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A B S T R A C T   

Background: Due to the limitations of current methods for detecting obstructive coronary artery 
disease (CAD), many individuals are mistakenly or unnecessarily referred for coronary angiog
raphy (CAG). 
Objectives: Our goal is to create a comprehensive database of heart sounds in CAD and develop 
accurate deep learning algorithms to efficiently detect obstructive CAD based on heart sound 
signals. This will enable effective screening before undergoing CAG. 
Methods: We included 320 subjects suspected of CAD who underwent CAG. We employed 
advanced filtering techniques and state-of-the-art deep learning models (VGG-16, 1D CNN, and 
ResNet18) to analyze the heart sound signals and identify obstructive CAD (defined as at least one 
≥50 % stenosis). To assess the performance of our models, we prospectively recruited an addi
tional 80 subjects for testing. 
Results: In the test set, VGG-16 exhibited the highest performance with an area under the ROC 
curve (AUC) of 0.834 (95 % CI, 0.736–0.930), while ResNet-18 and CNN-7 achieved AUCs of only 
0.755 (95 % CI, 0.614–0.819) and 0.652 (95 % CI, 0.554–0.770) respectively. VGG-16 demon
strated a sensitivity of 80.4 % and specificity of 86.2 % in the test set. The combined diagnostic 
model of VGG and DF scores achieved an AUC of 0.915 (95 % CI: 0.855–0.974), and the AUC for 
VGG combined with PTP scores was 0.908 (95 % CI: 0.845–0.971). The sensitivity and specificity 
of VGG-16 exceeded 0.85 in patients with coronary artery occlusion and those with 3 vascular 
lesions. 
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Conclusions: Our deep learning model, based on heart sounds, offers a non-invasive and efficient 
screening method for obstructive CAD. It is expected to significantly reduce the number of un
necessary referrals for downstream screening.   

1. Introduction 

The prevalence of obstructive coronary artery disease (CAD) is significant, with a projected increase of 18 % in the adult population 
by 2030 [1], making it twice as common as myocardial infarction [2]. Unlike acute coronary syndromes, obstructive CAD develops 
slowly and may present with mild symptoms, leading to frequent misdiagnoses and/or missed diagnoses [3,4], resulting in inefficient 
use of healthcare resources. Currently, the diagnosis of obstructive CAD relies on pretest probability (PTP), followed by additional tests 
such as coronary arteriography (CAG) [5,6]. As such, a straightforward and accurate screening method for obstructive CAD is urgently 
needed. 

The concept of analysing heart sounds using spectral analysis was first proposed in 1955 [7]. Previous research has demonstrated 
that coronary stenosis leads to the production of high-frequency sounds caused by turbulent blood flow in partially blocked arteries 
[8]. This turbulence affects the surrounding coronary artery tissue, resulting in audio frequency vibrations in the adjacent myocardial 
wall [8]. As a result, the signal generated by coronary artery obstruction is not simply turbulence but rather a complex composite 
signal. This signal is characterised by weak signals amid strong background noise, typically falling within the frequency range of 
approximately 20–800 Hz [9]. In the early 1980s, Semmlow et al. [10], first attempted to develop a method for detecting 
turbulence-related sounds produced by partially occluded coronary arteries. Since then, researchers have made significant efforts in 
this field. Based on these studies, there is a need for a deep learning model that can directly analyze the raw audio of heart sounds to 
predict obstructive CAD. 

The objective of this study, therefore, was to develop and validate deep learning algorithms for the detection of obstructive CAD 
based on heart-sound signals with the ultimate goal of enhancing screening efficiency. 

2. Methods 

2.1. Study design 

This study was conducted in two main phases: algorithm development; and assessment of diagnostic accuracy. In the first phase, 
eligible patients were enrolled and randomly divided into training and validation sets at a 10:1 ratio to develop the algorithm. Various 
deep learning model frameworks were used and strategies, such as normalisation, data augmentation, low-frequency denoising, and 
fusion for model training. In the second phase, eligible patients were enrolled in a separate test set based on specific inclusion and 

Fig. 1. Study flowchart 
We obtained heart sound recordings in advance. These recordings are used to develop the DL models, and a proportion of it is used for validation. 
The separate testing set is used to assess the final performance of the different diagnostic models. 
CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention. 
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exclusion criteria, as depicted in Fig. 1. The primary focus during this phase was to evaluate and compare the performance of the 
different models. 

