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Abrogoua, Abidjan, Côte d’Ivoire, 12Vector Biology Department, Liverpool School of Tropical
Medicine, Liverpool, United Kingdom
Malaria is a life-threatening disease caused by Plasmodium parasites transmitted

by Anopheles mosquitoes. In 2022, more than 249 million cases of malaria were

reported worldwide, with an estimated 608,000 deaths. While malaria incidence

has decreased globally in recent decades, some public health gains have

plateaued, and many endemic hotspots still face high transmission rates.

Understanding local drivers of malaria transmission is crucial but challenging

due to the complex interactions between climate, entomological and human

variables, and land use. This study focuses on highly climatically suitable and

endemic areas in Côte d’Ivoire to assess the explanatory power of coarse climatic

predictors of malaria transmission at a fine scale. Using data from 40 villages

participating in a randomized controlled trial of a household malaria intervention,

the study examines the effects of climate variation over time on malaria

transmission. Through panel regressions and statistical modeling, the study

investigates which variable (temperature, precipitation, or entomological

inoculation rate) and its form (linear or unimodal) best explains seasonal

malaria transmission and the factors predicting spatial variation in transmission.

The results highlight the importance of temperature and rainfall, with quadratic

temperature and all precipitation models performing well, but the causal

influence of each driver remains unclear due to their strong correlation.

Further, an independent, mechanistic temperature-dependent R0 model based

on laboratory data, which predicts that malaria transmission peaks at 25°C and

declines at lower and higher temperatures, aligns well with observed malaria

incidence rates, emphasizing the significance and predictability of temperature

suitability across scales. By contrast, entomological variables, such as

entomological inoculation rate, were not strong predictors of human

incidence in this context. Finally, the study explores the predictors of spatial
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variation in malaria, considering land use, intervention, and entomological

variables. The findings contribute to a better understanding of malaria

transmission dynamics at local scales, aiding in the development of effective

control strategies in endemic regions.
KEYWORDS

temperature, incidence, rainfall, entomological inoculation rate, vector-borne disease,
land-use
1 Introduction

Malaria, a vector-borne disease caused by Plasmodium

parasites, which are transmitted by Anopheles mosquitoes, has

had a significant impact on human history, influencing our

evolution, health, and social structures (Athni et al., 2021).

Despite advancements in technology and significant progress in

malaria control in the 21st century, it remains a major burden to

humanity. In 2022, there were an estimated 249 million malaria

cases and 608,000 deaths, with the majority occurring in sub-

Saharan Africa (World Health Organization, 2023). Malaria

eradication is a long-standing priority for global health and non-

profit organizations, who collectively invest over $4.3 billion

annually (Feachem et al., 2019). On a global scale, malaria

incidence decreased by 37% between 2000 and 2015, and more

than half of the world’s countries are now malaria-free (Cibulskis

et al., 2016). However, in many malaria hotspots, reductions have

not been as significant. In fact, between 2016 and 2017, more than

3.5 million cases of malaria were reported in ten African countries

alone (Ryan et al., 2020). Consequently, understanding the local

drivers of malaria in endemic hotspots of transmission is critical

from both a biological and control perspective.

Malaria transmission is dependent on entomological cycles that

drive transmission, and as such, many biotic, abiotic, and social

variables that can affect incidence. At global and national scales,

climate predictors such as temperature and precipitation have been

used to successfully model malaria transmission. Mechanistic links

between temperature and global malaria transmission are

recognized to be nonlinear with transmission constrained

between 17°C and 34°C and transmission peaking at 25°C

(Peterson, 2009; Mordecai et al., 2013; Yamana and Eltahir, 2013;

Ryan et al., 2015; Shapiro et al., 2017; Villena et al., 2022; Carlson

et al., 2023) and the most recent estimate being between 19.1°C and

30.1°C (Villena et al., 2022). Rainfall is also recognized to have a

nuanced relationship with malaria: accumulated rainfall can create

breeding habitats and increase vector abundance, but excessive

rainfall can flush out breeding sites and decrease vector

abundance (Paaijmans et al., 2009; Yamana and Eltahir, 2013;

Eikenberry and Gumel, 2018). Despite the clear mechanistic links,

estimating connections between climate and malaria transmission

at local scales is challenging because a given location may be below,
02
at, or above optimal temperature and/or can experience high

rainfall variability.

