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Abstract: Mathematical models are increasingly adopted for setting disease prevention and 13 
control targets. As model-informed policies are implemented, however, the inaccuracies of 14 
some forecasts become apparent, for example overprediction of infection burdens and 15 
intervention impacts. Here, we attribute these discrepancies to methodological limitations in 16 
capturing the heterogeneities of real-world systems. The mechanisms underpinning risk 17 
factors of infection and their interactions determine individual propensities to acquire disease. 18 
These factors are potentially so numerous and complex that to attain a full mechanistic 19 
description is likely unfeasible. To contribute constructively to the development of health 20 
policies, model developers either leave factors out (reductionism) or adopt a broader but 21 
coarse description (holism). In our view, predictive capacity requires holistic descriptions of 22 
heterogeneity which are currently underutilised in infectious disease epidemiology, in 23 
comparison to other population disciplines, such as non-communicable disease epidemiology, 24 
demography, ecology and evolution. 25 
 26 

1. Introduction 27 

Setting realistic targets and developing feasible strategies for disease prevention and control 28 
depends on representative models. These can be conceptual, experimental, or mathematical. 29 
Mathematical modelling was established in infectious diseases over a century ago [Ross et al 30 
1916; Ross and Hudson 1917; Kermack and McKendrick 1927]. Propelled by the discovery 31 
of aetiological agents for infectious diseases, and Koch’s postulates, models have focused on 32 
the complexities of pathogen transmission and evolution to understand and predict disease 33 
trends in greater depth [Heesterbeck et al 2015]. This has led to their adoption by decision 34 
makers to inform national and international policy. However, as model-informed policies are 35 
being implemented, systematic errors in forecasts become increasingly apparent, most 36 
notably their tendency to overpredict infection burdens and overestimate the impact of 37 
control measures [Gaolathe et al 2016; Karim 2016; UNAIDS 2017; Frescura et al 2022; 38 
Specht et al 2019; Flaxman et al 2020; Gomes et al 2022]. Here, we discuss how these 39 
discrepancies could be explained by methodological limitations in capturing the effects of 40 
individual variation in real-world systems. We suggest improvements that derive from early 41 
theory in the analysis of hazards [Greenwood and Yule 1920].  42 

When a physical, chemical, or biological hazard invades a population, it typically encounters 43 
a set of individuals that can vary dramatically in their susceptibility or exposure to the threat. 44 
As a result, more susceptible (or exposed) individuals tend to be affected first while the mean 45 
susceptibility among those remaining unaffected decreases due to the selective depletion of 46 
the most susceptible. This process effectively decelerates growth in the number of disease 47 
cases when compared to a scenario of equally susceptible individuals exposed to the same 48 
mean hazard (Figure 1). Hence when homogeneous (or insufficiently heterogeneous) models 49 
fitted to the early phase of an epidemic are used to project the future, cases tend to be 50 
overpredicted. Conversely, if too much individual variation is built into the model, then cases 51 
may be underpredicted. Deviations in the quantification of variation that is under selection 52 
tend to induce large biases and, therefore, their quantification should play an essential part in 53 
the construction of predictive models for infectious as well as non-communicable diseases.  54 

The selective depletion bias just described is pervasive in population studies and has been 55 
discovered many times and given many names, such as survivorship bias [Wald 1943], frailty 56 
variation [Vaupel et al 1979], phenotypic selection [Haldane 1954; Lande and Arnold 1983], 57 
or selective (dis)appearance [Forslund and Pärt 1995, van de Pol and Verhulst 2006]. It has 58 
been recognised to affect diverse phenomena. It can create spurious trends in measured rates 59 
of mortality [Keyfitz and Littman 1979; Vaupel et al 1979], leading to paradoxical risk 60 
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associations [Vaupel and Yashin 1985; Strandberg et al 2013] and conflicting evidence on 61 
theories of ageing [Nussey et al 2006]. It may induce misleading expectations for the survival 62 
of endangered species [Kendall and Fox 2002; Jenouvrier et al 2018]. It may affect the scope 63 
of neutral theories of biodiversity and molecular evolution [Steiner and Tuljapurkar 2012; 64 
Gomes et al 2019a]. It may bias estimates of risks of diseases, whether non-communicable 65 
[Aalen et al 2015; Stensrud and Valberg 2017] or infectious [Anderson et al 1986; Colgate et 66 
al 1988; Dwyer et al 1997; Smith et al 2005; Bellan et al 2015; Gomes et al 2019b; Corder et 67 
al 2020; Britton et al 2020; Gomes et al 2022], and efficacy of interventions, such as vaccines 68 
[Halloran et al 1996; O´Hagan et al 2012; Gomes et al 2014; Gomes et al 2016; Langwig et al 69 
2017] or symbionts [Pessoa et al 2016; King et al 2018]. Some of these insights gave rise to 70 
new research priorities in evolutionary biology [Metcalf and Pavard 2007] while this paper 71 
presents a case for an equivalent impetus in infectious disease epidemiology. 72 