2.2. Participants 

This study was conducted at the First Affiliated Hospital of Xinjiang Medical University (Ürümqi, China). Patients with chronic 
precordial pain, assessed by outpatient physicians as potential obstructive CAD, were enrolled between April 1 and November 1, 2021. 
Individuals who underwent previous percutaneous coronary intervention or coronary artery bypass grafting, and those unwilling or 
unable to cooperate with auscultation were excluded (for details regarding controlling confounding factors, refer to the Supplementary 
material). 

2.3. Data collection 

Informed consent was obtained from all patients and their families. Before medical intervention, patients were asked to assume a 
supine position in the ward or outpatient clinic with their chest exposed and hands on their sides. Using an electronic stethoscope 
(Littmann Electronic Stethoscope, Model 3200, 3 M, St Paul, MN, USA) in the mixed mode, a 30 s audio recording of heart sounds was 
performed in each of the nine parts of the precordial region [11] (the auscultation position is described in detail in the Supplementary 
material) [8,10,12]. 

2.4. Research process 

The reference standard for diagnosing or ruling out obstructive CAD was CAG, which assesses the degree of coronary stenosis (≥1 
lesion occluding ≥50 % of the diameter of the coronary artery). Two cardiologists, who were blinded to the study design, indepen
dently reviewed the CAG images of each patient to evaluate the degree of stenosis; any disagreements were resolved through dis
cussions with a third reviewer. CAG and obstructive CAD diagnostic criteria strictly adhered to published guidelines [13]. In cases in 
which patients declined CAG or had contraindications, coronary computed tomography angiography (cCTA) was used as an alternative 
method. 

2.5. Data pre-processing 

The heart-sound signals were processed at a sampling rate of 4000 Hz, and the mean duration of each heart sound was 25 s 
(approximately 30 s of heart sounds were collected, with the first and last 2.5 s removed). The collected heart sounds were converted 
into a matrix format for storage. Heart sounds captured at the nine locations were integrated in parallel, simulating different channels 
of an image, and served as the input layer of the neural network. Additional details are reported in the Supplementary Materials. 

2.6. Data labeling 

The enrolled patients were divided into two groups based on the presence or absence of obstructive CAD. Subgroups of patients 
with obstructive CAD were further analyzed and categorised according to sex, age, body mass index (BMI), risk factors, total number of 
lesions, proportion of stenoses associated with the most severe lesion, and location of the most severe lesion. The categorisations are as 
follows: 

Sex: Classified as male or female. 
BMI: Classified as > 25 kg/m2 and ≤25 kg/m2. 
Age: Categorised into two groups, ≥60 and <60 years. 
Risk factors: Grouped based on the presence of >3 of the following risk factors: age >40 years, male sex, diabetes mellitus, hy

pertension, hyperlipidaemia, BMI ≥25 kg/m2, and current or ex-smoker. 
Number of lesions: Categorised as one-, two-, or three-vessel lesions (lesions in the left main stem were defined as two-vessel 

lesions). 
Proportion of stenosis: Divided into the following groups based on the proportion of stenosis associated with the narrowest and 

most severe lesion: <50 %; 50 % ≤ lesion <70 %; 70 % ≤ lesion <100 %; and 100 % vessel occlusion. 
Location of the most severe lesion: Categorised into anterior descending, circumflex, and right coronary artery groups based on the 

location of the most severe lesion. 

2.7. Model design 

The system used in this study was Ubuntu (Pearson Education, 2015) with Python version 3.8.3, and TensorFlow version 2.6.0. 
Jupyter Notebook version 6.0.3 was used as the translator. 

Diagnosis of obstructive CAD using heart sounds was performed as an exploratory study with a limited sample size. Hence [14], 
1D-VGG, ResNet, and convolutional neural network (CNN) networks were used for this purpose (see the Supplementary Materials for 
detailed steps). 

Once the model architecture was finalised, the model was trained using data from 290 cases (2610 audio samples) and validated 
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using data from 30 cases (270 audio samples). Different layers of the VGG model were tested and found that VGG-16 exhibited the best 
robustness in diagnosing obstructive CAD. To address the potential overfitting issues with a small training set, batch normalisation was 
incorporated after each convolutional layer and various model training strategies were implemented, including data augmentation, 
low-frequency denoising, and fusion. For a comparative analysis, a seven-layer 1D CNN was constructed and simulated a 1D ResNet18 
network with residual blocks based on the ResNet18 architecture (a schematic of the Neural Network Architecture is presented in 
Supplemental Fig. 8). 

