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S1 Malaria model descriptions

S1.1 LMM

For a compartmental infectious disease model, an expression for the basic reproduction
number, R0 as a function of model parameters is determined by considering the
steady-state conditions of the governing differential equations. R0 therefore gives an
indication of the suitability of conditions, as described by the model parameters, for
sustained or increasing disease transmission. For LMM, R0 is given by equation 1 [1]:

R0 =
ma2bc

µr
exp(−µτy − rτx) (1)

where the biting rate (a; day−1); mosquito mortality (µ; 0 to 1); sporogonic cycle length
(τy; days); and vector density (m), are all climate-dependent variables and calculated
using daily-mean temperatures (T ; ◦C) and daily-accumulated rainfall (R; mm day−1)
(equations 2-5). b, c, r and τx are prescribed climate-independent parameters
representing, respectively: the human and mosquito inoculation efficiencies, the human
recovery rate (day−1), and the time in humans between infection and infectiousness (the
latent period; days). Table S1 shows the prescribed values used for climate-independent
model parameters. These prescribed values are taken from [2] and altered for this
simplified version of the LMM. The daily vector density, i.e. the number of adult
mosquitoes, is proportional to 10-day rainfall accumulations:

mi = µimi−1 +

(
i∑

d=i−n+1

Ri

)
(2)

where subscript i represents the daily value and n determines the number of days which
precipitation is accumulated over (10). The probability of mosquito survival (µ) also
impacts the number of adult mosquitoes and is based on a quadratic relationship given
with temperature [3]:

µi =

{
−0.0016T 2

i + 0.054Ti + 0.45 if 0.0 < Ti < 45.0

0, otherwise
(3)

a and τy depend on temperature and are formulated using:

ai =
HBI(

1.0 +
Dg

(Ti−Tg)

) (4)

τy,i =
Ds

(Ti − Ts)
(5)

where HBI denotes the human blood index (dimensionless); Tg denotes the gonotropic
temperature threshold (◦C); Dg represents the gonotropic cycle length (◦ days); Ts

denotes the sporogonic temperature threshold (◦C); and Ds represents the sporogonic
cycle length (◦ days). This version of the LMM is implemented in Python and is freely
available [4].
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Table S1. Parameter values used for LMM simulations

Parameter Variable Value
Human inoculation efficiencies b 0.5
Mosquito inoculation efficiencies c 1.0
Human latent period τx 15 days
Human recovery rate r 0.0284 day−1

Human blood index HBI 0.5
Gonotrophic threshold temperature Tg 9.0 ◦C
Gonotrophic cycle length Dg 37.0 ◦ days
Sporogonic threshold temperature Ts 18 ◦C
Sporogonic cycle length Ds 111.0 ◦ days

S1.2 VECTRI

Within the VECTRI biological model, temperature affects aquatic growth stages of
mosquitoes as well as sporogonic and gonotrophic cycles. The effect of precipitation on
transmission is represented by a simple, physically-based model of surface pool
hydrology whereby the number of available breeding sites depends on rainfall
accumulations. Areas of stagnant water decay through evaporation and infiltration,
whilst intense rainfall decreases larvae populations through washing away breeding sites.
VECTRI also takes into account population density when calculating transmission
probabilities, which enables a comparison between urban, peri-urban and rural areas.
Further details about the model parameterisation can be found in [5]. The VECTRI
source code and documentation can be found at http://users.ictp.it/∼tompkins/vectri/.

S2 Determining the best set of observational climate
products

Here we investigate the best combination of precipitation and temperature observations
to drive historical malaria simulations. To do this we compare LMM output from nine
experiments driven with different precipitation and temperature datasets (Table S2)
with estimates of malaria endemicity from MAP (section 2.2). Due to both the LMM
and VECTRI requiring precipitation and temperature at a daily temporal resolution,
we were limited in our choice of pan-African observational datasets. For our nine LMM
experiments we vary between three temperature products: the European Centre for
Medium-Range Weather Forecasts (ECWMF) Reanalysis version 5 (ERA5) [6; 7];
Berkeley Earth Surface Temperatures (BEST) [8]; and temperatures from phase 2b of
the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) [9], and three
precipitation products: ERA5; the Climate Hazards group InfraRed Precipitation with
Stations (CHIRPS) [10]; and ISIMIP2b. A description of ERA5 and CHIRPS is
provided in the methodology section (section 2.3.1). BEST data uses long-term in situ
station data records to output daily temperatures on a 1◦ latitude/longitude grid.
Temperature observations are interpolated onto the horizontal grid using Kriging [11],
also known as Gaussian Process Regression, which is the best linear unbiased predictor
of the underlying field [8]. Meanwhile, data sources for ISIMIP2b include ERA-Interim
reanalysis (ERAI) [12], a WATCH (Water and Global Change) forcing data
methodology applied to ERAI data (WFDEI) [13], eartH2Observe forcing data
(E2OBS) [14], and NASA/GEWEX (National Aeronautics and Space
Administration/Global Energy and Water Exchanges) Surface Radiation Budget data
(SRB) [15]. Temperature and precipitation data for ISIMIP2b is outputted on a 0.5◦