73 
Figure 1: Depletion of susceptibles in homogeneous and heterogeneous populations. (Top) Proportion 74 
susceptible (blue) and mean susceptibility (black) to a non-communicable disease formulated as a Susceptible-75 
Diseased model with constant exposure to a disease-causing agent [𝜆 = 0.07] in two scenarios: (homogeneous 76 
susceptibility) 𝑑𝑆 𝑑𝑡⁄ = −𝜆𝑆, 𝑑𝐷 𝑑𝑡⁄ = 𝜆𝑆 (dashed curves); and (gamma distributed susceptibility [𝑥] with 77 
variance 2): 𝑑𝑆(𝑥) 𝑑𝑡⁄ = −𝜆𝑥𝑆(𝑥), 𝑑𝐷(𝑥) 𝑑𝑡⁄ = 𝜆𝑥𝑆(𝑥) (solid curves). (Botton) Density of susceptible (blue) 78 
and diseased (red) individuals over the susceptibility domain at four different time snapshots of the epidemic. 79 
Mean susceptibility decreases over time due to the disproportionate depletion of individuals with high 80 
susceptibility. The vertical lines mark the mean baseline susceptibility in each context.  81 
In this topical review, we illustrate how unmeasured heterogeneity can have a wide 82 
expression in infectious disease dynamics and formulate a pragmatic approach to estimate the 83 
most impactful forms that need to be incorporated in mathematical models to eliminate 84 
common biases. 85 

2. Heterogeneity affects the accuracy of model forecasts 86 
We use the examples of acquired immunodeficiency syndrome (AIDS) and coronavirus 87 
disease 2019 (COVID-19) to illustrate the effects that individual variation in susceptibility 88 
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and exposure to infection can have on the performance of mathematical models for the 89 
dynamics of endemic and epidemic diseases.  90 