Vector indices, including population abundance, species

composition, feeding patterns, and entomological inoculation rate

(EIR)—expected to be directly affected by climate—can provide a

more direct estimate of transmission risk. Entomological variables

are less readily available in malaria predictions than climate

variables because they require careful surveillance and trained

personnel, which can be expensive. Despite this, using these

variables, particularly EIR, is regarded as a more direct measure

of transmission intensity than vector incidence or prevalence

(Kelly-Hope and McKenzie, 2009). It is therefore important to

understand how the predictive power of entomological indices

compares to that of more easily obtained climate variables for

understanding local-scale variation in malaria incidence.

Land use, which can influence microclimate, the availability of

vector habitat, vector population size, and settings in which vectors

bite humans, has also been associated with malaria transmission.

Certain land use practices can create or modify suitable breeding

sites for mosquito vectors, leading to increased malaria risk. For

example, deforestation and urbanization can create new habitats

and increase the proximity of humans to mosquito breeding sites,

resulting in higher transmission rates (Afrane et al., 2012;

MacDonald and Mordecai, 2019). Additionally, changes in land

use patterns can alter microclimates, affecting mosquito abundance

and behavior (Afrane et al., 2005, 2006, 2012). In sum, coarse and

fine-scale variations in climate, land use, and human activities

combine to determine malaria risk. However, predicting the

outcomes of these interact ing and nonl inear effects

remains challenging.

Large-scale studies have been informative for developing

frameworks to benchmark the success of intervention strategies,

to allow for resource allocation, and to identify future populations at

risk under a changing climate (Peterson, 2009; Bhatt et al., 2015;

Ryan et al., 2015; Eikenberry and Gumel, 2018; Mordecai et al.,

2020; Carlson et al., 2023). However, distilling global drivers at local

scales has yielded different success due to the complex interactions

between vectors, parasites, and humans that differ across the

geographic range of malaria (Eikenberry and Gumel, 2018).

Focusing on an area that is highly climatically suitable and

endemic for malaria transmission (defined as an area where
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transmission occurs 10–12 months of the year; Ryan et al., 2020), we

aim to assess how well coarse environmental predictors of malaria

transmission explain variation at a fine scale. Working in 40 villages

in Côte d’Ivoire that participated in a randomized controlled trial of

a household malaria intervention (screening and eave tubes (SET);

Sternberg et al., 2018, 2021), we use data on in situ climate, malaria

incidence, and entomological observations over two years to study

the effects of climate variation on malaria transmission. Specifically,

we ask:
Fron
1) Which variables (climate or entomological metrics), and in

what form (linear or unimodal, mechanistic or

phenomenological) and time lags, best explain seasonal

variation in malaria transmission?

2) What factors predict spatial variation of malaria

transmission when climate is similar across sites?
2 Methods

2.1 Data collection

2.1.1 Study location and design
Data were used from a previously published study (Sternberg

et al., 2021) that aimed to assess the impact and cost-effectiveness of

a novel malaria intervention in the Gbêkê region in central Côte

d’Ivoire. Detailed study design and participant information can be

found in Sternberg et al. (2018). In brief, epidemiological,

entomological, and climate data were collected over two years

(May 2017–April 2019) across 40 villages in the Gbêkê region

(Figures 1A, B). This region experiences high burdens of year-round

malaria transmission, with peak transmission reported in the wet

season (May–October). Twenty of the 40 villages received an

intervention which combined Eave Tubes, a novel method of

delivering insecticide at household level, and mosquito-proofing

within households through the addition of window screening. The

combined intervention (referred to as Screening plus Eave Tubes, or

SET) was designed to reduce malaria transmission by a) providing a

physical barrier between mosquito vectors and humans and b)

increasing mosquito mortality as they search for human hosts for

blood feeding.

