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Antimicrobial learning systems: an implementation 
blueprint for artificial intelligence to tackle antimicrobial 
resistance
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The proliferation of various forms of artificial intelligence (AI) brings many opportunities to improve health care. AI 
models can harness complex evolving data, inform and augment human actions, and learn from health outcomes 
such as morbidity and mortality. The global public health challenge of antimicrobial resistance (AMR) needs large-
scale optimisation of antimicrobial use and wider infection care, which could be enabled by carefully constructed AI 
models. As AI models become increasingly useful and robust, health-care systems remain challenging places for 
their deployment. An implementation gap exists between the promise of AI models and their use in patient and 
population care. Here, we outline an adaptive implementation and maintenance framework for AI models to improve 
antimicrobial use and infection care as a learning system. The roles of AMR problem identification, law and 
regulation, organisational support, data processing, and AI development, assessment, maintenance, and scalability in 
the implementation of AMR-targeted AI models are considered.

Introduction
The evolution of antimicrobial resistance (AMR) presents 
challenges and opportunities for infection care. Man­
agement of AMR necessitates antimicrobial stewardship 
(AMS) to balance cure of infection with collateral damage, 
and infection prevention and control (IPC) to prevent 
AMR transmission. AMS and IPC teams are needed to 
implement active surveillance and behavioural and system 
interventions in inflexible health­care systems that are 
characterised by incomplete data capture, dwindling 
pipelines of new antimicrobials, one­size­fits­all anti­
microbial treatment formularies, resource pressures, and 
poorly valued or implemented diagnostic innovations.

Artificial intelligence (AI) interventions targeted at 
AMR (AMR­AI) could be assets to AMS and IPC teams—
their ability to rapidly process, interpret, and action data 
from clinical care could provide adaptability in changing 
health­care environments. Health­care systems, however, 
are accustomed to evaluating and implementing fixed 
interventions for fixed targets (eg, rigid licensing of new 
antimicrobial agents). The effective deployment of 
adaptable, learning AMR­AI models requires a bespoke 
implementation approach.

This Viewpoint outlines an AMR­bespoke systematic 
workflow­based approach (table) for assessing and 
implementing AMR­AI models as part of sociotechnical 
entities called antimicrobial learning systems (ALSs), 
and aims to identify AMR­specific opportunities, 
barriers, and solutions to facilitate their realisation (key 
terminology is listed in the appendix p 1).

AMR problem identification: the suitability of 
AMR for an AI solution
Health­care pathways (figure 1) are characterised by 
uncertainty that drives inappropriate antimicrobial 
prescribing and missed opportunities to prevent AMR 
transmission. AMR­AI models can reduce uncertainty by 
predicting and targeting AMR faster than microbiology 

laboratory diagnostics that are largely reliant on slow 
culture­based methods. These predictions can inform 
clinical decision support with AMR­AI models that could 
help appropriately target antimicrobial therapy and 
protective isolation to prevent uncontrolled AMR 
infection, unnecessary AMR selection pressure, and 
onward transmission.1

To perform these tasks, AMR­AI models could explore 
data networks of AMR transmission risk that cross 
geographical and health­care boundaries (eg, previous 
antimicrobial treatment, travel history, and hospital or 
nursing home admission), incorporating non­causally 
intuitive factors. Navigating these networks could better 
quantify the effect of antimicrobial prescription by 
detecting AMR generation, onward transmission, and 
subsequent death from AMR. Bioinformatics AMR­AI 
models could combine clinical, pharmacodynamic, 
genomic, and epidemiological information to develop 
more accurate and timely AMR diagnostics and set more 
accurate in vitro clinical breakpoints (eg, the area size of 
absent bacterial growth required around an antimicrobial 
disk to be reported as susceptible).2

These applications present several challenges. First, 
AMR health­care data is sparse (particularly in primary 
care settings where most antimicrobial prescribing 
occurs), potentially hindering predictive accuracy. Second, 
AMR­AI decision support tools can cause automation bias 
that overrules well founded clinician instincts (eg, delaying 
antimicrobial treatment on algorithmic advice despite 
clinical intuition pointing towards sepsis).3 Third, 
automating and influencing parts of complex health­care 
AMR systems might create unintended downstream 
consequences (eg, changes in antimicrobial prescribing 
patterns causing drug shortages or affecting demand for 
therapeutic drug monitoring). Last, quantification of the 
effect of antimicrobial treatment raises ethical issues 
about utilitarian AMR­AI models prioritising the greatest 
good for the greatest number over individual needs.