latitude/longitude grid. Data generated for ISIMIP2b aims to support climate-driven
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impact-based modelling across a variety of sectors including agriculture, water quality
and health. In particular for phase 2b, the project aimed to assess the impacts of an
anthropogenic global-mean temperature rise of 1.5◦C [9]. All datasets have been
remapped onto the same 0.25◦ latitude/longitude grid as R25 simulations (section 2.3.2)
using a first-order conservative interpolation scheme [16].

Table S2 shows the simulation name given to each LMM experiment driven with
different climate observational data. The labelling of all experiments follows the same
structure with the source of precipitation (P) data followed by the source of
temperature (T) observations. We use “E5”, “B”, “IS” and “Ch” as shorthand to
denote ERA5, BEST, ISIMIP and CHIRPS datasets respectively. Figure S1 shows the
annual-mean number of days when R0 is greater than 1.0 in all LMM experiments
driven with different observational datasets. In general, all LMM experiments simulate
high malaria risk across the Guinea coast, central Africa and coastal regions of
south-east Africa. There are substantial differences in predicted malaria risk across
parts of equatorial Africa when changing the driving temperature dataset. For example,
using temperatures from BEST predicts a much smaller malaria risk across central
Africa compared to when using ERA5 or ISIMIP regardless of the chosen precipitation
product. Whilst varying the driving temperature dataset leads to substantial differences
in LMM-predicted malaria risk, we also conclude that varying the precipitation product
can impact simulated malaria incidence. For example, when using precipitation from
ISIMIP, simulated malaria risk across coastal regions of western central Africa are much
larger compared to when using CHIRPS or ERA5.

To conclude which combination of precipitation and temperature data is best to
drive our “observed” malaria simulation experiments, we compute the spatial correlation
between the simulated annual-mean number of days when R0 is greater 1.0 and the
estimated Pf incidence rate from MAP. Spatial correlation coefficients between LMM
experiments vary between 0.19 to 0.45 (Fig S1). Unsurprisingly, using precipitation from
ERA5 has the lowest agreement with MAP-derived incidence rate as ERA5 precipitation
relies on parameterisations of deep convection. Spatial correlations improve when using
precipitation from EWEMBI due to bias-correcting reanalysis data and the merging of
several hydrological products [17]. Using precipitation data from CHIRPS simulates the
largest spatial correlations with MAP data regardless of the chosen temperature
product. Given that MAP data is partly derived using in situ station and
satellite-derived environmental data (section 2.2), it is unsurprising that CHIRPS is the
best precipitation product to use. Previous studies have also shown that CHIRPS is one
of the most reliable pan-African precipitation products available [10; 18; 19]. However,
when considering the best temperature product, temperatures from ERA5 give the
largest correlation coefficients regardless of the chosen precipitation dataset. Using
temperatures from BEST gives the lowest agreement with MAP estimates which we
hypothesise is due to the low number of temperature observations across equatorial
Africa [20]. Using temperatures from ISIMIP instead of BEST increases spatial
correlations, whilst temperatures from ERA5 increases correlations even further. Higher
spatial correlations when using temperatures from ERA5 is unsurprising given it is the
only temperature dataset originally produced at a 0.25◦ horizontal resolution. Given
that the combination of CHIRPS precipitation and ERA5 temperatures produces the
largest spatial correlation coefficient, for the rest of the study we treat malaria
experiments driven with these two datasets as our “observational” malaria experiment.

S3 Simulated temperature and precipitation biases

In this supplementary section we assess the ability of CP4h and R25h at simulating
historical precipitation and temperature. Given that we conclude that temperatures and
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Table S2. LMM malaria transmission experiments using different observational
products.

Purpose
Simulation
name

Precipitation
input data

Temperature
input data

Determining the best combination of
observational products (LMM only)

