elevation, proportion of ITN dis-

tributed, rainfall, temperature and urbanization covariates are all significant predictors of

malaria transmission (Table 2).

Model validation

The odds of malaria transmission are less in the urban clusters compared to the rural ones.

Urban clusters have nearly 68% less malaria prevalence than rural ones (OR 0.32 CI: 0.26–

0.39, P value <0.0001). The higher the rainfall, the higher the risk of malaria transmission.

Every mm increase in the average rain increases malaria prevalence by 1.9 times (OR 1.91 CI

1.69–2.15, P value <0.0001). Rise in mean temperature also increases the risk of malaria preva-

lence. Every degree increase in temperature increases the odds of malaria prevalence by 1.4

times (OR 1.37CI 1.28–1.47, P value <0.0001).

Using variogram-based techniques described above, the Model above was tested for evi-

dence of spatial correlation. The results of this process are shown in Fig 4 below. Since the

empirical semi-variogram (solid line) falls within the 95% confidence interval (grey envelope),

this shows that the Model is valid; the Model for malaria prevalence is compatible with the

data.

Table 1. Malaria prevalence in Kenya across five epidemiological zones.

Epidemiological Zone Total

clusters

Number tested(N) Number positive(n) Prevalence

(n/N)%

Coastal Endemic 29 1088 59 4.95

Highland Epidemic Prone 55 2122 33 1.56

Lake Endemic 97 4621 836 17.93

Low Risk 54 1307 1 0.08

Seasonal 56 2210 33 1.49

https://doi.org/10.1371/journal.pgph.0002260.t001

PLOS GLOBAL PUBLIC HEALTH Fine-scale heterogeneity & spatial drivers of malaria transmission in Kenya

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002260 December 8, 2023 7 / 14

https://doi.org/10.1371/journal.pgph.0002260.t001
https://doi.org/10.1371/journal.pgph.0002260


Prediction

To understand the disease heterogeneity across the country’s surface, including the identifica-

tion of hotspots, a 5 × 5 km resolution map for malaria prevalence in children six months to 14

years is presented in Fig 5 below. Overall, malaria prevalence is low in most parts of the coun-

try. Hotspots were notable in Western Kenya in the lake endemic areas around Lake Victoria,

in the endemic coastal regions along the Indian Ocean and three hotspot areas within the sea-

sonal epidemiological zone, one around the Lake Turkana region, one around the humid and

sub-humid belt in Meru County and the other in the semi-arid belt of Kajiado County.

Fig 6 presents a map of malaria exceedance and probabilities, showing areas where p(x)�

10% with certainty on the colour gradient.

Discussion

Understanding the spatial distribution of malaria and the factors that drive its transmission

are key in malaria control. Given the heterogeneity of malaria transmission in Kenya, defining

the malaria burden at more localized locations is important to allow for targeted control

Fig 2. Map of sampled locations and the malaria prevalence.

https://doi.org/10.1371/journal.pgph.0002260.g002

PLOS GLOBAL PUBLIC HEALTH Fine-scale heterogeneity & spatial drivers of malaria transmission in Kenya

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002260 December 8, 2023 8 / 14

https://doi.org/10.1371/journal.pgph.0002260.g002
https://doi.org/10.1371/journal.pgph.0002260


activities. The national malaria indicator surveys performed in the country are not designed to

provide malaria prevalence estimates at localized levels. This paper uses Model-Based geosta-

tistical methods to understand malaria transmission drivers in Kenya and map out malaria

prevalence at a very high resolution (5 x 5 Km square grid).

In our analysis, we have found that several factors influence malaria transmission. These

include gender, age, temperature, rainfall, bed net coverage, elevation, and urbanization. This

is consistent with the well-known predictors of malaria transmission. Studies in the same area

have previously found a higher risk of malaria among males and an increasing risk with age

compared to the first year of life [12]. Both the natural environment and the artificial

Fig 3. Mean temperature (degrees Celsius) (top) and Annual precipitation (mm)in Kenya (2020) (Bottom).

https://doi.org/10.1371/journal.pgph.0002260.g003

Table 2. Binomial geostatistical model.

Estimate Standard error Lower Bound Upper Bound p-value

Intercept 0.00 3.54 0.00 0.00 <0.0001

elevation 1.86 1.05 1.70 2.02 <0.0001

INT coverage 3.15 1.07 2.75 3.61 <0.0001

Urban vs Rural 0.32 1.11 0.26 0.39 <0.0001

Rainfall(mm) 1.91 1.06 1.69 2.15 <0.0001

Temperature 1.37 1.04 1.28 1.47 <0.0001

Age in months (ref <12)

12–23 1.93 1.54 0.83 4.48 <0.001

24–35 2.72 1.52 1.19 6.21 <0.01

36–47 3.56 1.51 1.59 7.96 <0.001

48–59 7.84 1.45 3.76 16.35 <0.001

Female vs male 1.20 1.08 1.03 1.40 <0.001

Sigma^2* 0.56 1.44 0.27 1.14 NA

Phi** 59.57 1.85 17.87 198.50 NA

Tau^2*** 0.95 2.24 0.20 4.58 NA

sigma2 is the variance of the Gaussian process, phi is the scale parameter of the spatial correlation and tau2 is the variance of the nugget effect.

https://doi.org/10.1371/journal.pgph.0002260.t002
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environment are known to affect malaria transmission. Temperature, humidity, and rainfall

all have interactions with mosquitos at specific points in their life cycle. Temperature regulates

the development of mosquitos at each stage. The laying of eggs by mosquitos is reduced in

temperature extremes, either too cold or too hot [14]. Temperature also affects the mosquito

stage transition, with the optimal temperature being between 22 and 26 degrees Celsius[12].