Furthermore, three additional obstructive CAD detection models were established for performance comparison. A logistic 
regression model was fitted using 42 baseline variables (Supplementary materials). 

Three combined diagnostic models were constructed based on heart sounds and clinical variables. The first model, VGG-16 + DF, 
used the Diamond-Forrester (DF) score and VGG-16 prediction scores as independent variables and the presence of obstructive CAD as 
the dependent variable. Similarly, the VGG-16 + PTP diagnostic model was built using the VGG-16 and PTP scores recommended by 
the European Society of Cardiology [13]. Finally, the VGG + LR model combined the proposed algorithm with a logistic regression 
model. 

2.8. Statistical analysis 

Normally distributed measures are expressed as mean ± standard deviation, and independent-samples t-tests were performed for 
intergroup comparisons. Skewed measurement data are expressed as median (interquartile range), and intergroup comparisons were 
performed using the Mann–Whitney U test. Categorical data are expressed as constituent ratios and were compared using either the 
chi-squared test or Fisher’s exact test, as appropriate. 

To assess the performance of the algorithm, various measures were calculated, including sensitivity, specificity, area under the 
receiver operating characteristic (ROC) curve (AUC), positive predictive value (PPV), negative predictive value (NPV), and diagnostic 
accuracy. A radiologist served as the comparator. The algorithm was evaluated at operating points selected from the ROC curve, 
specifically chosen for the maximum sum of sensitivity and specificity. Exact 95 % confidence intervals (CIs) were calculated for all 
diagnostic performance measures. 

The Wilcoxon–Mann–Whitney test was used to compare AUCs of the different models. Additionally, prespecified subgroup analyses 
were performed based on age, sex, angina symptoms, risk factors, and degree of CAD. All statistical comparisons were two-sided, and 
differences with p < 0.05 were considered to be statistically significant. Statistical analyses were performed using SPSS version 26 
(IBM Corporation, Armonk, NY, USA). 

3. Results 

3.1. Study population 

In the training set, 198 (68 %) patients had obstructive CAD, of whom 163 were male (82 %); additionally, 92 (32 %) patients had 
no obstructive CAD, of whom 42 were male (46 %). In the validation set, 20 (67 %) patients had obstructive CAD, 15 of whom were 
male (75 %); 10 (33 %) subjects had no obstructive CAD, of whom 8 were male (80 %). The baseline characteristics of patients in the 

Table 1 
Summary of participants characteristics for training, validation, and test sets.  

Characteristics Training set（n = 290） Validation set（n = 30） Pa-value Test set（n = 80） Pb-value 

Age（Years） 58.75 ± 11.38 62.57 ± 9.895 0.08 58.39 ± 10.41 0.80 
Male 206（71.00） 22（73.30） 0.79 39（48.80） ＜0.05 
Education   0.61  0.10 
Less than high school 105（36.20） 13（43.30）  20（36.30）  
Highschool 92（31.70） 7（23.30）  25（31.30）  
University or above 93（32.10） 10（33.30）  26（32.50）  
Smoking 88（30.30） 12（40.00） 0.28 24（30.00） 0.95 
Drinking 41（14.10） 4（13.30） 1.00 21（26.30） ＜0.05 
BMI（kg/㎡） 26（24.00,28.00） 25（24.00,28.00） 0.54 25 (22.00,28.00) ＜0.05 
Previous history 
HBP 120（41.40） 14（46.70） 0.58 36（45.00） 0.56 
Diabetes 67（23.10） 9（30.00） 1.00 15（18.80） 0.41 
Hyperlipidemia 3（1.00） 1（3.30） 0.33 1（1.30） 1.00 
Cerebrovascular disease 4（1.40） 2（6.70） 0.19 7（8.80） ＜0.05 
Family history 
CAD 34（11.70） 6（20.00） 0.31 17（21.30） ＜0.05 
Hypertension 27（9.30） 4（13.30） 0.70 12（15.00） 0.14 
Diabetes 11（3.80） 1（3.30） 0.40 3（3.80） 1.00 
Cerebrovascular disease 5（1.70） 1（3.30） 0.45 3（3.80） 0.50 