2.1.2 Epidemiological variables
Within each village a cohort of approximately 50 children (0.5–

10 years old) was randomly selected. At the initial enrolment

visit, all children were cleared of active malaria parasite infections

with a 3-day course of first-line antimalarial drug (artesunate-

amodiaquine or artemether-lumefantrine). Following this initial

visit, the same cohort of children were routinely visited (once per

month between November and April, and twice per month between

May and October, in accordance with known malaria transmission

season) by medical staff to test for symptomatic malaria infections.

During visits, children were treated with antimalarials if they were

symptomatic and tested positive for malaria using a rapid

diagnostic test (SD Bioline Malaria Ag P.f/Pan;Standard
tiers in Malaria 03
Diagnostics; Seoul, South Korea). Malaria incidence was

calculated at the village level as a monthly measure of the number

of clinical malaria cases divided by the child-time at risk (see

Sternberg et al. (2018) for full details).

2.1.3 Climate variables
To test the effects of rainfall and temperature on malaria

transmission, we collected data from several sources. First, hourly

rainfall and outdoor temperature data were collected from a single

weather station within the study area (7°53′58″ N, 5°3′33″ W,

sourced from AfricaRica upon request), and provided a study-wide

estimate of these conditions. Second, we were interested in indoor

temperatures, because An. gambiae are thought to be largely

endophilic and spend considerable time indoors (Paaijmans and

Thomas, 2011). Hourly indoor temperatures were collected from a

subset of 20 (of the total 40) villages. Indoor temperature data

collection was intermittent and not conducted in all villages, so to

generate a study-wide measure of indoor temperature we rounded

collection time to the closest hour to pair with outdoor

meteorological station temperatures, and then fit a linear

relationship between indoor temperature and outdoor

temperature. We allowed the outdoor to indoor relationship to

vary by hour of the day and month of the year, and used this to

predict a study-wide indoor temperature estimate for each hour,

resulting in a single time series of indoor temperature used across

all villages.

2.1.4 Entomological variables
Mosquitoes were trapped using human landing catches

undertaken indoors and outdoors in four randomly selected

houses per village every two months. Entomological inoculation

rate (EIR; the number of infectious bites per person per year) was

calculated every two months in each village. EIR was calculated as

follows:

Annual   EIR =
(Total   vectors   caught   by   human   landing   catch)

(Total   capture   nights)

�  
(Total   sporozoite   positive)

(Total   tested + Total   nonparous)
 �   365
3 Data analysis

We conducted two main analyses to investigate the predictors

of malaria incidence in the study region. The first analysis focused

on understanding which variables best predicted variation over time

across all villages (‘temporal analysis’) and the second aimed to

explain spatial variation between villages (‘spatial analysis’).
3.1 Temporal analysis

To understand temporal variation in malaria incidence, we

modeled climatic and entomological variables separately and

quantified the variation explained by each variable. Panel
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regressions were used to isolate climate effects on malaria incidence

from spatial village-level variation. Specifically, we used a Poisson

panel regression with a fixed effect, or separate intercept, for village

and a time trend (to account for the observed trend in malaria over

time), using village-month observations of malaria incidence rates

as the outcome. This method removes cross-sectional variation

between villages, leaving behind what we call “temporal variation”,

and identifies predictors of malaria incidence rate by comparing

each village to itself over time (after controlling for the overall time

trend shared across all villages). Unless otherwise specified, all

models include village fixed effects and a time trend.

To compare between predictors of malaria transmission, we

needed a way to standardize the measure of model performance

(squared correlation between predicted and observed) given that

data were collected at different frequencies and time periods. This

was done first by estimating a lower (null model) and upper bound

(flexible seasonal model) for model performance. For each

predictor, performance was compared within these bounds. The

null model was estimated as a village fixed effect with a time trend.