(a) Endemic infectious diseases 91 
Since the detection of AIDS in the early 1980s, it has been evident that heterogeneity in 92 
individual sexual behaviours needed to be considered in mathematical models for the 93 
transmission of the causative agent – the Human Immunodeficiency Virus (HIV) [Anderson et 94 
al 1986; Colgate et al 1988]. Much research has been devoted to measuring contact networks 95 
in diverse settings and by different methods, to attempt to reproduce transmission dynamics 96 
accurately [Woolhouse et al 1997; Keeling and Eames 2005; Leigh Brown et al 2011]. 97 
However, other equally important sources of inter-individual variation may have been 98 
overlooked. For example, models that omit heterogeneity in infectiousness and susceptibility 99 
lead to substantial overestimates of HIV acute phase infectivity, resulting in an overemphasis 100 
of the early stage of infection as a driver of new infections as shown by Bellan et al [2015]. 101 
By accounting for such heterogeneities, the authors concluded that elevated acute phase 102 
infectivity was less likely to compromise “treatment as prevention” measures.   103 
The problem of unaccounted for heterogeneity in models forecasting an infectious disease 104 
can be illustrated with the simplest mathematical description of pathogen transmission in a 105 
host population. Figure 2 shows the prevalence of infection over time under three alternative 106 
scenarios: all individuals are at equal risk of acquiring infection (black trajectories); 107 
individual risk is affected by a factor that modifies either their susceptibility to infection 108 
(blue); or exposure through connectivity with other individuals (green). Homogeneous 109 
models assign every individual a risk factor of 1 (black frequency plot), whereas 110 
heterogeneous risk derives from a distribution with mean one (blue and green density plots). 111 
As the virus spreads within the population, individuals at higher risk are predominantly 112 
infected as indicated at endemic equilibrium (Figure 2 A, B, C, density plots on the right, 113 
coloured red) and after 100 years of control (Figure 2 D, E, F). The control strategy applied 114 
to endemic equilibrium in the figure is the 90-90-90 treatment as prevention target advocated 115 
post-2015 by the Joint United Nations Programme on HIV/AIDS (UNAIDS) whereby 90% 116 
of HIV-infected individuals should be detected, with 90% of these receiving antiretroviral 117 
therapy, and 90% of these should achieve viral suppression (becoming effectively non-118 
infectious).  119 
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120 
Figure 2: Prevalence trajectories under homogeneous and heterogeneous models. Risk distributions are 121 
simulated in three scenarios: homogeneous (A, D) [notice the unrealistic time scale in A]; distributed 122 
susceptibility to infection with variance 10 (B, E); distributed connectivity with variance 10 (C, F). In disease-123 
free equilibrium, individuals differ in potential risk in scenarios B and C, but not in scenario A (risk panels on 124 
the left). The vertical lines mark the mean risk values (1 in all cases). At endemic equilibrium, individuals with 125 
higher risk are predominantly infected (risk panels on the right, where red vertical lines mark mean baseline risk 126 
among individuals who eventually became infected), resulting in reduced mean risk among those who remain 127 
uninfected (black vertical lines). To compensate for this selection effect, heterogeneous models require a higher 128 
𝑅0 to attain the same endemic prevalence (A, B, C). Interventions that reduce infection also reduce selection 129 
pressure, which unintendedly increases mean risk in the uninfected subpopulation and undesirably reduces 130 
intervention impact (D, E, F). Models: homogeneous (A, D) 𝑑𝑆 𝑑𝑡⁄ = 𝜇 − 𝛽𝐼𝑆 − 𝜇𝑆, 𝑑𝐼 𝑑𝑡⁄ = 𝛽𝐼𝑆 − 𝜇𝐼, and 131 
𝑅0 = 𝛽 𝜇⁄ ; heterogeneous susceptibility (B, E) 𝑑𝑆(𝑥) 𝑑𝑡⁄ = 𝑞(𝑥)𝜇 − 𝛽∫ 𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥) − 𝜇𝑆(𝑥), 132 
𝑑𝐼(𝑥) 𝑑𝑡⁄ = 𝛽∫ 𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥) − 𝜇𝐼(𝑥), and 𝑅0 = 𝛽 𝜇⁄ ; heterogeneous connectivity (C, F) 𝑑𝑆(𝑥) 𝑑𝑡⁄ =133 
𝑞(𝑥)𝜇 − 𝛽∫ 𝑢𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥) − 𝜇𝑆(𝑥), 𝑑𝐼(𝑥) 𝑑𝑡⁄ = 𝛽∫ 𝑢𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥) − 𝜇𝐼(𝑥), and 𝑅0 =134 
∫ 𝑢2𝑞(𝑢)𝑑𝑢 𝛽 𝜇⁄ . In heterogeneous models, 𝑞(𝑥) is a probability density function with mean 1 and variance 135 
10, and initial conditions are of the form 𝑆(𝑥, 𝑡) = (1 − 𝜀)𝑞(𝑥) and 𝐼(𝑥, 𝑡) = 𝜀𝑞(𝑥), for some infectious seed 136 
0 < 𝜀 ≪ 1. Gamma distributions were used for concreteness. 137 

Figure 2 shows that heterogeneous models that account for wide biological and social 138 
variation require higher basic reproduction numbers (𝑅!) to reach a given endemic level and 139 
predict less impact for control efforts when compared with the homogeneous counterpart 140 
model. This holds true regardless of whether heterogeneity affects susceptibility or 141 
connectivity and is generalisable to realistic combinations of the two traits. At endemic 142 
equilibrium, individuals at higher risk are predominantly infected (red distributions have 143 
mean greater than one as marked by the red vertical lines), and hence those who remain 144 
uninfected are individuals with lower risk (blue and green distributions have mean lower than 145 
one as marked by the black vertical lines). Thus, the mean risk in the uninfected but 146 
susceptible subpopulation decreases, and the epidemic decelerates (thin blue and green 147 
curves); higher values of 𝑅! are consequently required if the heterogeneous models are to 148 
attain the same endemic level as the homogeneous formulation (heavy blue and green 149 
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curves). Finally, interventions are less impactful under heterogeneity because any decrease in 150 
transmission collaterally increases the mean risk factor of the uninfected subpopulation 151 
(Figure 2, risk panels on the right) offering extra resistance to control. In concrete, these 152 
biases could help explain trends in HIV incidence data which lag substantially behind targets 153 
informed by model predictions [Granich et al 2009], even in settings that reached the 90-90-154 
90 implementation targets [Gaolathe et al 2016; Karim 2016; UNAIDS 2017; Frescura et al 155 
2022], meanwhile raised to 95-95-95 [UNAIDS 2023].  156 
We emphasise that these results do not oppose previous research showing that antiretroviral 157 
treatments can not only delay disease, but also prevent transmission. The 90-90-90 treatment-158 
as-prevention target helped improve access to antiretroviral medicines and save lives 159 
globally. The question is how these benefits translate from individual to population level. In 160 
our perspective, complementary measures are needed to reduce the susceptibility and 161 
exposure of uninfected individuals, especially those most vulnerable of acquiring HIV. In 162 
later sections we outline a procedure that seeks to account for effects of the entire 163 
heterogeneity of real-world systems. 164 
(b) Epidemic infectious diseases 165 