See Online for appendix
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The clinical effect of AMR­AI models therefore relies 
on identifying where in health­care pathways limited 
improved prediction could reduce AMR, prevent death 
from AMR, and improve the efficiency of tackling AMR. 
Identifying these targets, and their margins of error, 
requires a multidisciplinary, translational approach. For 
example, one that converges biological, organisational, 
ethical, and technical perspectives (eg, community 
doctors who use susceptibility prediction for oral 
antimicrobials might perceive margin of error differently 
to how intensive care physicians perceive margin of error 
for intravenous antimicrobials). Where individual and 
population consequences are in disagreement, holistic 
ethical approaches incorporating deontological right and 
wrong concepts might better calibrate these priorities.4

Decision support AMR­AI models that stop short 
of definitive recommendations (eg, only providing 
probability of antimicrobial susceptibility, credibility and 
confidence intervals, and management options rather 
than a recommended decision) can mitigate for, but not 
remove, automation bias; for example, an AMR­AI model 
providing a low probability of sepsis could cause a 
clinician to go against their intuition. Assessing a 
problem for AMR­AI decision support therefore requires 
consideration of the consequences of decision support 
intervention in their entirety (ie, from data input to the 
effects of the clinical decision) to predict clinician 
responses to outputs and their presentation (eg, a graphic 
user interface that states the probability of cure with 
amoxicillin is 90% vs one that states the probability of 

organism amoxicillin susceptibility is 0·9). Thought 
experiments involving clinicians and other target users 
can play out scenarios involving AMR­AI models to 
predict the end­to­end effects of their deployment.

Law and regulation: the basis for AMR-AI 
models
Decision support AMR­AI models that provide specific 
antimicrobial or infection control recommendations 
could present more medical device regulatory barriers 
than models that only provide probabilities of events or 
help to drive system efficiencies (eg, microbiology test 
triaging).5 The global effect of AMR is less immediate 
than viral pandemics, but is likely to be more catastrophic; 
there is a strong argument for leveraging similar 
population health legislation to access health­care data for 
AMR control. AMR is less well understood by the public 
than viral pandemics, and data security lapses have 
increased public interest in data sharing, storage, and 
use. Legislation varies internationally, so suitable legal 
expertise in data protection (appendix p 2) is required.

AMR can disproportionately affect some populations 
(eg, deprived or marginalised communities), potentially 
causing prejudicial algorithmic biases that contravene 
human rights legislation. Such biases are rarely obvious, 
and poorly curated training datasets can create long­
lasting effects (the so­called negative legacy effect). For 
example, algorithms trained in maternity hospitals with 
high AMR rates might erroneously attribute AMR risk to 
pregnancy in other datasets. In low AMR prevalence 
settings, algorithms become more accurate in predicting 
AMR among people at lowest risk because they dominate 
the training data.6 Algorithmic bias therefore needs 
consideration throughout the implementation workflow. 
So­called AI fairness can be built into algorithms to 
detect infringements of individuals’ rights and provide 
bias control.7 Opinion and policy leaders in infection, 
technology, ethics, law, policy, and regulation should be 
engaged by AMR­AI implementation leaders to better 
clarify how AI and AMR interact with legal and regulatory 
frameworks.

Securing support: resource and buy-in
A range of regional health system assets (appendix p 3) 
and personnel (appendix p 5) are required for AMR­AI 
implementation.8,9 Governments are increasingly 
recognising the public health risk of AMR, and the harm 
that inadequate data availability causes to patients—
resultant centrally mandated targets for organisational 
AMS and IPC provide persuasive arguments to secure 
local resources. AMR is high on the priority list of 
international organisations that are potential routes of 
collaboration and funding; for example, WHO initiatives 
have spurred multinational data science­based AMR 
management programmes.