Data presented as mean ± standard deviation, median and interquartile ranges or n (%). No data were missing in Table 1. BMI, body mass index; CAD, 
coronary artery disease; HBP, high blood pressure; pa value was obtained by comparison of the training and validation groups. pb value was obtained 
by comparison of the training and test groups. 
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training and validation sets are summarised in Table 1 and Supplementary Table 1. 
In the test set, 51 (64 %) patients had obstructive CAD and 29 (36 %) did not. Significant coronary stenosis was confirmed by CAG 

or cCTA in 31 males (79.5 %) and 20 (48.8 %) females. Eight subjects underwent cCTA instead of CAG due to contraindications or 
refusal to diagnose or rule out obstructive CAD. Obstructive CAD was defined as coronary lumen stenosis ≥50 % in diameter in 26.3 % 
(n = 21), 16.3 % (n = 13), and 21.3 % (n = 17) of the patients with lesions involving one, two, and three vessels, respectively. Complete 
occlusion of a single vessel was observed in 10 patients, whereas complete occlusion of two vessels was observed in four patients. Of 
the participants, 36 % (n = 29) did not exhibit any significant coronary stenosis. Additionally, seven patients exhibited no significant 
coronary stenosis but had coronary myocardial bridging, and one experienced spontaneous coronary artery dissection (Table 1 and 
Supplementary Table 1). 

A comparison of the baseline characteristics between the training and test sets revealed significant differences in sex, BMI, and 
laboratory test results (all p < 0.05). 

3.2. Model performance 

Three deep-learning diagnostic models were trained: VGG-16, ResNet-18, and CNN-7. The performances of these models in the 
confusion matrix are reported in Supplemental Fig. 1. The ROC curves for the test set are presented in Fig. 2A. The AUC for VGG-16 was 
0.834 (95 % CI 0.736–0.930), with an accuracy of 0.825 (95 % CI 0.720–0.898). In contrast, ResNet-18 and CNN-7 had lower AUC 
values (0.755 [95 % CI 0.614–0.819] and 0.652 [95 % CI 0.554–0.770], respectively), and accuracies of 0.725 (95 % CI 0.612–0.816) 
and 0.663 (95 % CI 0.5472–0.7621), respectively. When comparing the three models across the six dimensions (Table 2), VGG-16 
exhibited a sensitivity of 0.804 (95 % CI 0.669–0.902), specificity of 0.862 (95 % CI 0.683–0.961), PPV of 0.911 (95 % CI 
0.803–0.963), and NPV of 0.714 (95 % CI 0.585–0.816) in the test set, indicating superior performance compared with the other two 
models. ROC curves for the training, validation, and test sets for the VGG-16 model are presented in Fig. 2B. 

In the test set, the AUCs for the DF and PTP scores recommended by the clinical guidelines for diagnosing obstructive CAD were 
0.771 (95 % CI 0.675–0.885) and 0.761 (95 % CI 0.648–0.873), respectively. The sensitivity of the DF score was 0.807 (95 % CI 
0.761–0.956), while that of the PTP score was 0.746 (95 % CI 0.652–0.829). However, the specificity was lower for both scores, with 
values of 0.783 (95 % CI 0.457–0.821) and 0.667 (95 % CI 0.568–0.759), respectively (Fig. 3A, Table 2). The algorithm outperformed 
logistic regression models based on 42 baseline variables, exhibiting a greater AUC (0.833) compared with 0.686 (p = 0.032). 

In the test set, three subjects were identified by cCTA as having CAD, whereas five subjects were classified as not having CAD. The 
VGG model correctly classified all negative subjects and two positive subjects, with only one positive subject misclassified (Supple
mental Table 2). 

The combined diagnostic models constructed using either the VGG-16 and DF models or the VGG-16 and PTP models outperformed 
the VGG-16 model alone in the test set. The AUCs were 0.908 (95 % CI 0.845–0.971) and 0.915 (95 % CI 0.855–0.974), with accuracies 
of 0.800 (95 % CI 0.700–0.873) and 0.813 (95 % CI 0.707–0.888), respectively (p = 0.003 and p = 0.004) (Fig. 3B, Table 2). This 
suggests that the combined diagnostic method can be used for outpatient diagnosis, aligning with the authors’ cardiovascular 
outpatient consultation process, which involves a combination of history taking and physical examination. When the algorithm was 

Fig. 2. Algorithm performance for detecting obstructive CAD of different machine learning models. 
A display the ROC curves of the three models in the test group (n = 80); B display the ROC curve of VGG16 in training group, validation group and 
test group; 
AUC, area under the receiver operating characteristic curve (95 % CI; obstructive CAD), stable coronary artery disease; VGG, Visual Geometry 
Group; CNN, Convolutional Neural Networks. 
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tested in conjunction with a logistic regression model containing 42 variables, joint diagnosis improved the AUC to 0.883 (95 % CI 
0.792–0.944), with an accuracy of 0.825 (95 % CI 0.727–0.893). 