At the end of 2019, a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) 166 
isolated from a patient in China began to spread worldwide causing the COVID-19 167 
pandemic. Countrywide epidemics have been extensively analysed and modelled throughout 168 
the world. Early studies projected first waves of infection with attack rates of around 90% if 169 
transmission had been left unmitigated [Davies et al 2020; Flaxman et al 2020], while 170 
subsequent reports noted that individual variation in susceptibility or exposure might flatten 171 
epidemic curves and reduce these estimates substantially [Britton et al 2020; Neipel et al 172 
2020; Rose et al 2021; Tkachenko et al 2021; Montalbán et al 2022; Gomes et al 2022], as 173 
shown in Figure 3 (compare the blue [heterogeneous susceptibility] and green [heterogeneous 174 
connectivity] curves with the black [homogeneous]). Moreover, these types of variation that 175 
are subject to selection through natural infection tend to affect population measures of risk 176 
ratios leading to biased interpretations if realistic heterogeneity is not accounted for. For 177 
example, the bottom panel in Figure 3 illustrates how reinfection risk is likely to be 178 
overestimated when heterogeneity is neglected (black horizontal line represents individual 179 
risk ratio while blue and green curves depict time-dependent population risk ratios under 180 
heterogeneous susceptibility and connectivity, respectively).  181 
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182 
Figure 3: Incidence trajectories under homogeneous and heterogeneous models. Risk distributions are 183 
simulated in three scenarios: homogeneous (black); distributed susceptibility to infection with variance 2.5 184 
(blue); distributed connectivity with variance 2.5 (green). On the main panel, heavy lines represent first 185 
infection and thin lines are reinfection. Left panels represent distributions of potential individual risk prior to the 186 
outbreak, with vertical lines marking mean risk values (1 in all cases). As the epidemic progresses, individuals 187 
with higher risk are predominantly infected, depleting the susceptible pool in a selective manner and 188 
decelerating epidemic growth. Right panels show in red the risk distributions among individuals who have been 189 
infected over 3 months of epidemic spread (mean greater than one when risk is heterogeneous, as marked by red 190 
vertical lines) and the reduced mean risk among those who have not been affected (black vertical lines). Models: 191 
homogeneous (black) 𝑑𝑆 𝑑𝑡⁄ = −𝛽𝐼𝑆, 𝑑𝐼 𝑑𝑡⁄ = 𝛽𝐼(𝑆 + 𝜎𝑅) − 𝛾𝐼, 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝐼 − 𝜎𝛽𝐼𝑅, and 𝑅# = 𝛽 𝛾⁄ ; 192 
heterogeneous susceptibility (blue) 𝑑𝑆(𝑥) 𝑑𝑡⁄ = −𝛽 ∫ 𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥), 𝑑𝐼(𝑥) 𝑑𝑡⁄ = 𝛽 ∫ 𝐼(𝑢)𝑑𝑢 𝑥[𝑆(𝑥) +193 
𝜎𝑅(𝑥)] − 𝛾𝐼(𝑥), 𝑑𝑅(𝑥) 𝑑𝑡⁄ = 𝛾𝐼(𝑥) − 𝜎𝛽 ∫ 𝐼(𝑢)𝑑𝑢 𝑥𝑅(𝑥), and 𝑅# = 𝛽 𝛾⁄ ; heterogeneous connectivity (green) 194 
𝑑𝑆(𝑥) 𝑑𝑡⁄ = −𝛽 ∫𝑢𝐼(𝑢)𝑑𝑢 𝑥𝑆(𝑥), 𝑑𝐼(𝑥) 𝑑𝑡⁄ = 𝛽 ∫𝑢𝐼(𝑢)𝑑𝑢 𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)] − 𝛾𝐼(𝑥), 𝑑𝑅(𝑥) 𝑑𝑡⁄ = 𝛾𝐼(𝑥) −195 
𝜎𝛽 ∫𝑢𝐼(𝑢)𝑑𝑢 𝑥𝑅(𝑥) and 𝑅# = ∫𝑢$𝑞(𝑢)𝑑𝑢 𝛽 𝛾⁄ . In heterogeneous models, 𝑞(𝑥) is a probability density 196 
function with mean 1 and variance 2.5, and initial conditions are of the form 𝑆(𝑥, 𝑡) = (1 − 𝜀)𝑞(𝑥), 𝐼(𝑥, 𝑡) =197 
𝜀𝑞(𝑥), and 𝑅(𝑥, 𝑡) = 0, for some infectious seed 0 < 𝜀 ≪ 1. Gamma distributions were used for concreteness. 198 
Parameter 𝜎 represents the risk of reinfection of each individual relative to their own risk of first infection, here 199 
assumed 𝜎 = 0.03. The bottom panel depicts the average risk of reinfection (over the subpopulation at risk of 200 
reinfection) relative to the average risk of first infection (over the subpopulation at risk of first infection). 201 