AMR­AI models are vulnerable to similar cultural, 
behavioural, and psychological factors to other AMR 

Workflow Key questions

1 AMR problem 
identification

Is AI the right solution to the AMR 
problem? 

2 Law and regulation Is there a legal and regulatory basis to 
develop an AMR-AI model, and what 
governance will cover the intervention 
once it is in place?

3 Securing support What departmental, organisational, 
national, and international appetite and 
resources exist for AMR-AI models?

4 AMR data processing What AMR data availability, quality, 
security, linkage, and actionability issues 
need to be addressed?

5 AMR-AI development What algorithmic methods are suitable 
for the AMR problem, and what level of 
performance is required?

6 AMR-AI assessment How will the effect of AI on the AMR 
problem be measured?

7 AMR-AI maintenance How will the effect of AI on the AMR 
problem be sustained?

8 AMR-AI scalability Can use of the AMR-AI be adapted and 
expanded beyond the local and health-
care settings to target a range of global 
settings and One Health AMR drivers? 

AI=artificial intelligence. AMR=antimicrobial resistance.

Table: A workflow-based framework for planning AMR-AI models that 
forms the structure of this Viewpoint
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interventions (eg, education targeted at handwashing and 
antimicrobial prescribing).10–12 Managing these factors 
relies on local expertise and experience (eg, IPC nurses 
and AMS pharmacists) and bespoke ethnographic and 
qualitative data collection techniques (eg, questionnaires, 
interviews, and real­world observation; appendix p 6).13

AMR data processing: availability, quality, 
security, linkage, and actionability
The combinatorial complexity of patient–disease–
organism–drug interactions can provide rich short­term 
AMR datasets that evolve over hours to days in secondary 
care. However, a sparsity of unbiased, quantifiable 
longer­term data inputs (predictors) and outputs (out­
comes) in the community can present a challenge. 
Changing AMR rates over time can cause concept drift in 
training datasets that affects predictions.14 Antimicrobial 
treatment pathways often span health care and 
community settings, fragmenting dataflows. Not all 
patients are screened for AMR, infections are often not 
microbiologically confirmed, and antimicrobial infor­
mation might be undetected electronically (eg, in paper 

prescription charts). Behavioural and cultural drivers of 
AMR (eg, hand hygiene practice) and clinician intuition 
(eg, end­of­the­bed recognition of sepsis) might not 
readily produce machine­readable inputs.

AMR­AI models therefore require minimisation of 
missing data (eg, electronic handwriting recognition for 
paper prescription charts and automated population of 
organism species­specific intrinsic AMR) and data 
linkage between microbiology laboratory management 
information systems, electronic prescriptions, and other 
systems. To action these insights, data should be written 
back into front­end clinical systems (eg, a smartphone 
graphic user interface for an antimicrobial prescribing 
decision aid)—such interfaces require regular testing, 
version control, and release management.15 Hardware 
that houses AMR­AI clinical interfaces should be 
suitable for decontamination to minimise fomite AMR 
transmission risk.

ALSs should be sociotechnical entities designed to 
embed AMR­AI models in population health and front­
line patient care—these systems should be mapped to 
regional health systems to facilitate the technical and 

Figure 1: Examples of tasks in inter-related infection health-care pathways that are often labour intensive and computationally challenging for humans, and 
therefore might present opportunities for antimicrobial resistance-artificial intelligence models to augment and improve systems
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governance aspects of the required afferent and efferent 
dataflows (figure 2).