E5P E5T ERA5 ERA5
ChP E5T CHIRPS ERA5
ISP E5T ISIMIP ERA5
E5P BT ERA5 BEST
ChP BT CHIRPS BEST
ISP BT ISIMIP BEST
E5P IST ERA5 ISIMIP
ChP IST CHIRPS ISIMIP
ISP IST ISIMIP ISIMIP

precipitation from ERA5 and CHIRPS are the best sources of driving climate data for
historical LMM experiments (section S2), we evaluate climate simulations using these
two datasets. Similar conclusions are reached when using other temperature or
precipitation datasets. Consistent with previous studies [21; 22], parameterised
convection favours the occurrence of light rainfall (Fig S2a-b, S2d-e, and S3a). However,
even with more frequent light rainfall days in R25h compared to CP4h, errors in 10-day
precipitation accumulations are greater in CP4h particularly over high-altitude regions
such as the East African highlands and Mount Cameroon (Fig S2g,h). For example, the
RMSD in 10-day precipitation accumulations is 1.64 mm greater in CP4h than R25h.
Figure S3a shows the fractional contribution of all daily precipitation rates across land
points south of 20◦N. We find a larger fraction of days with light precipitation (≤ 10 mm
day−1) in R25h compared to CP4h. However, CP4h overestimates the fraction of days
when precipitation is greater than approximately 20 mm day−1 to a greater degree than
R25h. Therefore, we conclude that larger biases in 10-day precipitation accumulations
in CP4h compared to R25h (Fig S2i) are associated with too many heavy rainfall days.

CP4h has a strong negative temperature bias across the Sahel (Fig S2j).
Decomposing annual-mean errors into seasonal contributions highlights that similar
errors are found across the Sahel during dry seasons. From July to September, the wet
season associated with the West African monsoon, near-surface temperature biases are
minimum (not shown). Given that temperature errors across the Sahel are largest
during dry seasons, and that malaria transmission is favoured during wet conditions
(section 2.1), we also investigate wet-day temperature biases (Fig S2m-o). In general,
CP4h has larger wet-day temperature errors with the RMSD being 0.18◦C greater in
comparison with R25h. The difference in wet-day temperatures between CP4h and
R25h highlights that temperatures are consistently cooler in CP4h when it is raining
(Fig S2o). Cooler wet-day temperatures in CP4h compared to R25h is seen across all
seasons (not shown). This is consistent with findings by [22] who conclude that higher
cloud tops in CP4h leads to a greater reflection of incoming shortwave radiation and
reduced near-surface heating. Figure S3b shows the fractional contribution of
temperatures across all land grid points. Consistent with aforementioned results (Fig
S2j-o), CP4h favours cooler near-surface temperatures than R25. Outside of
approximately 21 to 29◦C, R25h is more consistent with observations compared to
CP4h. This indicates that R25 better resolves the frequency of high near-surface
temperatures (≥ 29◦C). To summarise, whilst the rainfall frequency and daily-mean
precipitation rate is better resolved in CP4h compared to R25h, larger errors in 10-day
precipitation accumulations and near-surface temperatures are found in CP4h. In this
study, we investigate the impact of cooler wet-day temperatures and higher 10-day
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rainfall accumulations in CP4h compared to R25h on simulated malaria transmission.
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S4 Supplementary figures

Fig S1. Annual-mean number of days when R0 is greater 1.0 from LMM experiments
driven with different observational products. First, second and third rows are driven
with ERA5, CHIRPS and ISIMIP precipitation respectively. Whilst first, second and
third columns are driven with ERA5, BEST and ISIMIP temperature. In all panels
boxed values note the spatial correlation coefficient between the annual-mean number of
days when R0 is greater 1.0 and MAP data (Fig 1a). To ensure that the spatial
correlation is not biased towards regions of low malaria incidence, we remove all grid
points where the MAP-derived Pf incidence rate is smaller than 0.1. We also removed
grid points where the simulated annual-mean number of days when R0 is greater than
1.0 is outside the range of 15.0 and 140.0. To be consistent with the time span of
available MAP data [23], we only compare malaria model output which is driven with
climate model data from years 2000 to 2007. All correlations are statistically significant
at a 99% confidence interval. Land and country boundaries were added using Natural
Earth; free vector and raster map data available at naturalearthdata.com.

Fig S2. Annual-mean differences in (a-c) 10-day precipitation accumulations (mm),
(d-f) the number of wet days (≥ 1 mm), (g-i) mean wet-day precipitation rate (mm),
(j-l) daily-mean near-surface air temperature (◦C), and (m-o) daily-mean wet-day
near-surface air temperature (◦C). Differences are shown between (first column) CP4h
and observations, (second column) R25h and observations, and (third column) CP4h
and R25h. Values above each panel label, document the root mean squared difference
(RMSD) across land points south of 20◦N in each panel. Land and country boundaries
were added using Natural Earth; free vector and raster map data available at
naturalearthdata.com.

Fig S3. Fractional contributions of (a) daily-accumulated precipitation rates (mm
day−1) and (b) daily-mean near-surface air temperatures (◦C) across all land points
south of 20◦N in bins of 2 mm day−1 and 1◦C for (orange) CP4h, (blue) R25h, and
(grey) observations. In (a) a subset panel zooms into the fractional contributions of
daily-accumulated precipitation rates up to 10 mm day−1. A light grey rectangle in
panel (a) denotes the area of focus.
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