The flexible seasonal model estimated a coefficient for each month

of the year with the same village fixed effects and time trend, which

we viewed as an upper bound on system predictability because it is

allowed to fit a unique coefficient for each month, which broadly

corresponds to seasonality. In this way, predictive models that had a

squared-correlation similar to that of the null were considered to be

low performing, and those performing as well as the flexible

seasonal model are considered to be high performing.

In total, we consider three climatic variables (indoor

temperature, outdoor temperature, and precipitation) and two

entomological variables (outdoor EIR, indoor EIR). For each of

these, we modeled different functional forms and lags (Table 1) to

account for potential nonlinear relationships, and delays between

changes in climatic conditions (or entomological conditions),

changes in malaria transmission (which we cannot directly

observe), and ultimate detection of clinical malaria infections in

monthly visits. For both indoor and outdoor temperature, we model

linear, quadratic, and a priori-informed R0 relationships. This R0

relationship is derived from laboratory studies that estimate

mosquito life history and transmission traits at different

temperatures, and provides an estimated relationship between

constant temperatures and relative transmission rates into which

we can plug the different temperature values (Villena et al., 2022).
Frontiers in Malaria 04
To account for the ways in which mosquitoes are exposed to indoor

and outdoor temperatures, we also calculated a version of the R0

model that combines both temperature sources (which we refer to

as combined R0), where outdoor temperature was used for larval

traits and indoor temperature was used for adult traits associated

with transmission. For precipitation, we fit models relating malaria

incidence rates to linear and quadratic monthly precipitation.

Finally, for indoor and outdoor EIR we use a linear relationship.

Notably, while indoor temperature, outdoor temperature, and

precipitation are study-wide predictors (i.e., a single time series

for the study period), EIR is village specific. For all nonlinear

relationships between climatic and entomological variables, we

calculate the nonlinearities at the smallest available resolution

(hourly for temperature and precipitation) before averaging to

the month.
3.2 Spatial analysis

To study the predictors of spatial variation in malaria incidence

rate, we used the village mean malaria incidence rate over the study

period as the response and considered land use, RCT treatment

level, and entomological variables as predictors. Specifically, we

used remotely sensed measures of the percentage of land cover

composed of urban/built up, shrubs, cultivated area, open forest, or

closed forest in a 1 km buffer around the village location from the

Sternberg et al. (2018) dataset; the percentage of houses in the

village receiving the SET intervention; and the averages over the

study period of indoor vector abundance, percentage of indoor

vectors that were Anopheles gambiae, and indoor EIR. Remotely

sensed land cover variables are from the discrete classifications in

the Copernicus Global Land Cover Layers in 2018 (Buchhorn et al.,

2020), which we grouped into the 5 categories noted above.

To contextualize the estimated impacts of each of the covariates

on malaria incidence rates, we used the 5th and 95th percentiles of

each covariate, and calculated the change in malaria associated with

a covariate increasing from its 5th to 95th percentile.
4 Results

4.1 Climate and entomological predictors
of malaria seasonality

Malaria incidence per child per year followed a clear seasonal

pattern (Figure 1A), with peaks in incidence occurring between

August and November, and lowest incidence between January

and April, in both treated and untreated villages. Malaria

incidence was higher in villages that did not receive the SET

treatment (Figure 1A), as shown previously (Sternberg et al.,

2021). EIR varied sporadically over the study period, although

as with malaria incidence, it was higher on average in control

than treated villages (Figure 1A). Temperature (indoor and

outdoor) and rainfall also had consistent seasonal variation, and

indoor temperatures were consistently warmer than outdoor

temperatures (Figure 1A). As outdoor temperatures varied
TABLE 1 Variables and their relative forms and lags included in the
panel regression analysis.