Rainfall has been shown to be positively correlated with high malaria transmission. During

the rainy season, there is usually water logging in the ground, creating mosquito breeding

grounds. This analysis observed that prevalence nearly doubles for every mm increase in the

annual rainfall. The areas observed to have a higher prevalence of malaria in Kenya are known

to have prolonged rainy seasons[6].

The analysis also identified that malaria transmission is higher in rural areas compared to

urban areas. This finding is consistent with other studies in the same region. Urban areas may

have better housing and improved health services that are easier to access. These factors con-

tribute to the lower risk of malaria. Conversely, rural areas are primarily associated with

favourable conditions for malaria, including stagnant water, poor housing, inaccessible health

services and agricultural activities [15].

The finding of increasing malaria prevalence with higher bed net coverage can be explained

through reverse causality, which is often observed due to the higher distribution of bed nets in

areas heavily affected by malaria.

Malaria hotspot areas identified in the analysis include the entire lake and coastal regions

classified as malaria endemic [6]. This finding is in keeping with other previous analyses done

for past time points [16]. The climatic condition in these areas is known to support malaria

transmission. We do find additional hotspots, which highlights the strength in our analysis

approach. Localized malaria hotspots are identified in the county of Turkana. Though this

area is classified as a seasonal malaria transmission zone, a reactive case detection in the area

Fig 4. Model validation.

https://doi.org/10.1371/journal.pgph.0002260.g004
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conducted from 2018 to 2019 also detected high malaria transmission with a prevalence as

high as 33.6% [17]. Another study in a refugee camp in the same region identified a malaria

prevalence of 64.2% [17]. Evidence from a recent study examining the contribution of P. fal-

ciparum parasite importation to local malaria transmission in Central Turkana confirms that

malaria in the area is rather endemic, with intense local transmission as opposed to the impor-

tation of malaria [18]. Due to its malaria risk classification status, Turkana is often left out of

Fig 5. Malaria prevalence predictions among children six months- 14 years in Kenya.

https://doi.org/10.1371/journal.pgph.0002260.g005
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malaria control activities. This is an important finding where an area’s transmission is misclas-

sified. The recent WHO malaria surveillance guide calls for countries to view malaria trans-

mission as a continuum in space and stratify the malaria burden for better targeting and

improved efficiency of malaria interventions[8]. As malaria transmission declines, it becomes

increasingly focal and prone to outbreaks. Understanding and predicting patterns of transmis-

sion risk becomes an essential component of an effective elimination campaign, allowing lim-

ited resources for control and elimination to be targeted cost-effectively. By concentrating

surveillance, monitoring and control efforts in hotspot areas, programs can maximize the

impact of their interventions and reduce the burden of malaria more efficiently. In this study,

we also find additional hotspots in the counties of Meru and Kajiado, areas with humid and

arid weather conditions, respectively. There is a need for more local surveillance in the area.

These areas are also characterized by low implementation of malaria control measures. Future

research should prioritize understanding the influence of underlying factors and evaluating

the effectiveness of various malaria control interventions in these malaria hotspots.

There are several strengths and limitations of the data used in the analysis. To the best of

our knowledge, this is the latest nationally representative data on malaria prevalence. With

this, the results of this study are generalizable to the entire population of Kenya. Use of the

geostatistical Model as opposed to the traditional non-spatial Model, is a key strength. It allows

us to borrow information from the sampled cluster to infer for the unsampled ones and at the

same time, account for predictors that influence malaria transmission. The major limitation in

the analysis is the lack of adequate environmental covariates to improve spatial predictions.

Conclusion

The objectives of this analysis were to understand the relationship between malaria prevalence

and various predictor factors and examine the disease heterogeneity, including identifying hot-

spots. Our findings show that rainfall, urbanization, temperature, and bed net coverage are

Fig 6. Map of Kenya showing the exceedance probabilities of malaria prevalence exceeding 10%.

https://doi.org/10.1371/journal.pgph.0002260.g006
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important factors that affect malaria transmission. The high-resolution malaria prevalence

maps produced as part of the analysis are important in identifying hotspots, an essential ele-

ment in planning, implementation, resource mobilization, monitoring, and evaluation of

malaria interventions in the country. We have also identified malaria hotspots in areas not tra-

ditionally classified as endemic, highlighting the need to rethink the classification of malaria

transmission epidemiology in Kenya.

Supporting information

S1 File. The model description for the generalized linear model and the generalized linear

mixed model.
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