AMR diagnostic data is unusual in that some 
antimicrobial susceptibilities are intentionally hidden 
from clinicians for AMS purposes, and raw data is parsed 
into strings of text for clinician interfaces—direct data 
extraction from microbiology laboratory information 
management systems is therefore essential for data 
completeness. Frequent systemic changes in response to 
the ever­expanding AMR problem might affect data 
quality, necessitating end­to­end validation. The number 
of validation cases or observations and factors or variables 
required depends on the application and sources of data 
variability (eg, susceptibility interpretation changes for 
Escherichia coli will have a greater effect than taxonomic 
changes for a rare commensal organism)—heuristic data 
validation and repair approaches are therefore required. 
The security and encryption of data transfer and storage, 
details of data sharing and data protection effect, 
robustness of pseudonymisation, and understanding 
of the consequences of automated deployment (eg, 
automated contact tracing for multidrug­resistant sexually 
transmitted infections) are crucial to maintain privacy.

AMR-AI development: algorithmic methods and 
performance indicators
Classification algorithms (eg, logistic regression, support 
vector machine, and decision trees) output categorical 

variables and are therefore useful for predicting 
antimicrobial susceptibility (ie, susceptible to standard 
dosing, susceptible at increased exposure, or resistant) or 
diagnosis (eg, excluding bacterial infection to prevent 
unnecessary antimicrobial treat ment). AMR issues that 
influence the choice of class ification algorithm are the 
application (eg, predicting AMR might be more 
challenging at individual level than at population level), 
data dimensionality (eg, genomic resistance data will 
have many rows and columns), variable interdependence 
(eg, plasmid colocation of aminoglycoside and 
fluoroquinolone resistance, or enzymes conferring 
resistance to multiple β­lactams), and generalisability 
(overfitting might prevent scalable application given the 
geographical variations in AMR).

Classification algorithms are often supervised (ie, use 
labelled data) and explainable (ie, the roles of variables in 
model performance are transparent), which theoretically 
enables translational infection­data science experts to 
better validate outputs, although this is an area of 
debate.16,17 Bayesian inference underpins many 
explainable methods because it mimics human decision 
making—previous information (eg, previous anti­
microbial treatment) is integrated with new data 
(eg, new laboratory results) to predict an event (eg, AMR). 
Causal, counterfactual (ie, alternative event) thought 
processes can identify care pathway targets for Bayesian 
AMR­AI models (figure 3).18

Figure 2: A model for how regional integrated care systems should house antimicrobial learning systems’ governance, security, and maintenance of 
dataflows to enable continuous delivery of antimicrobial resistance-artificial intelligence decision support to patient pathways
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Regression algorithms can output continuous 
variable predictions (eg, antimicrobial minimum inhib­
itory con cen trations). Clustering techniques, such 
as K­means, can identify epidemiological clusters 
(eg, methicillin­resistant Staphylococcus aureus out­
breaks) and are often unsupervised or unexplainable 
particularly in neural networks—this might limit 
translational expert input and potentially affect uptake 
of unsupervised AMR­AI models among health­care 
professionals trained in transparency, accountability, 
and physiological aetiology.19 In complex systems with a 
lower probability of harm (eg, microbiology labor­
atories), supervision and explain ability might not be 
necessary or desirable.

The predictive performance required for AMR­AI 
models is antimicrobial–organism–patient–system com­
bin ation specific and hinges on the consequences of 
incorrect predictions as much as accuracy. Utility 
functions quantifying these consequences need 
weighting carefully to avoid over­favouring unlikely but 
easily identifiable effects of antimicrobial under­pre­
scribing (eg, death from sepsis). Translational infection­
data science expertise can identify performance issues, 
their cause and solutions, and whether their con­
sequences merit delaying or withdrawing deployment 
(eg, an AMR­AI model with serum aminoglycoside level 
prediction intervals that regularly straddle cutoffs 
associated with nephrotoxicity or ototoxicity). The 
provision of credibility and prediction intervals can 

indicate the confidence of AMR predictions to imple­
mentation teams and end users.20,21

AMR­AI models should be periodically retrained in 
line with data updates (eg, monthly). This process (and 
the amount of data required) should also be adaptive to 
the specific AMR problem (eg, predicting AMR in low­
prevalence areas might require more data than in high­
prevalence areas), changes in health­care standard 
operating procedures (eg, changes in antimicrobial 
formulary recommendations), key organism definitions 
(eg, changes in clinical breakpoint definitions), and 
changes in AMR rates. Translational infection­data 
scientist expertise can identify changes important 
enough to merit ad hoc retraining.