Variable Data
collection
location

Functional forms Lags

Temperature Outdoor,
indoor

Linear, quadratic, relative
R0 (outdoor,indoor, and
combined indoor
and outdoor)

0, 1, 2 months

Precipitation Outdoor Linear, quadratic 0, 1, 2 months

EIR Outdoor,
indoor

Linear 0, 1, 2 months
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around the presumed optimal temperature for malaria transmission

(25°C; Mordecai et al. (2013)), estimated relative R0 as a function of

outdoor temperature was relatively high for an extended period of

the year (March to October) while indoor temperatures—which

were consistently above the optimal temperature—lead to an

estimated relative R0 with two sharper peaks in the cooler times

of the year (Figure 1A). The combined R0, which used outdoor

temperatures for larval traits and indoor temperatures for adult

traits, had a smoother seasonal pattern with a single, narrow peak in

July to September that matches the seasonality of malaria rate and

indoor EIR (Figure 1A).

Climate variables were available every month, so models

predicted monthly malaria incidence rates with predictors lagged

at 0, 1 and 2 months. Among these models, the lower-bound null

model explained 23% of malaria variation (measured by squared

correlation between predicted and observed of the Poisson

regression), while the flexible seasonal model explained a total of

68% of malaria variation (Figure 2). Generally, the quadratic models

for both indoor and outdoor temperatures (explaining 63% and

65% of malaria variation, respectively) performed much better than

linear temperature models (55% and 26% of malaria variation),

while the R0 model that combined indoor and outdoor temperature
Frontiers in Malaria 05
performed slightly better than outdoor or indoor R0 temperature

alone (65% vs 60% and 55%, respectively; Figure 2). For rainfall,

both linear and quadratic models performed well (62% and 64%,

respectively; Figure 2). While the best performing climatic variables

approached the performance of the flexible model, with both

quadratic temperature and rainfall explaining the greatest

variation in malaria transmission (Figure 2), it is not possible to

identify which may be the main seasonal driver because these

variables are highly correlated.

Entomological predictor variables were only available every

other month, so models predicted bi-monthly malaria incidence

rates, and predictors were lagged at 0 and 2 months. For these

models, the null model explained 26% of malaria variation, and the

flexible seasonal model explained 68% of malaria variation

(Figure 2). We found that both indoor and outdoor EIR

performed lower than expected (44% and 33%; Figure 2) given

that it has a tight relationship to malaria transmission in the

literature (Kelly-Hope and McKenzie, 2009). To ensure this was

not due to the bimonthly nature of the predictive models, we also fit

bimonthly models with quadratic outdoor temperature and

combined R0 temperature (using the same 0 and 2 months lags)

and find that they outperform the EIR models (65% and 60%,
A B

FIGURE 1

(A) Malaria incidence rate (incidence per child per year) and indoor EIR (infectious bites per person per year) in control (red) and eave tube treated
(blue) villages over the study period. Precipitation (monthly total, mm) and temperature (monthly average, °C) from a local meteorological station.
Dashed horizontal line indicates the predicted temperature of peak R0 from mechanistic models (Mordecai et al., 2013). Bottom panel shows relative
R0(T), calculated as the average of daily R0(T) over the month (Mordecai et al., 2013). (B) Location of control (red triangle) and treated (blue circle)
villages, location of meteorological station (black diamond), and land cover in the area.
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respectively) and are much closer to the predictive power of the

flexible seasonal model (Figure 2).
4.2 Theoretical vs. observed optimal
temperature for malaria transmission

We tested the hypothesis that a temperature-dependent R0

model based on laboratory studies, which peaks at 25°C, would

predict variation in malaria incidence rates, study-wide. We found

some support for this hypothesis: our combined indoor and
Frontiers in Malaria 06
outdoor temperature-dependent R0 model explained 65% of the