3.3. Subgroup analysis 

Fig. 4 presents a summary of the performance of the VGG-16 model in various subgroups of the test set, as depicted by the AUC 
curves provided in the Supplementary Materials. The algorithm demonstrated superior performance in individuals who were over
weight (BMI ≥25 kg/m2), <60 years of age, had a greater number of risk factors for obstructive CAD, exhibited greater severity of 
stenosis, and/or had a greater number of diseased vessels. 

When the target population was restricted to individuals with multiple vessel lesions (Fig. 4, Supplemental Fig. 6), the AUC, 
sensitivity, and specificity for predicting obstructive CAD were 0.872 (95 % CI 0.616–0.918), 0.882, and 0.862, respectively. Similarly, 
when the target population was limited to patients with occlusive lesions, the corresponding values were 0.889 (95 % CI 0.704–0.991), 
0.917, and 0.862 and, for patients with >3 risk factors, the values were 0.842 (95 % CI 0.710–0.915), 0.885, and 0.800, respectively 

Table 2 
Performance of different models for detecting obstructive CAD in test set.  

Model AUC SEN SPE PPV NPV ACC F1- 
score 

P- 
value 

VGG16 0.834 (0.736, 
0.930) 

0.804 (0.669, 
0.902) 

0.862 (0.683, 
0.961) 

0.911 (0.803, 
0.963) 

0.714 (0.585, 
0.816) 

0.825 (0.720, 
0.898) 

0.854 Ref 

ResNet18 0.755 (0.614, 
0.819) 

0.725 (0.583, 
0.841) 

0.724 (0.528, 
0.873) 

0.822 (0.715, 
0.895) 

0.600 (0.477, 
0.712) 

0.725 (0.612, 
0.8161) 

0.771 0.072 

CNN7 0.652 (0.554, 
0.770） 

0.647 (0.501, 
0.776) 

0.724 (0.492, 
0.847) 

0.786 (0.673, 
0.867) 

0.526 (0.416, 
0.634) 

0.663 (0.547, 
0.762) 

0.71 0.009 

PTP 0.761 (0.648, 
0.873) 

0.746 (0.652, 
0.829) 

0.667 (0.568, 
0.759) 

0.863 (0.773, 
0.919) 

0.483 (0.380, 
0.582) 

0.725 (0.619, 
0.811) 

0.800 0.327 

DF 0.771 (0.675, 
0.885) 

0.807 (0.761, 
0.956) 

0.783 (0.457, 
0.821) 

0.902 (0.820, 
0.948) 

0.621 (0.517, 
0.714) 

0.8 (0.693, 
0.878) 

0.852 0.418 

LR 0.686 (0.573, 
0.784) 

0.805 (0.706, 
0.871) 

0.538 (0.438, 
0.639) 

0.647 (0.547, 
0.741) 

0.724 (0.620, 
0.803) 

0.675 (0.560, 
0.773) 

0.717 0.032 

VGG +
PTP 

0.908 (0.855, 
0.974) 

0.830 (0.739, 
0.895) 

0.741 (0.641, 
0.820) 

0.863 (0.773, 
0.919) 

0.69 
(0.589–0.777) 

0.8 (0.700, 
0.873) 

0.846 0.003 

VGG + DF 0.915 (0.845, 
0.971) 

0.846 (0.762, 
0.911) 

0.75 (0.652, 
0.829) 

0.863 (0.773, 
0.919) 

0.724 
(0.620–0.803) 

0.813 (0.707, 
0.888) 

0.854 0.004 

VGG + LR 0.883 (0.792, 
0.944) 

0.911 (0.832, 
0.955) 

0.714 (0.609, 
0.794) 

0.804 (0.706, 
0.871) 

0.862 
(0.773–0.919) 

0.825 (0.727, 
0.893) 

0.854 0.028 

Delong test P-value <0.05 (VGG16 as reference). All values are mean values. Area under the curve was based on receiver operating characteristic 
analysis. PPV, Positive Predictive Value; NPV, Negative Predictive Value. SEN, sensitivity. SPE, Specificity. ACC, Accuracy. DF，Diamond-Forrester 
score; PTP，pre-test probability. 