Representing individual variation is necessary to forecast infectious disease dynamics and 202 
inform policy. Epidemic curves for COVID-19 are widely available, and it is possible to 203 
construct models with inbuilt risk distributions. Their shapes can be inferred by assessing the 204 
ability of models to fit simulated trajectories to observed epidemics, while accounting for 205 
realistic social and biomedical interventions [Gomes et al 2022]. It has also been highlighted 206 
that the interplay between social dynamics and spread of infection may reduce the effects 207 
described herein [Tkachenko 2021]. If socioeconomic gradients (main drivers of risk 208 
heterogeneity in infectious diseases [Millett et al; Mena et al 2021; Xia et al 2022]) changed 209 
over time in such a way that individuals with low susceptibility/exposure early in the 210 
epidemic became high susceptibility/exposure in later stages, and vice versa, this could 211 
compromise the utility of coefficients of variation estimated early on. Inverting 212 
socioeconomic gradients and their health impacts, however, would require a much longer 213 
time scale than that of an acute infectious disease pandemic [Braveman, Gottlieb 2014]. 214 
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There is mounting evidence that, on the contrary, disadvantaged social groups suffer more 215 
from both disease and containment measures, exacerbating preexisting risk inequalities 216 
[Okonkwo et al 2021]. Gomes et al [2022] estimated similar coefficients of variation by 217 
fitting time series encompassing either one or two epidemic waves of COVID-19 in England 218 
and Scotland, suggesting long-lasting heterogeneity.  219 
A contrasting and more common approach to incorporate heterogeneity in COVID-19 220 
transmission models has been to focus on specific sources of heterogeneity, such as age 221 
structure, households, schools, workplaces, and implement these according to available data 222 
(see, for example, [Moore et al 2021; Hilton et al 2022] for differential equation formulations 223 
and [Kerr et al 2021 for agent-based models). A strength of this reductionism is to base the 224 
implementation of specific heterogeneities on explicit data. A weakness is that it does not 225 
usually capture the entire heterogeneity of the real system due to limits in data availability 226 
and capacity to process so much complexity, although it is conceivable that this may be 227 
overcome in the future. Meanwhile, a holistic compromise can be reached by formulating 228 
heterogeneity unspecifically into otherwise homogeneous (or incompletely heterogeneous) 229 
models and inferring its magnitude by fitting to trends measured in suitable population 230 
studies as outlines in the following sections. Once the biases due to unmodelled heterogeneity 231 
are understood it should be unacceptable to base policy on model projections that are not 232 
accompanied by a thorough quantitative investigation of the subject, either by directly 233 
incorporating informative data into the model, by conducting sensitivity analyses, by aiming 234 
to infer heterogeneity as we outline in the following sections, or some combination of these 235 
schemes. 236 