variation in malaria incidence rate, nearly matching the

performance of the more flexible quadratic temperature model

that explained 68% of variation (Figure 2). The estimated

peak of the fitted quadratic outdoor temperature model occurred

at 21.6°C, a few degrees cooler than the a priori predicted thermal

optimum temperature of 25°C (Figure 3). However, indoor

temperatures were consistently higher than outdoor temperatures

(Figure 1A), and Anopheles gambiae mosquitoes spend a

large portion of their adult lifecycle, indoors, which may

explain this difference. This is also consistent with the improved
A B

FIGURE 3

Estimated (A) temperature and (B) precipitation responses from panel regressions. (A) Temperature responses use quadratic relationship from
outdoor temperature in models with only temperature (red) and with linear precipitation control (blue), compared to mechanistic R0(T) curve (black).
Solid line shows central estimate and shaded areas show 95% confidence intervals. Density plots show the distribution of monthly average (dark
grey) and hourly (light grey) outdoor temperatures. (B) Precipitation responses similarly are from models with just linear temperature (green) and
with quadratic temperature control (blue).
FIGURE 2

Nonlinear temperature (quadratic and R0) and rainfall explain substantial variation in malaria incidence. Relative performance of models, measured by
relative squared correlation from models, where the minimum of 0 is squared correlation equivalent to a baseline model with only village fixed
effects (FEs) and a time trend (vertical lines on the left) and the maximum of 1 is relative to model with village FEs, time trend and flexible seasonal
(month FE; vertical lines on the right). Models shown below the dashed line are on the sample that has data on EIR (i.e., only bi-monthly) and
includes only current and 2-month lagged predictor variables for consistency with the availability of EIR data.
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performance of combined temperature R0 over indoor or outdoor

R0, although the difference in performance of outdoor and

combined R0 was small (Figure 2). In sum, temperature had a

hump-shaped relationship with malaria incidence rate,

as theoretically expected based on ectotherm physiology

and laboratory thermal performance measurements (Mordecai

et al., 2013; Johnson et al., 2015; Villena et al., 2022).

While this temperature-dependent model had previously

been tested against field data on spatial variation in malaria

transmission (Mordecai et al., 2013; Johnson et al., 2015;

Villena et al., 2022), this is important independent field evidence

that it can potentially explain part of the observed variation in

malaria over time within a small geographic area with high

transmission rates.
4.3 Effects of rainfall on
malaria transmission

Unlike temperature, we did not have precise a priori predictions

for how rainfall would affect malaria incidence rate. We did,

however, expect that transmission would be most strongly

associated with rainfall at lags of 0–2 months, given the time

needed after rainfall for mosquitoes to hatch, develop to

adulthood, bite, acquire parasites, become infectious, and transmit

onward. We found that both linear and quadratic relationships

between rainfall (lagged 0–2 months) were predictive of malaria

incidence rates, with little improvement from the additional

flexibility of the quadratic model (62% vs 64% R2; Figure 2), in

contrast to temperature. This relationship showed increasing

malaria with higher monthly rainfall, but, after additionally

controlling for quadratic temperature, this association was much

weaker, indicating the highly correlated nature of the seasonal

signals of temperature and precipitation (Figure 3).
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4.4 Spatial variation in malaria transmission

Study-wide malaria followed a consistent seasonal pattern over

time but malaria incidence rates varied substantially between

villages, particularly during the second transmission season

(2018), which coincides with reducing efficacy in insecticide-

treated bed nets distributed at the start of the trial (Sternberg

et al., 2021). We were interested in understanding what factors, in

addition to the SET treatment, explained village-level differences in

malaria incidence rate in this geographically and climatically similar

group of villages. We used remotely sensed vegetation cover and

field-measured entomological variables as predictors to explain

variation in the village-level average malaria incidence rate over

the study period. Although microclimatic, demographic, and

socioeconomic factors likely also affect malaria incidence rates, we

did not have access to data on these variables. We found that in

addition to SET treatment reducing malaria incidence rate (as

shown previously; Sternberg et al., 2021), the percentage of

cultivated land area at 1 km scale was associated with increased

malaria incidence rate (Figure 4). Entomological variables, averaged

by village over the entire study period (two years), were not

significantly associated with average malaria incidence rates

among villages. This indicates that, for example, villages with

consistently higher malaria incidence rates did not have

consistently higher entomological indices (including average

indoor vector abundance, indoor EIR, and percentage of vectors

that are An. gambiae).
5 Discussion

The transmission of vector-borne diseases depends on

environmental, climatic, and social factors. These variables’