AMR-AI assessment: evaluating effects
Randomised controlled trials (RCTs) housed by the ALS 
should assess AMR­AI efficacy, safety, and fidelity (the 
degree to which AI uptake and use matches that 
intended; appendix p 7).22 Clinical trial design and 
outcomes are important; for example, AMR­AI models 
that narrow the spectrum of prescribed antimicrobial 
activity are unlikely to elicit superior 7­day mortality 
rates, and cluster RCTs will be required for AMR­AI 
models deployed in primary care.23 Pragmatic RCT 
designs could use electronic health­care records for 
outcome assessment, and simulation might be useful 
when routine randomisation is impractical or 
unethical.24

Figure 3: A causal, counterfactual thought process for designing an explainable AMR-AI model using Bayesian statistics
In this example, the boxes in green reflect a decision process moving from left to right as an AI tool predicts the AMR effect of different antimicrobial choices. AI=artificial intelligence. 
AMR=antimicrobial resistance.
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AMR-AI maintenance: sustaining effects
AMR­AI models are more vulnerable to change than 
other health­care AI models because they have to account 
for organism, patient, drug, and system variability; main­
taining their clinical efficacy relies on constant adaptive 
maintenance to sustain the fitness for purpose of the 
AMR­AI intervention for the AMR target in dynamic 
health­care environments (figure 4).25–27

The continuous and cumulative information gen­
eration of ALSs from routine care should be used to 
improve the predictive performance of AMR­AI models 
(eg, in under­represented groups). Over time, aspects of 
maintenance should be automated where possible for 

routine appli cations (eg, laboratory triage of non­sterile 
specimens).

AMR-AI scalability: global settings and 
One Health
ALSs can only affect the global AMR problem once they 
are interconnected; international collaboration and 
knowledge mobilisation is essential. The constituent 
AMR­AI models of ALSs should be written in open­
source code run on open­source software to ensure 
operability in low­income and middle­income countries. 
Algorithms should be modular and transparent where 
possible, enabling local infection­data science 

Figure 4: Adaptive maintenance of a decision support AMR-AI model for urinary tract infection
Continuous evaluation of health-care environments detects changes that endanger AI-problem fit (numbers 1, 3, 5, 7, and 10). Continuous tuning 
(numbers 2, 4, 6, 8, and 11) is therefore required to optimise fit and maintain AMR-AI intervention effectiveness.25–27 AI=artificial intelligence. AMR=antimicrobial 
resistance.
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Search strategy and selection criteria

To support the concepts used in this Viewpoint, advanced 
searches of PubMed, Ovid MEDLINE, and Google Scholar 
literature databases were performed for articles in all languages, 
from the past 15 years. The targeted search strategies that were 
used are summarised in the appendix (pp 1–2). Manual result 
searches determined sources for inclusion based on relevance 
to the Viewpoint being presented.

translational experts to adapt inputs to local AMR risk 
factors and resistance rates. Global AMR data science 
projects should include the expansion of hardware 
availability, cloud computing, and data science training 
for clinicians to build translational expertise.

AMR is influenced by One Health factors, such as 
agricultural antimicrobial use and wastewater 
management—such domains typically have separate 
governance structures, dataflows, and interests. One 
Health data science collaborations and networks should 
find common ground to incentivise integration of these 
dataflows—without this, AMR­AI models deployed 
within health care might not exert enough of an effect to 
turn the global tide of AMR.

Conclusions
Bridging the implementation gap between AI innovation 
and tackling AMR presents technical, regulatory, 
organisational, and human challenges. Learning systems 
built on integrated dataflows, governance, and tech­
nologies have the potential to close this gap. Translational 
expertise between AMR and AI fields are essential to 
appropriately design, maintain, normalise, and globalise 
AMR­AI models in infection care and realise the potential 
for AI models to support clinician­driven AMR 
minimisation strategies.
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