3. Heterogeneity affects vaccine efficacy estimation over time and across settings 237 
The need to account for heterogeneity in risk of acquiring infections is generally applicable 238 
not only across all models of infectious disease epidemiology, but also in methods intended 239 
to evaluate the efficacy of interventions from experimental studies, whether lab-based 240 
controlled experiments or field-based randomised controlled trials. 241 
Individual variation in susceptibility or exposure to infection induces biases in cohort studies 242 
and clinical trials. Vaccine efficacy trials offer a useful illustration of the problem and expose 243 
a pragmatic approach to its solution. In a vaccine trial, two groups of individuals are 244 
randomised to receive a vaccine or placebo and disease occurrences are recorded in each 245 
group. As disease affects predominantly higher-risk individuals, the mean risk among those 246 
who remain unaffected decreases and disease incidence declines. In the vaccine group the 247 
same trend occurs at a slower pace (presuming that the vaccine protects to some degree). As a 248 
result, the two randomised groups become different over time with more highly susceptible 249 
individuals remaining in the vaccine group. The vaccine efficacy, described as 1 − 𝑅𝑅, 250 
where 𝑅𝑅 is the ratio of cases in vaccinated over control, therefore appears to wane [Halloran 251 
et al 1996; O’Hagan et al 2012]. This effect will be stronger in settings where transmission 252 
intensity is higher, inducing a trend of seemingly declining efficacy with disease burden 253 
[Gomes et al 2016]. These concepts are illustrated in Figure 4 by simulating a vaccine trial 254 
with heterogeneous and homogeneous models analogous to those utilised in Figures 1-3.  255 

Selection on individual variation in disease susceptibility thus offers an explanation for 256 
vaccine efficacy trends that is entirely based on population level heterogeneity, in contrast 257 
with individual waning of vaccine-induced immunity [Olotu et al 2016: Bell et al 2022]. It is 258 
important to disentangle their roles, as both may occur concurrently in a trial and lead to 259 
different interpretations of the same data. To capture this in a timely manner requires 260 
multicentre trial designs with sites carefully chosen over a gradient of transmission intensities 261 
(e.g., optimally spaced along the incidence axis in Figure 4 C, F), and analyses performed by 262 
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fitting curves generated by models that incorporate individual variation. An alternative and 263 
more tightly controlled approach would be to use experimental designs in human infection 264 
challenge studies, where these are available [Darton et al 2015; Roestenberg et al 2018], to 265 
generate dose-response curves and apply similar models [Gomes et al 2014]. These 266 
approaches have been successfully applied to animal systems [Langwig et al 2017; Pessoa et 267 
al 2016; King et al 2018].  268 

The essential purpose of suggesting these study designs (multicentre trials over a gradient of 269 
transmission intensities, or dose-response infection challenges) is to enable selection on 270 
individual infection risks to be remodelled (empirically and mathematically) along force of 271 
infection (selection) gradients, in such a way that variation and selection can be inferred from 272 
observed infection trends. 273 

274 
Figure 4: Vaccine efficacy trajectories under homogeneous and heterogeneous models. A, B, C, 275 
Heterogeneous susceptibility or exposure (with mean 1 and variance 10) with insets in A depicting susceptibility 276 
distributions in control and vaccine groups at the beginning and end of the trial (cyan line is the mean); D, E, F, 277 
Homogeneous model. Models: (homogeneous) 𝑑𝑆𝑐 𝑑𝑡⁄ = −𝜆𝑆𝑐, 𝑑𝐼𝑐 𝑑𝑡⁄ = 𝜆𝑆𝑐, and 𝑑𝑆𝑣 𝑑𝑡⁄ = −𝜎𝜆𝑆𝑣, 278 
𝑑𝐼𝑣 𝑑𝑡⁄ = 𝜎𝜆𝑆𝑣; (heterogeneous) 𝑑𝑆𝑐(𝑥) 𝑑𝑡⁄ = −𝜆𝑥𝑆𝑐(𝑥), 𝑑𝐼𝑐(𝑥) 𝑑𝑡⁄ = 𝜆𝑥𝑆𝑐(𝑥), and 𝑑𝑆𝑣(𝑥) 𝑑𝑡⁄ =279 
−𝜎𝜆𝑥𝑆𝑣(𝑥), 𝑑𝐼𝑣(𝑥) 𝑑𝑡⁄ = 𝜎𝜆𝑥𝑆𝑣(𝑥). Vaccine efficacy is calculated as [1 − 𝑟𝑣(𝑡) 𝑟𝑐⁄ (𝑡)] × 100, where 𝑟𝑣 280 
and 𝑟𝑐 represent the incidences in vaccinated (𝑣) and control (𝑐) groups, respectively: (homogeneous) 𝑟𝑐(𝑡) =281 
𝜆; 𝑟𝑣(𝑡) = 𝜎𝜆; (heterogeneous) 𝑟𝑐(𝑡) = 𝜆∫ 𝑥𝑆𝑐(𝑥, 𝑡)𝑑𝑥 ∫ 𝑆𝑐(𝑥, 𝑡)𝑑𝑥⁄ ; 𝑟𝑣(𝑡) =282 
𝜎𝜆∫ 𝑥𝑆𝑣(𝑥, 𝑡)𝑑𝑥 ∫ 𝑆𝑣(𝑥, 𝑡)𝑑𝑥⁄ . Gamma distributions were used in heterogeneous models for concreteness. 283 