importance and their mechanistic links with transmission vary
FIGURE 4

Cultivated area increases malaria incidence rate while SET treatment decreases it. Estimated change on average malaria incidence rate from
changing a covariate from the 5th to 95th percentile of its distribution. Points indicate central estimates and error bars are 95% confidence intervals.
Estimates are from a linear regression of average malaria incidence on covariates.
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across pathogens, vectors, locations, and scales. Climate and malaria

are some of the best-studied interactions, given that malaria i)

causes one of the highest burdens of all vector-borne diseases

globally and ii) is a historically significant disease that has been

investigated for over a century. In recent decades we have advanced

our understanding of relationships between climate and malaria at

large geographic scales, which is essential for predicting the

distribution of malaria and shifting environmental suitability

under climate change scenarios. For example, a recent study using

panel regression methods applied across sub-Saharan Africa from

1900–2015 found that temperature had nonlinear effects on P.

falciparum rates in 2–10 year-olds, which peaked at 25°C, and

that historical climate change has already led to geographical shifts

in malaria burdens from historically warmWest and Central Africa

to historically more excellent East and Southern African regions

(Carlson et al., 2023). Yet, in localized areas that are highly suitable

for transmission and experience high burdens of malaria, it remains

to be seen how vital climate is for predicting malaria incidence.

Here we modeled multiple climate variables, in different

functional forms and lags, across 40 villages in a holoendemic

area of malaria transmission. When assessing the performance of

temperature as a predictor of malaria, we find strong support for the

emerging consensus that effects of temperature are nonlinear. In

our study, nonlinear temperature performed almost as well as the

upper bound measure (a flexible seasonal model), while linear

temperature performed much closer to the lower bound measure

(a null model). Over the last decade, a growing body of literature has

provided empirical evidence for the nonlinear effects of temperature

on transmission, which are attributed to the thermal performance of

all vector and parasite life history traits (Peterson, 2009; Mordecai

et al., 2013; Yamana and Eltahir, 2013; Johnson et al., 2015; Shah

et al., 2019; Villena et al., 2022; Carlson et al., 2023). Our findings

add further support to this and highlight that warmer temperatures

do not always lead to more malaria. In addition to the linear and

quadratic temperature models, we included a mechanistic R0 of

temperature model based on outdoor temperatures, indoor

temperatures, and one that integrated both indoor and outdoor

temperatures specific to malaria vector behavior and biology. Of

these three, the combined indoor and outdoor temperature model

performed best. It functioned as well as the upper bound (flexible

seasonal) model, slightly better than the quadratic temperature

model (Figure 2). This is a novel finding because few models

combine indoor and outdoor temperature data or acknowledge

that larvae and adults might experience different temperature.

Generally, a mechanistic R0 model can be more informative than

phenomenological nonlinear models alone, mainly when correlated

climate variables make it difficult to assess causation because they

integrate components of vector biology and transmission specific to

transmission risk. However, in comparison to a phenomenological

nonlinear model they can be more complex to develop and require

additional data on vector biology to validate findings in a

given location.

Due to the strong seasonal correlation between temperature and

rainfall, we found that a model incorporating rainfall performed as

well as the nonlinear temperature models, and the difference

between linear and nonlinear rainfall patterns was marginal. The
Frontiers in Malaria 08
quantitative effects of rainfall on malaria are less broadly understood

compared to those of temperature. In some studies, an increase in

rainfall has been associated with more malaria due to the increased

availability of vector breeding sites, yet too much rainfall has also

been associated with a reduction in malaria because it can flush

larval habitats (Asare et al., 2016; Ratti et al., 2022). The functional

form relating rainfall to malaria may vary across settings that differ

in climate, hydrology, and land use. Our findings underscore two

considerations for using rainfall as a local predictor of malaria. First,

the high performance of both functional forms emphasizes the need

for finer-scale assessments to account for localized hydrology

variation. Our study encompassed 40 villages which may differ

slightly in hydrological profiles, but we were limited by a single

measure of rainfall across the study area. Second, because

temperature and rainfall vary seasonally in a pattern that closely

matches malaria transmission, it is impossible to disentangle which

variables are more important for driving transmission using the

information in these models alone.