Fig. 3. Algorithm performance for detecting obstructive CAD of clinical models and combined diagnostic models in test set (n = 80). 
A display the AUC curves for algorithm and pre-test probability scores (PTP score and DF score), logistic regression models; B display the AUC 
curves of different combined diagnostic models. 
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(Supplemental Fig. 5). 
The heart-sound signals collected in this study encompassed all locations of the anterior heart vessels, which aligns with finding 

that the diagnostic capability of the anterior descending branch was superior to that of the circumflex branch and right coronary artery 
(AUC 0.850 versus [vs.] 0.835 and 0.839, respectively). For individuals with coronary stenosis ranging from 50 % to 70 %, the AUC 
was 0.784 (95 % CI 0.635–0.932). It is important to note that, because CAG was used as the gold standard in this study, no downstream 
examinations, such as fractional flow reserve measurements, were performed to further ascertain the degree of ischaemia. This lim
itation can introduce bias into the model training process, leading to skewed results. 

Subgroup analysis based on sex revealed that the AUC for females was only 0.778 (95 % CI 0.628–0.927), which did not reach the 
overall model performance level of 0.832. Furthermore, in the subgroup analysis with an age limit of 60 years, it was observed that the 
model exhibited better performance in the younger group (i.e., <60 years of age), with an AUC of 0.973 (95 % CI 0.759–0.987). In 
contrast, the AUC for this model was only 0.779 (95 % CI 0.608–0.950) in the group >60 years of age. 

4. Discussion 

The present study developed and evaluated three classification algorithms that used heart-sound signals from the initial medical 
contact, demonstrating a high level of accuracy in detecting obstructive CAD. The use of filtering and advanced DL techniques enabled 
efficient CAD screening. The VGG model demonstrated excellent performance in the test set. Furthermore, the combination of the VGG 
model with clinical scoring significantly enhanced screening efficiency. Additionally, the diagnostic efficiency of the model improved 
as patient condition deteriorated. 

Our findings have several significant clinical implications. First, our algorithm, which is more effective than clinical risk scores, can 
serve as a convenient tool for assessing the PTP of obstructive CAD based solely on heart-sound signals. Second, this method could be a 
valuable alternative to coronary angiography, addressing its limitations, particularly in individuals who are unable to undergo this 
invasive procedure. Overall, this rapid, straightforward, and convenient diagnostic method could prove to be life-saving in the pre
hospital phase and in situations in which invasive testing is not feasible. 

Previous investigators have made significant contributions to the field of heart-sound recognition in CAD, and our study builds on 
their work in the early stages. Farzad et al. [15] used advanced acoustic signal analysis and discovered a distinct turbulent acoustic 
signal during S1–S2, specific to the coronary arteries. Simon et al. [16] developed the CADScor® System (Kongens lyngby, Hoved
staden, Denmark) [17,18], which was tested in a prospective cohort and evaluated anatomically (ICA) and haemodynamically (FFr), 
demonstrating a 96 % NPV when tested at a single site in the precordial region under quiet conditions. Akanksha et al. [19] used a 

Fig. 4. Forest plot demonstrating the subgroups of test group (n = 80). 
Forest plot demonstrating the subgroup results of network performance by age, gender, risk factors, percentage of vessel stenosis, major stenoses, 
and number of stenosed vessels. OR values refer to the correlation of each subgroup in the test set with the VGG model based on heart sound 
prediction CAD. The correlation of each factor with the VGG algorithm for predicting CAD was analyzed on an overall basis. 
Risk factors were grouped based on the presence of ＞3 of the following risk factors: age >40 years, male sex, diabetes mellitus, hypertension, 
Hyperlipidaemia, body mass index≥25 kg/m2, and current or ex-smoker; LCX, left circumflex branch; LAD, left anterior descending; RCA, right 
coronary artery; AUC, area under the receiver operating characteristic curve; obstructive CAD, stable coronary artery disease. OR, odd ratio (X-axis 
is log10 scale). 
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multicore learning algorithm and processed heart-sound signals into a heat map, achieving an accuracy of 89.2 % in identifying CAD in 
80 male subjects in the training set. 