4. Inferring heterogeneities by remodelling selection 284 
Heterogeneities in predisposition to infection depend on the mode of transmission. In 285 
respiratory infections, heterogeneity may arise from variation in exposure of the susceptible 286 
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host to the pathogen, or the competence of host immune systems to control it. These two 287 
processes have multiple component factors. Some of the most studied are age, patterns of 288 
inter-personal contacts, exposure to smoke, nutritional status, pre-existing respiratory illness 289 
such as asthma or chronic obstructive pulmonary disease, and the presence of other 290 
concomitant diseases such as diabetes and HIV. Enteric diseases have other heterogeneities 291 
determined by the source and dose of contaminated sources. Vector-borne pathogens may be 292 
transmitted by mosquitoes, ticks, snails, and other intermediate hosts, where the risk of 293 
onward transmission is affected by heterogeneities in exposure and susceptibility across a 294 
complex range of host, demographic, social, geographical, and environmental (including 295 
climatic) factors. For example, malaria endemicity is typically measured using the 296 
entomological inoculation rate (EIR), determined by multiplying the sporozoite rate (the 297 
proportion of mosquitoes that contain infectious sporozoites) by the host biting rate (average 298 
number of bites per person per unit time). Global (or even national) EIRs average over 299 
substantial individual variability in pathogen exposure and requirements for efficacious 300 
interventions [Smith et al 2005]. As for sexually transmitted diseases specific factors include 301 
behaviour, age, gender, and sexual orientation. 302 

The mechanisms underpinning single factors for infection and their interactions determine 303 
individual propensities to acquire disease. These factors are potentially so numerous and 304 
interlinked that to attain a full mechanistic description is usually unfeasible. Even if lists of 305 
all putative factors were available, the measurement of effect sizes might be subject to 306 
selective depletion bias resulting in underestimated variances [Aalen et al 2015]. To 307 
contribute constructively to the development of health policies, model building involves 308 
compromises between leaving factors out (reductionism) or adopting a broader but coarse 309 
description (holism). Holistic descriptions of heterogeneity are uncommon in the study of 310 
disease dynamics. 311 
The awareness that heterogeneities matter in infectious disease analyses has a long history 312 
since, already in the 1920s and 1930s, the pioneering work of Kermack and McKendrick 313 
[1927] and McKendrick [1939] circumvented the lack of explicit heterogeneity in early 314 
models by assuming that only a fraction of the population was accessible to infection in order 315 
to fit observed incidences. In 1968, Gart [1968] admitted that “it is difficult to define exactly 316 
the size of the population of susceptible hosts” due to the “heterogeneous nature of the 317 
population” and, in 1971, the same author formulated a model with several susceptibility 318 
groups [Gart 1971] which, in 1985, Ball [1985] compared to the homogeneous version and 319 
described how homogeneity assumptions increase the size of epidemics. In 2001, Pastor-320 
Satorras and Vespignani [2001] developed related formalisms to describe epidemics on 321 
contact networks. Unfortunately, despite the long-standing recognition that heterogeneity is 322 
required for models to fit data and the availability of adequate mathematical models for the 323 
effect, there is a widespread belief that unobserved heterogeneity cannot be estimated. 324 