The randomized controlled trial (RCT) underpinning this study

provides an unprecedented opportunity to connect climate,

entomological variables, and malaria incidence measured

consistently across 40 villages over two years. Specifically,

entomological variables like mosquito abundance, entomological

inoculation rate (EIR), and percentage of vectors that are An.

gambiae are often measured as potential indicators of malaria

transmission (Kelly-Hope and McKenzie, 2009). However, we

found that for variation both over time and among villages,

entomological predictors were not strongly associated with

malaria incidence rate, and that climatic variables are better

predictors of variation in transmission. This may be because

mosquito sampling methods are inherently noisy and because

entomological variables were only measured every other month,

and were averaged within villages in all analyses. It is possible that

more finely resolved entomological data could have greater

predictive power. Still, given that these data are costly to collect

and that climatic variables explained more variation in malaria

incidence rate within villages over time (they were not measured

separately among villages), this work suggests that mechanical

models of the effects of climate on malaria transmission could be

valuable tools for predicting variation in transmission over time and

space. Entomological indices may be helpful as a proximate

measure of the impact of vector control interventions and for

identifying households at higher risk.

The focal villages were selected for inclusion in the RCT based

on their socio-ecological similarity and geographic proximity; still,

they varied substantially in malaria incidence, from 0 to 11.35

malaria cases per child, and much of this variation was not

explained by the SET treatment. Here we found that villages with

more surrounding cultivated land cover had higher malaria

incidence rates. However, most of the village variation remained

unexplained by our land cover, entomological, and SET treatment

variables. There are several possible reasons for this variation which

are limitations of our study. First, only using symptomatic cases to

calculate incidence ignores the impact of asymptomatic malaria

infections can have on transmission within a community. For

example, asymptomatic malaria infections can provide an
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untreated source of infection for vectors, or conversely can increase

immunity within a population and reduce transmission. Here

asymptomatic cases were not collected because our study focused

on malaria in children, which we expected to be mostly

symptomatic because they have lower immunity. This limits our

ability to test the impact of asymptomatic infections on malaria

transmission within and between villages and may have some biases

because of this.
6 Conclusion

While recent decades have seen dramatic declines in transmission

across the continent due to improvements in malaria control efforts

(Bhatt et al., 2015), malaria remains paradoxically difficult to control in

many endemic areas, and progress toward malaria elimination has

recently stalled (World Health Organization, 2023). For example,

despite this RCT testing for and clearing parasites prior to and

throughout the study, providing new insecticide-treated bednets, and

providing a novel household modification to reduce mosquito

entrance and survival (SET), malaria case incidence was 2.29 per

child-year in control villages and 1.43 per child-year in treated villages

during the 2-year intervention period. Understanding the burden of

malaria and how it responds to climate is therefore critical for

predicting malaria incidence over space and time and for supporting

targeted interventions. Despite the complexity of the malaria

transmission system, we found that up to 68% of within-village

variation over time is predictable based on seasonality of rainfall and

temperature. Accounting for nonlinear effects of temperature on

malaria transmission is critical as linear models of temperature

performed poorly at explaining malaria incidence rates (Figure 2).

This provides further empirical support for an emerging

understanding that climate warming is likely to drive geographic

and seasonal shifts rather than across-the-board increases (Ryan

et al., 2015; Mordecai et al., 2020; Carlson et al., 2023). Preparation

for these climate change-driven shifts is a major objective for public

health and sustainable development in the 21st century.
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