
Supplementary Table 1. Overview of the alternative names of several toxin classes with direct cytotoxic properties and a proposed name for the cytotoxic members of each protein family.

Toxin class	Alternative names	Proposed name(s)
Three-finger toxins (3FTxs)	TFTs (three-finger toxins)	Cytotoxic-3FTxs or neurotoxic 3FTxs
	TFPs (three-finger proteins)	
	Cytolysins	
	Membrane toxins	
	Membranotoxins	
	Direct lytic factors	
	Cytotoxins	
	Cardiotoxins	
PLA ₂ s	Myotoxins	Cytotoxic PLA ₂ s
β-defensin-like toxins	Small basic myotoxins	β-defensin-like toxins
	Small basic polypeptide myotoxins	

Supplementary Figure 1. Structure of a Lys49-PLA₂. (A) Cartoon representation of the three-dimensional structure of the dimer of Lys49-PLA₂ BthTx1 from *Bothrops jararacusu* determined by X ray crystallography (PBD 3hzd, Fernandes *et al.*, 2010, reference 61). Each monomer is colored in blue or green. (B) The cationic membrane-docking site composed by K20, K115 and R118 are represented by orange sticks, while the hydrophobic membrane-

disruption site composed by L121 and F125 are represented by red sticks in both PLA₂ monomers as described by Fernandes *et al.*, 2014 (reference 60).