However, unmeasured heterogeneities that respond to selection, can be built into dynamic 325 
models and estimated by fitting model outputs to population data, in a similar vein to the 326 
2000 Nobel Memorial Prize in Economic Sciences winning work conducted by James 327 
Heckmann (see [Heckmann 1979]). Dynamic models describing state transitions in an 328 
infectious or non-communicable disease (or behavioural phenomena in the social sciences) 329 
become motors of selection on the inbuilt heterogeneity. It is then the interplay between 330 
selection and the baseline heterogeneity that affect model outputs. Hence, taking population 331 
measurements along a selection (such as exposure to a hazard) gradient and fitting a model-332 
generated curve to the resulting data can enable the inference of baseline distributions in a 333 
holistic manner. While this procedure is established in microbial risk assessment [Haas 1999] 334 
and survival or event history analysis [Hougaard 1986; Aalen 2008 and references therein], 335 
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its application in the modelling of disease dynamics has been less widespread [Smith et al 336 
2005; Bellan et al 2015; Gomes et al 2019; Corder et al 2020; Dwyer et al 1997; Gomes et al 337 
2022; Stensrud and Valberg 2017]. The intent of this review is to convey the generality of the 338 
approach, and its feasibility and importance for model predictability. We introduce the term 339 
remodelling selection to refer to the body of theory and methods unified across disciplines 340 
whereby variation and selection are essentially remodelled, mathematically and empirically, 341 
in a way that enables their statistical inference (e.g., [Furumoto et al 1967; Heckmann 1979; 342 
Dwyer et al 1997; Hougaard 1986; Haas 1999; Smith et al 2005; Ben-Ami et al 2008; Zwart 343 
et al 2011; Gomes et al 2014; Pessoa et al 2016; Stensrud and Valberg 2017; Langwig et al 344 
2017; King et al 2018; Gomes et al 2019; Corder et al 2020; Gomes et al 2022]). 345 

In the case of infectious diseases, selection is exerted primarily by the infectious agent, so the 346 
analyst will be fitting model-generated curves to a collection of incidence measurements 347 
taken in multiple conditions spanning a range of exposure intensities. When controlled 348 
infection experiments can be performed [Darton et 2015; Roestenberg et al 2018], dose-349 
response designs should be adopted. Intuitively, the lowest challenge doses infect mostly 350 
highly susceptible individuals while as dose increases more of the less susceptible are also 351 
infected. Therefore, dose-response curves are closely related to cumulative distributions of 352 
susceptibility, which can be inferred by fitting appropriate models [Furumoto et al 1967; 353 
Haas 1999; Ben-Ami et al 2008; Zwart et al 2011; Gomes et al 2014; Pessoa et al 2016; 354 
Langwig et al 2017; King et al 2018]. When infection is by natural exposure a similar tactic 355 
can be devised. Incidence measurements should be collected from multiple settings, ideally 356 
spanning a wide range of exposure intensities. Model-generated curves will then be fitted to 357 
the entire dataset, conditioned on individual variation being similar across settings (unless 358 
additional prior information is available) [Smith et al 2015; Gomes et al 2019; Gomes et al 359 
2022]. When disease episodes are so frequent that individuals can be characterised by how 360 
many occurrences they experienced over a feasible study period, such as with seasonal 361 
respiratory viruses or malaria in endemic regions, then heterogeneity may be inferable from a 362 
single setting [Corder et al 2020]. In non-communicable diseases, such as cancer, it may be 363 
feasible to consider predisposing genes or household characteristics as disease agents, and 364 
hence exposure intensities can be structured by familial relatedness [Aalen et al 2015; 365 
Stensrud and Valberg 2017]. The commonality is to employ models that have individual 366 
variation represented explicitly to enable response to changes in exposure (selection) 367 
intensity (Figures 2, 3) should these occur naturally or through interventions. Free from the 368 
selection biases exposed in this review, this modelling approach will automatically enable 369 
more accurate forecasts to inform policies.   370 
5. Conclusion 371 

There is compelling evidence for the utility of holistic descriptions of individual variation in 372 
disease risk, admitting that heterogeneity is so vast in real-world systems that complete 373 
mechanistic reconstructions may be currently unachievable. Inspired by other population 374 
disciplines and supported by successful applications in both infectious and non-375 
communicable diseases, we describe methods of study design and analyses that enable 376 
inferences of heterogeneity by estimating how much selection occurs as susceptible 377 
populations are depleted through infection and/or disease. These methods rely on remodelling 378 
selection along gradients which may result naturally from trends of exposure to a hazard 379 
across population strata, in the case of observational studies, or be created by design, in the 380 
case of controlled experiments. We advocate for the wide adoption of these approaches in 381 
epidemiology to enable accurate disease forecast models. 382 
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