However, our study differs from the methodologies of Simon et al. [16] and Farzad et al. [15]. We constructed a deep learning 
model using original heart-sound signals [14], leveraging the advantages of deep learning methods that require less human inter
vention and enable more comprehensive feature extraction. Additionally, we introduced a filtering technique with a cut-off frequency 
of 500 Hz to eliminate noise, which is another innovative aspect of our study [20]. 

Similar to Akanksha et al. [19], we used the same algorithm to identify CAD in a cohort of 80 individuals. However, our method is 
less reliant on feature extraction, because it can directly extract features from the original audio, preserve the original characteristics, 
and avoid the laborious task of manual feature extraction [21]. Another innovation of our algorithm is the use of tandem convolutions, 
which require fewer parameters than a larger convolutional kernel [14,22]. 

Numerous studies have focused on machine learning CNN models for cardiovascular disease prediction using heart sounds [23]. 
Krishnan et al. [24] trained a CNN model using heart sounds and achieved an AUC of 0.857 for identifying patients with cardiovascular 
diseases. 

Similarly, Bozkurt et al. [25] achieved an even higher AUC (0.877) for predicting cardiovascular disease using a CNN model trained 
with heart sounds. Their models appeared to be more efficient than ours in terms of disease recognition accuracy. However, there are 
several important differences between their study and the present study. First, the parameters used to train the models differed from 
those used in the present study. In addition, their models were trained using a significantly larger amount of data, whereas our data 
specifically targeted CAD. The most crucial disparity between our data and theirs is that our heart sounds may be classified as “normal” 
in their models because their data does not exclude CAD patients through CAG. Furthermore, abnormalities in the heart sounds of 
patients with CAD primarily occur within milliseconds following the first and second heart sounds and are less frequent [26,27]. In 
contrast, their trained heart sounds exhibited abnormalities during the systolic and diastolic phases with a higher frequency of 
occurrence. These distinctions make our study considerably more challenging, although our accuracy may be lower compared with 
theirs. 

Semmlow et al. [10] performed a comprehensive analysis of the acoustic characteristics of coronary arteries and found that when 
coronary artery stenosis exceeded 85 %, the frequency of sound decreased, leading to a decline in the efficiency of CAD screening. 
Interestingly, the VGG-16 model exhibited superior recognition capabilities for individuals with occluded coronary arteries. One 
possible explanation for this observation is that a murmur associated with obstructive CAD may be a mixed murmur, potentially 
containing features other than the turbulent sounds produced by coronary stenosis [10,15,20,28]. 

The present investigation had several limitations that warrant acknowledgement. First, this was a single-centre study conducted 
with a limited number of prospective samples (n = 80) for validation purposes. Second, subgroup analysis revealed suboptimal 
performance of the VGG16 model in females, but yielded better results in overweight individuals (i.e., BMI >25 kg/m2). Both groups 
were characterised by thicker subcutaneous tissues, which may have influenced the auscultation site and, consequently, affected the 
results. Additionally, there was a notable disparity in the male-to-female ratio between the training and test sets (p < 0.05), which 
could have contributed to the relatively lower performance of the model among females. Furthermore, when conducting a subgroup 
analysis with an age limit of 60 years, the model demonstrated poor performance in the older age group (i.e., ≥60 years). This could be 
attributed to the presence of underlying diseases that may affect auscultation efficiency (AUC 0.779). 

It is crucial to highlight that the electronic stethoscope used in this study, specifically the Littmann Electronic Stethoscope (Model 
3200, 3 M, USA), is currently not widely available, and its production has been discontinued. This limitation may have impeded the 
widespread dissemination of this study. However, as the costs of electronic stethoscopes decrease, new opportunities for dissemination 
and implementation of this study are anticipated [29]. 

5. Conclusions 

In conclusion, our findings introduce a novel concept that utilizing deep learning algorithms with raw heart sound signals can aid in 
the detection of obstructive CAD. This innovative technique has the potential to revolutionize the screening and monitoring of this 
disease, particularly for individuals who have contraindications to CAG. By addressing a critical gap in the field, this technique offers a 
promising solution for improving CAD diagnosis and management. 
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